Jetpack/kernel/nvidia/drivers/ras/arm64_ras.c

518 lines
13 KiB
C

/*
* RAS driver for T194
*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/of_device.h>
#include <linux/arm64_ras.h>
#include <linux/of_irq.h>
#include <linux/cpuhotplug.h>
static int fhi_irq[CONFIG_NR_CPUS];
static u8 is_ras_probe_done;
static LIST_HEAD(fhi_callback_list);
static DEFINE_RAW_SPINLOCK(fhi_lock);
/* saved hotplug state */
static enum cpuhp_state hp_state;
static const struct of_device_id arm64_ras_match[] = {
{
.name = "arm64_ras",
.compatible = "arm,armv8.2-ras",
},
{ },
};
MODULE_DEVICE_TABLE(of, arm64_ras_match);
/* Architecturally defined primary error code
* Used for decoding ERR<x>STATUS:SERR bits
*/
static struct ras_error serr_errors[] = {
{.name = "No error", .error_code = 0x0},
{.name = "Implementation defined error", .error_code = 0x1},
{.name = "Data value from non-associative internal memory",
.error_code = 0x2},
{.name = "Implementation defined pin", .error_code = 0x3},
{.name = "Assertion Failure", .error_code = 0x4},
{.name = "Internal Data Path", .error_code = 0x5},
{.name = "Data value from associative memory", .error_code = 0x6},
{.name = "Address/control value(s) from associative memory",
.error_code = 0x7},
{.name = "Data value from a TLB", .error_code = 0x8},
{.name = "Address/control value(s) from a TLB", .error_code = 0x9},
{.name = "Data value from producer", .error_code = 0xA},
{.name = "Address/control value(s) from producer", .error_code = 0xB},
{.name = "Data value from (non-associative) external memory",
.error_code = 0xC},
{.name = "Illegal address (software fault)", .error_code = 0xD},
{.name = "Illegal access (software fault)", .error_code = 0xE},
{.name = "Illegal state (software fault)", .error_code = 0xF},
{.name = "Internal data register", .error_code = 0x10},
{.name = "Internal control register", .error_code = 0x11},
{.name = "Error response from slave", .error_code = 0x12},
{.name = "External timeout", .error_code = 0x13},
{.name = "Internal timeout", .error_code = 0x14},
{.name = "Deferred error from slave not supported at master",
.error_code = 0x15},
};
/* Read ERR<X>SELR */
u64 ras_read_errselr(void)
{
u64 errselr;
asm volatile("mrs %0, s3_0_c5_c3_1" : "=r" (errselr));
return errselr;
}
EXPORT_SYMBOL(ras_read_errselr);
/* For read/write of any ERR<X> register, error record X is selected
* by writing to ERRSELR_EL1
* ISB is needed in the end to ensure this write completes before another
* read/write to this error record comes in.
*/
void ras_write_errselr(u64 errx)
{
asm volatile("msr s3_0_c5_c3_1, %0" : : "r" (errx));
isb();
}
EXPORT_SYMBOL(ras_write_errselr);
/* Read ERR<X>STATUS */
u64 ras_read_error_status(void)
{
u64 status;
asm volatile("mrs %0, s3_0_c5_c4_2" : "=r" (status));
return status;
}
EXPORT_SYMBOL(ras_read_error_status);
/* Write to ERR<X>STATUS */
void ras_write_error_status(u64 status)
{
asm volatile("msr s3_0_c5_c4_2, %0" : : "r" (status));
}
EXPORT_SYMBOL(ras_write_error_status);
/* Read ERR<X>ADDR */
static u64 ras_read_error_address(void)
{
u64 addr;
asm volatile("mrs %0, s3_0_c5_c4_3" : "=r" (addr));
return addr;
}
/* Write to ERR<X>ADDR*/
void ras_write_error_addr(u64 addr)
{
asm volatile("msr s3_0_c5_c4_3, %0" : : "r" (addr));
}
EXPORT_SYMBOL(ras_write_error_addr);
/* Read ERR<X>MISC0 */
static u64 ras_read_error_misc0(void)
{
u64 misc0;
asm volatile("mrs %0, s3_0_c5_c5_0" : "=r" (misc0));
return misc0;
}
/* Write to ERR<X>MISC0*/
void ras_write_error_misc0(u64 misc0)
{
asm volatile("msr s3_0_c5_c5_0, %0" : : "r" (misc0));
}
EXPORT_SYMBOL(ras_write_error_misc0);
/* Read ERR<X>MISC1 */
static u64 ras_read_error_misc1(void)
{
u64 misc1;
asm volatile("mrs %0, s3_0_c5_c5_1" : "=r" (misc1));
return misc1;
}
/* Write to ERR<X>MISC1*/
void ras_write_error_misc1(u64 misc1)
{
asm volatile("msr s3_0_c5_c5_1, %0" : : "r" (misc1));
}
EXPORT_SYMBOL(ras_write_error_misc1);
/* Read ERR<X>CTLR_EL1*/
u64 ras_read_error_control(void)
{
u64 err_ctl;
asm volatile("mrs %0, s3_0_c5_c4_1" : "=r" (err_ctl));
return err_ctl;
}
EXPORT_SYMBOL(ras_read_error_control);
/* Write to ERR<X>CTLR_EL1*/
void ras_write_error_control(u64 err_ctl)
{
asm volatile("msr s3_0_c5_c4_1, %0" : : "r" (err_ctl));
}
EXPORT_SYMBOL(ras_write_error_control);
/* Read ERR<X>PFGCTL_EL1*/
u64 ras_read_pfg_control(void)
{
u64 pfg_ctl;
asm volatile("mrs %0, s3_0_c15_c1_4" : "=r" (pfg_ctl));
return pfg_ctl;
}
EXPORT_SYMBOL(ras_read_pfg_control);
/* Write to ERR<X>PFGCTL_EL1*/
void ras_write_pfg_control(u64 pfg_ctl)
{
asm volatile("msr s3_0_c15_c1_4, %0" : : "r" (pfg_ctl));
}
EXPORT_SYMBOL(ras_write_pfg_control);
/* Read ERR<X>PFGCDN_EL1*/
u64 ras_read_pfg_cdn(void)
{
u64 pfg_cdn;
asm volatile("mrs %0, s3_0_c15_c1_6" : "=r" (pfg_cdn));
return pfg_cdn;
}
EXPORT_SYMBOL(ras_read_pfg_cdn);
/* Write to ERR<X>PFGCDN_EL1*/
void ras_write_pfg_cdn(u64 pfg_cdn)
{
asm volatile("msr s3_0_c15_c1_6, %0" : : "r" (pfg_cdn));
}
EXPORT_SYMBOL(ras_write_pfg_cdn);
void unregister_fhi_callback(struct ras_fhi_callback *callback)
{
unsigned long flags;
raw_spin_lock_irqsave(&fhi_lock, flags);
list_del(&callback->node);
raw_spin_unlock_irqrestore(&fhi_lock, flags);
}
EXPORT_SYMBOL(unregister_fhi_callback);
static unsigned int read_pfr0_ras_version(void)
{
return PFR0_RAS(read_cpuid(ID_AA64PFR0_EL1));
}
static void is_ras_version1(void *ret)
{
*(int *)(ret) = (read_pfr0_ras_version() == PFR0_RAS_VERSION_1);
}
/* check if RAS is supported on this CPU
* ret = 0 if not supported
* = 1 if supported
*/
int is_ras_cpu(int cpu)
{
int ret;
smp_call_function_single(cpu, is_ras_version1, &ret, 1);
return ret;
}
EXPORT_SYMBOL(is_ras_cpu);
int is_this_ras_cpu(void)
{
return read_pfr0_ras_version() == PFR0_RAS_VERSION_1;
}
EXPORT_SYMBOL(is_this_ras_cpu);
int is_ras_ready(void)
{
return is_ras_probe_done == 1;
}
EXPORT_SYMBOL(is_ras_ready);
void print_error_record(struct error_record *record, u64 status, int errselr)
{
struct ras_error *errors;
u64 misc0, misc1, addr;
u16 ierr, serr;
u64 i;
int found = 0;
u64 err_status = 0;
pr_crit("**************************************\n");
pr_crit("RAS Error in %s, ERRSELR_EL1=%d:\n", record->name, errselr);
pr_crit("\tStatus = 0x%llx\n", status);
/* Find the name of IERR */
ierr = get_error_status_ierr(status);
errors = record->errors;
if (errors) {
for (i = 0; errors[i].name; i++) {
if (errors[i].error_code == ierr) {
pr_crit("\tIERR = %s: 0x%x\n",
errors[i].name, ierr);
found = 1;
break;
}
}
if (!found)
pr_crit("\tUnknown IERR: 0x%x\n", ierr);
} else {
pr_crit("\tBank does not have any known IERR errors\n");
}
/* Find the name of SERR */
found = 0;
serr = get_error_status_serr(status);
for (i = 0; serr_errors[i].name; i++) {
if (serr_errors[i].error_code == serr) {
pr_crit("\tSERR = %s: 0x%x\n", serr_errors[i].name,
serr);
found = 1;
break;
}
}
if (!found)
pr_crit("\tUnknown SERR: 0x%x\n", serr);
if (status & ERRi_STATUS_OF) {
pr_crit("\tOverflow (there may be more errors) - Uncorrectable\n");
/* Clear the error by writing 1 to ERRi_STATUS:OF */
err_status |= ERRi_STATUS_OF;
}
if (status & ERRi_STATUS_UE) {
pr_crit("\tUncorrectable (this is fatal)\n");
/* Clear the error by writing 1 to ERR_STATUS:UE
* and 11 to ERR_STATUS:UET
*/
err_status |= ERRi_STATUS_UE;
err_status |= ERRi_STATUS_UET;
}
if (get_error_status_ce(status)) {
pr_crit("\tCorrectable Error\n");
/* Clear the error by writing 1 to ERR_STATUS:CE */
err_status |= ERRi_STATUS_CE;
}
if (status & ERRi_STATUS_MV) {
misc0 = ras_read_error_misc0();
misc1 = ras_read_error_misc1();
pr_crit("\tMISC0 = 0x%llx\n", misc0);
pr_crit("\tMISC1 = 0x%llx\n", misc1);
/* write 1 to clear ERR_STATUS:MV */
err_status |= ERRi_STATUS_MV;
}
if (status & ERRi_STATUS_AV) {
addr = ras_read_error_address();
pr_crit("\tADDR = 0x%llx\n", addr);
/* write 1 to clear ERR_STATUS:AV */
err_status |= ERRi_STATUS_AV;
}
/* Write 1 to clear ERR_STATUS:V */
err_status |= ERRi_STATUS_VALID;
/* Write to ERR_STATUS to clear the error */
ras_write_error_status(err_status);
pr_crit("**************************************\n");
}
EXPORT_SYMBOL(print_error_record);
/* Fault Handling Interrupt or FHI
* for handling Correctable Errors
*/
static irqreturn_t ras_fhi_isr(int irq, void *dev_id)
{
unsigned long flags;
struct ras_fhi_callback *callback;
/* Iterate through the banks looking for one with an error */
pr_crit("CPU%d: RAS: FHI %d detected\n", smp_processor_id(), irq);
raw_spin_lock_irqsave(&fhi_lock, flags);
list_for_each_entry(callback, &fhi_callback_list, node) {
callback->fn();
}
raw_spin_unlock_irqrestore(&fhi_lock, flags);
return IRQ_HANDLED;
}
static int ras_fhi_enable(unsigned int cpu)
{
if (irq_force_affinity(fhi_irq[cpu], cpumask_of(cpu))) {
pr_info("%s: Failed to set IRQ %d affinity to CPU%d\n",
__func__, fhi_irq[cpu], cpu);
return -EINVAL;
}
enable_irq(fhi_irq[cpu]);
pr_info("%s: FHI %d enabled on CPU%d\n", __func__, fhi_irq[cpu], cpu);
return 0;
}
static int ras_fhi_disable(unsigned int cpu)
{
int boot_cpu = 0;
disable_irq_nosync(fhi_irq[cpu]);
if (irq_force_affinity(fhi_irq[cpu], cpumask_of(boot_cpu)))
pr_info("%s: Failed to set IRQ %d affinity to boot cpu %d\n",
__func__, fhi_irq[cpu], boot_cpu);
pr_info("%s: FHI %d disabled\n", __func__, fhi_irq[cpu]);
return 0;
}
/* Register Fault Handling Interrupt or FHI
* for Correctable Errors
*/
static int ras_register_fhi_isr(struct platform_device *pdev)
{
int err = 0, cpu, irq_count;
irq_count = platform_irq_count(pdev);
for_each_possible_cpu(cpu) {
BUG_ON(cpu >= irq_count);
fhi_irq[cpu] = platform_get_irq(pdev, cpu);
if (fhi_irq[cpu] <= 0) {
dev_err(&pdev->dev, "No IRQ\n");
err = -ENOENT;
goto isr_err;
}
}
isr_err:
return err;
}
/* This is an API for CPU specific FHI callbacks
* to be registered with fhi_isr handler
*/
int register_fhi_callback(struct ras_fhi_callback *callback, void *cookie)
{
unsigned long flags;
int err = 0, cpu = 0;
raw_spin_lock_irqsave(&fhi_lock, flags);
list_add(&callback->node, &fhi_callback_list);
raw_spin_unlock_irqrestore(&fhi_lock, flags);
for_each_possible_cpu(cpu) {
err = request_irq(fhi_irq[cpu], ras_fhi_isr,
IRQ_PER_CPU, "ras-fhi", cookie);
if (err) {
pr_err("%s: request_irq(%d) failed (%d)\n", __func__,
fhi_irq[cpu], err);
goto isr_err;
}
disable_irq(fhi_irq[cpu]);
}
/* Ensure that any CPU brought online sets up FHI */
hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
"arm64_ras:online",
ras_fhi_enable,
ras_fhi_disable);
if (hp_state < 0)
pr_info("%s: unable to register FHI\n", __func__);
isr_err:
return err;
}
EXPORT_SYMBOL(register_fhi_callback);
static int ras_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
int err = 0, cpu, probe = 0;
struct device *dev = &pdev->dev;
/* probe only if RAS is supported on either of the online CPUs */
for_each_online_cpu(cpu) {
if (is_ras_cpu(cpu))
probe = 1;
}
if (!probe) {
dev_info(dev, "None of the CPUs support RAS");
return -EINVAL;
}
/* register FHI for Correctable Errors */
match = of_match_device(of_match_ptr(arm64_ras_match),
dev);
if (!match) {
dev_err(dev, "RAS detected, but no device-tree node found,"
" Cannot register RAS fault handler interrupt (FHI)");
return -ENODEV;
}
err = ras_register_fhi_isr(pdev);
if (err < 0) {
dev_info(dev, "Failed to register Fault Handling Interrupts"
" ISR");
return err;
}
/* make sure we have executed everything in the probe
* before setting is_ras_probe_done
*/
smp_mb();
is_ras_probe_done = 1;
dev_info(dev, "probed");
return 0;
}
static int ras_remove(struct platform_device *pdev)
{
cpuhp_remove_state(hp_state);
return 0;
}
static struct platform_driver ras_driver = {
.probe = ras_probe,
.remove = ras_remove,
.driver = {
.owner = THIS_MODULE,
.name = "arm64_ras",
.of_match_table = of_match_ptr(arm64_ras_match),
},
};
static int __init ras_init(void)
{
return platform_driver_register(&ras_driver);
}
static void __exit ras_exit(void)
{
platform_driver_unregister(&ras_driver);
}
arch_initcall(ras_init);
module_exit(ras_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("ARM64 RAS Driver / FHI handler");