forked from rrcarlosr/Jetpack
1446 lines
42 KiB
C
1446 lines
42 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
* Copyright (c) Nokia Corporation, 2006, 2007
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* UBI input/output sub-system.
|
|
*
|
|
* This sub-system provides a uniform way to work with all kinds of the
|
|
* underlying MTD devices. It also implements handy functions for reading and
|
|
* writing UBI headers.
|
|
*
|
|
* We are trying to have a paranoid mindset and not to trust to what we read
|
|
* from the flash media in order to be more secure and robust. So this
|
|
* sub-system validates every single header it reads from the flash media.
|
|
*
|
|
* Some words about how the eraseblock headers are stored.
|
|
*
|
|
* The erase counter header is always stored at offset zero. By default, the
|
|
* VID header is stored after the EC header at the closest aligned offset
|
|
* (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
|
|
* header at the closest aligned offset. But this default layout may be
|
|
* changed. For example, for different reasons (e.g., optimization) UBI may be
|
|
* asked to put the VID header at further offset, and even at an unaligned
|
|
* offset. Of course, if the offset of the VID header is unaligned, UBI adds
|
|
* proper padding in front of it. Data offset may also be changed but it has to
|
|
* be aligned.
|
|
*
|
|
* About minimal I/O units. In general, UBI assumes flash device model where
|
|
* there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
|
|
* in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
|
|
* @ubi->mtd->writesize field. But as an exception, UBI admits of using another
|
|
* (smaller) minimal I/O unit size for EC and VID headers to make it possible
|
|
* to do different optimizations.
|
|
*
|
|
* This is extremely useful in case of NAND flashes which admit of several
|
|
* write operations to one NAND page. In this case UBI can fit EC and VID
|
|
* headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
|
|
* I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
|
|
* reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
|
|
* users.
|
|
*
|
|
* Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
|
|
* although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
|
|
* headers.
|
|
*
|
|
* Q: why not just to treat sub-page as a minimal I/O unit of this flash
|
|
* device, e.g., make @ubi->min_io_size = 512 in the example above?
|
|
*
|
|
* A: because when writing a sub-page, MTD still writes a full 2K page but the
|
|
* bytes which are not relevant to the sub-page are 0xFF. So, basically,
|
|
* writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
|
|
* Thus, we prefer to use sub-pages only for EC and VID headers.
|
|
*
|
|
* As it was noted above, the VID header may start at a non-aligned offset.
|
|
* For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
|
|
* the VID header may reside at offset 1984 which is the last 64 bytes of the
|
|
* last sub-page (EC header is always at offset zero). This causes some
|
|
* difficulties when reading and writing VID headers.
|
|
*
|
|
* Suppose we have a 64-byte buffer and we read a VID header at it. We change
|
|
* the data and want to write this VID header out. As we can only write in
|
|
* 512-byte chunks, we have to allocate one more buffer and copy our VID header
|
|
* to offset 448 of this buffer.
|
|
*
|
|
* The I/O sub-system does the following trick in order to avoid this extra
|
|
* copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
|
|
* header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
|
|
* When the VID header is being written out, it shifts the VID header pointer
|
|
* back and writes the whole sub-page.
|
|
*/
|
|
|
|
#include <linux/crc32.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include "ubi.h"
|
|
|
|
static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
|
|
static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
|
|
static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_ec_hdr *ec_hdr);
|
|
static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
|
|
static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr);
|
|
static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
|
|
int offset, int len);
|
|
|
|
/**
|
|
* ubi_io_read - read data from a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @buf: buffer where to store the read data
|
|
* @pnum: physical eraseblock number to read from
|
|
* @offset: offset within the physical eraseblock from where to read
|
|
* @len: how many bytes to read
|
|
*
|
|
* This function reads data from offset @offset of physical eraseblock @pnum
|
|
* and stores the read data in the @buf buffer. The following return codes are
|
|
* possible:
|
|
*
|
|
* o %0 if all the requested data were successfully read;
|
|
* o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
|
|
* correctable bit-flips were detected; this is harmless but may indicate
|
|
* that this eraseblock may become bad soon (but do not have to);
|
|
* o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
|
|
* example it can be an ECC error in case of NAND; this most probably means
|
|
* that the data is corrupted;
|
|
* o %-EIO if some I/O error occurred;
|
|
* o other negative error codes in case of other errors.
|
|
*/
|
|
int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
|
|
int len)
|
|
{
|
|
int err, retries = 0;
|
|
size_t read;
|
|
loff_t addr;
|
|
|
|
dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
|
|
ubi_assert(len > 0);
|
|
|
|
err = self_check_not_bad(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Deliberately corrupt the buffer to improve robustness. Indeed, if we
|
|
* do not do this, the following may happen:
|
|
* 1. The buffer contains data from previous operation, e.g., read from
|
|
* another PEB previously. The data looks like expected, e.g., if we
|
|
* just do not read anything and return - the caller would not
|
|
* notice this. E.g., if we are reading a VID header, the buffer may
|
|
* contain a valid VID header from another PEB.
|
|
* 2. The driver is buggy and returns us success or -EBADMSG or
|
|
* -EUCLEAN, but it does not actually put any data to the buffer.
|
|
*
|
|
* This may confuse UBI or upper layers - they may think the buffer
|
|
* contains valid data while in fact it is just old data. This is
|
|
* especially possible because UBI (and UBIFS) relies on CRC, and
|
|
* treats data as correct even in case of ECC errors if the CRC is
|
|
* correct.
|
|
*
|
|
* Try to prevent this situation by changing the first byte of the
|
|
* buffer.
|
|
*/
|
|
*((uint8_t *)buf) ^= 0xFF;
|
|
|
|
addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
retry:
|
|
err = mtd_read(ubi->mtd, addr, len, &read, buf);
|
|
if (err) {
|
|
const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
|
|
|
|
if (mtd_is_bitflip(err)) {
|
|
/*
|
|
* -EUCLEAN is reported if there was a bit-flip which
|
|
* was corrected, so this is harmless.
|
|
*
|
|
* We do not report about it here unless debugging is
|
|
* enabled. A corresponding message will be printed
|
|
* later, when it is has been scrubbed.
|
|
*/
|
|
ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
|
|
pnum);
|
|
ubi_assert(len == read);
|
|
return UBI_IO_BITFLIPS;
|
|
}
|
|
|
|
if (retries++ < UBI_IO_RETRIES) {
|
|
ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
|
|
err, errstr, len, pnum, offset, read);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
|
|
ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
|
|
err, errstr, len, pnum, offset, read);
|
|
dump_stack();
|
|
|
|
/*
|
|
* The driver should never return -EBADMSG if it failed to read
|
|
* all the requested data. But some buggy drivers might do
|
|
* this, so we change it to -EIO.
|
|
*/
|
|
if (read != len && mtd_is_eccerr(err)) {
|
|
ubi_assert(0);
|
|
err = -EIO;
|
|
}
|
|
} else {
|
|
ubi_assert(len == read);
|
|
|
|
if (ubi_dbg_is_bitflip(ubi)) {
|
|
dbg_gen("bit-flip (emulated)");
|
|
err = UBI_IO_BITFLIPS;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write - write data to a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @buf: buffer with the data to write
|
|
* @pnum: physical eraseblock number to write to
|
|
* @offset: offset within the physical eraseblock where to write
|
|
* @len: how many bytes to write
|
|
*
|
|
* This function writes @len bytes of data from buffer @buf to offset @offset
|
|
* of physical eraseblock @pnum. If all the data were successfully written,
|
|
* zero is returned. If an error occurred, this function returns a negative
|
|
* error code. If %-EIO is returned, the physical eraseblock most probably went
|
|
* bad.
|
|
*
|
|
* Note, in case of an error, it is possible that something was still written
|
|
* to the flash media, but may be some garbage.
|
|
*/
|
|
int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
|
|
int len)
|
|
{
|
|
int err;
|
|
size_t written;
|
|
loff_t addr;
|
|
|
|
dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
|
|
ubi_assert(offset % ubi->hdrs_min_io_size == 0);
|
|
ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err(ubi, "read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
err = self_check_not_bad(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
/* The area we are writing to has to contain all 0xFF bytes */
|
|
err = ubi_self_check_all_ff(ubi, pnum, offset, len);
|
|
if (err)
|
|
return err;
|
|
|
|
if (offset >= ubi->leb_start) {
|
|
/*
|
|
* We write to the data area of the physical eraseblock. Make
|
|
* sure it has valid EC and VID headers.
|
|
*/
|
|
err = self_check_peb_ec_hdr(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
err = self_check_peb_vid_hdr(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (ubi_dbg_is_write_failure(ubi)) {
|
|
ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
|
|
len, pnum, offset);
|
|
dump_stack();
|
|
return -EIO;
|
|
}
|
|
|
|
addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
err = mtd_write(ubi->mtd, addr, len, &written, buf);
|
|
if (err) {
|
|
ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
|
|
err, len, pnum, offset, written);
|
|
dump_stack();
|
|
ubi_dump_flash(ubi, pnum, offset, len);
|
|
} else
|
|
ubi_assert(written == len);
|
|
|
|
if (!err) {
|
|
err = self_check_write(ubi, buf, pnum, offset, len);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Since we always write sequentially, the rest of the PEB has
|
|
* to contain only 0xFF bytes.
|
|
*/
|
|
offset += len;
|
|
len = ubi->peb_size - offset;
|
|
if (len)
|
|
err = ubi_self_check_all_ff(ubi, pnum, offset, len);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* erase_callback - MTD erasure call-back.
|
|
* @ei: MTD erase information object.
|
|
*
|
|
* Note, even though MTD erase interface is asynchronous, all the current
|
|
* implementations are synchronous anyway.
|
|
*/
|
|
static void erase_callback(struct erase_info *ei)
|
|
{
|
|
wake_up_interruptible((wait_queue_head_t *)ei->priv);
|
|
}
|
|
|
|
/**
|
|
* do_sync_erase - synchronously erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to erase
|
|
*
|
|
* This function synchronously erases physical eraseblock @pnum and returns
|
|
* zero in case of success and a negative error code in case of failure. If
|
|
* %-EIO is returned, the physical eraseblock most probably went bad.
|
|
*/
|
|
static int do_sync_erase(struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err, retries = 0;
|
|
struct erase_info ei;
|
|
wait_queue_head_t wq;
|
|
|
|
dbg_io("erase PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err(ubi, "read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
retry:
|
|
init_waitqueue_head(&wq);
|
|
memset(&ei, 0, sizeof(struct erase_info));
|
|
|
|
ei.mtd = ubi->mtd;
|
|
ei.addr = (loff_t)pnum * ubi->peb_size;
|
|
ei.len = ubi->peb_size;
|
|
ei.callback = erase_callback;
|
|
ei.priv = (unsigned long)&wq;
|
|
|
|
err = mtd_erase(ubi->mtd, &ei);
|
|
if (err) {
|
|
if (retries++ < UBI_IO_RETRIES) {
|
|
ubi_warn(ubi, "error %d while erasing PEB %d, retry",
|
|
err, pnum);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
|
|
dump_stack();
|
|
return err;
|
|
}
|
|
|
|
err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
|
|
ei.state == MTD_ERASE_FAILED);
|
|
if (err) {
|
|
ubi_err(ubi, "interrupted PEB %d erasure", pnum);
|
|
return -EINTR;
|
|
}
|
|
|
|
if (ei.state == MTD_ERASE_FAILED) {
|
|
if (retries++ < UBI_IO_RETRIES) {
|
|
ubi_warn(ubi, "error while erasing PEB %d, retry",
|
|
pnum);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
ubi_err(ubi, "cannot erase PEB %d", pnum);
|
|
dump_stack();
|
|
return -EIO;
|
|
}
|
|
|
|
err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ubi_dbg_is_erase_failure(ubi)) {
|
|
ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Patterns to write to a physical eraseblock when torturing it */
|
|
static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
|
|
|
|
/**
|
|
* torture_peb - test a supposedly bad physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to test
|
|
*
|
|
* This function returns %-EIO if the physical eraseblock did not pass the
|
|
* test, a positive number of erase operations done if the test was
|
|
* successfully passed, and other negative error codes in case of other errors.
|
|
*/
|
|
static int torture_peb(struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err, i, patt_count;
|
|
|
|
ubi_msg(ubi, "run torture test for PEB %d", pnum);
|
|
patt_count = ARRAY_SIZE(patterns);
|
|
ubi_assert(patt_count > 0);
|
|
|
|
mutex_lock(&ubi->buf_mutex);
|
|
for (i = 0; i < patt_count; i++) {
|
|
err = do_sync_erase(ubi, pnum);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Make sure the PEB contains only 0xFF bytes */
|
|
err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
|
|
if (err == 0) {
|
|
ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
|
|
pnum);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Write a pattern and check it */
|
|
memset(ubi->peb_buf, patterns[i], ubi->peb_size);
|
|
err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
|
|
err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ubi_check_pattern(ubi->peb_buf, patterns[i],
|
|
ubi->peb_size);
|
|
if (err == 0) {
|
|
ubi_err(ubi, "pattern %x checking failed for PEB %d",
|
|
patterns[i], pnum);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
err = patt_count;
|
|
ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
|
|
|
|
out:
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
|
|
/*
|
|
* If a bit-flip or data integrity error was detected, the test
|
|
* has not passed because it happened on a freshly erased
|
|
* physical eraseblock which means something is wrong with it.
|
|
*/
|
|
ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
|
|
pnum);
|
|
err = -EIO;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* nor_erase_prepare - prepare a NOR flash PEB for erasure.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to prepare
|
|
*
|
|
* NOR flash, or at least some of them, have peculiar embedded PEB erasure
|
|
* algorithm: the PEB is first filled with zeroes, then it is erased. And
|
|
* filling with zeroes starts from the end of the PEB. This was observed with
|
|
* Spansion S29GL512N NOR flash.
|
|
*
|
|
* This means that in case of a power cut we may end up with intact data at the
|
|
* beginning of the PEB, and all zeroes at the end of PEB. In other words, the
|
|
* EC and VID headers are OK, but a large chunk of data at the end of PEB is
|
|
* zeroed. This makes UBI mistakenly treat this PEB as used and associate it
|
|
* with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
|
|
*
|
|
* This function is called before erasing NOR PEBs and it zeroes out EC and VID
|
|
* magic numbers in order to invalidate them and prevent the failures. Returns
|
|
* zero in case of success and a negative error code in case of failure.
|
|
*/
|
|
static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
size_t written;
|
|
loff_t addr;
|
|
uint32_t data = 0;
|
|
struct ubi_ec_hdr ec_hdr;
|
|
struct ubi_vid_io_buf vidb;
|
|
|
|
/*
|
|
* Note, we cannot generally define VID header buffers on stack,
|
|
* because of the way we deal with these buffers (see the header
|
|
* comment in this file). But we know this is a NOR-specific piece of
|
|
* code, so we can do this. But yes, this is error-prone and we should
|
|
* (pre-)allocate VID header buffer instead.
|
|
*/
|
|
struct ubi_vid_hdr vid_hdr;
|
|
|
|
/*
|
|
* If VID or EC is valid, we have to corrupt them before erasing.
|
|
* It is important to first invalidate the EC header, and then the VID
|
|
* header. Otherwise a power cut may lead to valid EC header and
|
|
* invalid VID header, in which case UBI will treat this PEB as
|
|
* corrupted and will try to preserve it, and print scary warnings.
|
|
*/
|
|
addr = (loff_t)pnum * ubi->peb_size;
|
|
err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
|
|
if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
|
|
err != UBI_IO_FF){
|
|
err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
|
|
if(err)
|
|
goto error;
|
|
}
|
|
|
|
ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
|
|
ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
|
|
if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
|
|
err != UBI_IO_FF){
|
|
addr += ubi->vid_hdr_aloffset;
|
|
err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
|
|
if (err)
|
|
goto error;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
/*
|
|
* The PEB contains a valid VID or EC header, but we cannot invalidate
|
|
* it. Supposedly the flash media or the driver is screwed up, so
|
|
* return an error.
|
|
*/
|
|
ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
|
|
ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
|
|
return -EIO;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_sync_erase - synchronously erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to erase
|
|
* @torture: if this physical eraseblock has to be tortured
|
|
*
|
|
* This function synchronously erases physical eraseblock @pnum. If @torture
|
|
* flag is not zero, the physical eraseblock is checked by means of writing
|
|
* different patterns to it and reading them back. If the torturing is enabled,
|
|
* the physical eraseblock is erased more than once.
|
|
*
|
|
* This function returns the number of erasures made in case of success, %-EIO
|
|
* if the erasure failed or the torturing test failed, and other negative error
|
|
* codes in case of other errors. Note, %-EIO means that the physical
|
|
* eraseblock is bad.
|
|
*/
|
|
int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
|
|
{
|
|
int err, ret = 0;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
err = self_check_not_bad(ubi, pnum);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err(ubi, "read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
if (ubi->nor_flash) {
|
|
err = nor_erase_prepare(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (torture) {
|
|
ret = torture_peb(ubi, pnum);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
err = do_sync_erase(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
return ret + 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_is_bad - check if a physical eraseblock is bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns a positive number if the physical eraseblock is bad,
|
|
* zero if not, and a negative error code if an error occurred.
|
|
*/
|
|
int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
struct mtd_info *mtd = ubi->mtd;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
if (ubi->bad_allowed) {
|
|
int ret;
|
|
|
|
ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
|
|
if (ret < 0)
|
|
ubi_err(ubi, "error %d while checking if PEB %d is bad",
|
|
ret, pnum);
|
|
else if (ret)
|
|
dbg_io("PEB %d is bad", pnum);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_mark_bad - mark a physical eraseblock as bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to mark
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
struct mtd_info *mtd = ubi->mtd;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err(ubi, "read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
if (!ubi->bad_allowed)
|
|
return 0;
|
|
|
|
err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
|
|
if (err)
|
|
ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* validate_ec_hdr - validate an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @ec_hdr: the erase counter header to check
|
|
*
|
|
* This function returns zero if the erase counter header is OK, and %1 if
|
|
* not.
|
|
*/
|
|
static int validate_ec_hdr(const struct ubi_device *ubi,
|
|
const struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
long long ec;
|
|
int vid_hdr_offset, leb_start;
|
|
|
|
ec = be64_to_cpu(ec_hdr->ec);
|
|
vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
|
|
leb_start = be32_to_cpu(ec_hdr->data_offset);
|
|
|
|
if (ec_hdr->version != UBI_VERSION) {
|
|
ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
|
|
UBI_VERSION, (int)ec_hdr->version);
|
|
goto bad;
|
|
}
|
|
|
|
if (vid_hdr_offset != ubi->vid_hdr_offset) {
|
|
ubi_err(ubi, "bad VID header offset %d, expected %d",
|
|
vid_hdr_offset, ubi->vid_hdr_offset);
|
|
goto bad;
|
|
}
|
|
|
|
if (leb_start != ubi->leb_start) {
|
|
ubi_err(ubi, "bad data offset %d, expected %d",
|
|
leb_start, ubi->leb_start);
|
|
goto bad;
|
|
}
|
|
|
|
if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
|
|
ubi_err(ubi, "bad erase counter %lld", ec);
|
|
goto bad;
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err(ubi, "bad EC header");
|
|
ubi_dump_ec_hdr(ec_hdr);
|
|
dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_read_ec_hdr - read and check an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock to read from
|
|
* @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
|
|
* header
|
|
* @verbose: be verbose if the header is corrupted or was not found
|
|
*
|
|
* This function reads erase counter header from physical eraseblock @pnum and
|
|
* stores it in @ec_hdr. This function also checks CRC checksum of the read
|
|
* erase counter header. The following codes may be returned:
|
|
*
|
|
* o %0 if the CRC checksum is correct and the header was successfully read;
|
|
* o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
|
|
* and corrected by the flash driver; this is harmless but may indicate that
|
|
* this eraseblock may become bad soon (but may be not);
|
|
* o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
|
|
* o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
|
|
* a data integrity error (uncorrectable ECC error in case of NAND);
|
|
* o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
|
|
* o a negative error code in case of failure.
|
|
*/
|
|
int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_ec_hdr *ec_hdr, int verbose)
|
|
{
|
|
int err, read_err;
|
|
uint32_t crc, magic, hdr_crc;
|
|
|
|
dbg_io("read EC header from PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
|
|
if (read_err) {
|
|
if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
|
|
return read_err;
|
|
|
|
/*
|
|
* We read all the data, but either a correctable bit-flip
|
|
* occurred, or MTD reported a data integrity error
|
|
* (uncorrectable ECC error in case of NAND). The former is
|
|
* harmless, the later may mean that the read data is
|
|
* corrupted. But we have a CRC check-sum and we will detect
|
|
* this. If the EC header is still OK, we just report this as
|
|
* there was a bit-flip, to force scrubbing.
|
|
*/
|
|
}
|
|
|
|
magic = be32_to_cpu(ec_hdr->magic);
|
|
if (magic != UBI_EC_HDR_MAGIC) {
|
|
if (mtd_is_eccerr(read_err))
|
|
return UBI_IO_BAD_HDR_EBADMSG;
|
|
|
|
/*
|
|
* The magic field is wrong. Let's check if we have read all
|
|
* 0xFF. If yes, this physical eraseblock is assumed to be
|
|
* empty.
|
|
*/
|
|
if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
|
|
/* The physical eraseblock is supposedly empty */
|
|
if (verbose)
|
|
ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
|
|
pnum);
|
|
dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
|
|
pnum);
|
|
if (!read_err)
|
|
return UBI_IO_FF;
|
|
else
|
|
return UBI_IO_FF_BITFLIPS;
|
|
}
|
|
|
|
/*
|
|
* This is not a valid erase counter header, and these are not
|
|
* 0xFF bytes. Report that the header is corrupted.
|
|
*/
|
|
if (verbose) {
|
|
ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
|
|
pnum, magic, UBI_EC_HDR_MAGIC);
|
|
ubi_dump_ec_hdr(ec_hdr);
|
|
}
|
|
dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
|
|
pnum, magic, UBI_EC_HDR_MAGIC);
|
|
return UBI_IO_BAD_HDR;
|
|
}
|
|
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
|
|
|
|
if (hdr_crc != crc) {
|
|
if (verbose) {
|
|
ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
|
|
pnum, crc, hdr_crc);
|
|
ubi_dump_ec_hdr(ec_hdr);
|
|
}
|
|
dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
|
|
pnum, crc, hdr_crc);
|
|
|
|
if (!read_err)
|
|
return UBI_IO_BAD_HDR;
|
|
else
|
|
return UBI_IO_BAD_HDR_EBADMSG;
|
|
}
|
|
|
|
/* And of course validate what has just been read from the media */
|
|
err = validate_ec_hdr(ubi, ec_hdr);
|
|
if (err) {
|
|
ubi_err(ubi, "validation failed for PEB %d", pnum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If there was %-EBADMSG, but the header CRC is still OK, report about
|
|
* a bit-flip to force scrubbing on this PEB.
|
|
*/
|
|
return read_err ? UBI_IO_BITFLIPS : 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write_ec_hdr - write an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock to write to
|
|
* @ec_hdr: the erase counter header to write
|
|
*
|
|
* This function writes erase counter header described by @ec_hdr to physical
|
|
* eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
|
|
* the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
|
|
* field.
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure. If %-EIO is returned, the physical eraseblock most probably
|
|
* went bad.
|
|
*/
|
|
int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
int err;
|
|
uint32_t crc;
|
|
|
|
dbg_io("write EC header to PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
|
|
ec_hdr->version = UBI_VERSION;
|
|
ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
|
|
ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
|
|
ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
ec_hdr->hdr_crc = cpu_to_be32(crc);
|
|
|
|
err = self_check_ec_hdr(ubi, pnum, ec_hdr);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
|
|
return -EROFS;
|
|
|
|
err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* validate_vid_hdr - validate a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @vid_hdr: the volume identifier header to check
|
|
*
|
|
* This function checks that data stored in the volume identifier header
|
|
* @vid_hdr. Returns zero if the VID header is OK and %1 if not.
|
|
*/
|
|
static int validate_vid_hdr(const struct ubi_device *ubi,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int vol_type = vid_hdr->vol_type;
|
|
int copy_flag = vid_hdr->copy_flag;
|
|
int vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
int lnum = be32_to_cpu(vid_hdr->lnum);
|
|
int compat = vid_hdr->compat;
|
|
int data_size = be32_to_cpu(vid_hdr->data_size);
|
|
int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
int data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
int data_crc = be32_to_cpu(vid_hdr->data_crc);
|
|
int usable_leb_size = ubi->leb_size - data_pad;
|
|
|
|
if (copy_flag != 0 && copy_flag != 1) {
|
|
ubi_err(ubi, "bad copy_flag");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
|
|
data_pad < 0) {
|
|
ubi_err(ubi, "negative values");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
|
|
ubi_err(ubi, "bad vol_id");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
|
|
ubi_err(ubi, "bad compat");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
|
|
compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
|
|
compat != UBI_COMPAT_REJECT) {
|
|
ubi_err(ubi, "bad compat");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
|
|
ubi_err(ubi, "bad vol_type");
|
|
goto bad;
|
|
}
|
|
|
|
if (data_pad >= ubi->leb_size / 2) {
|
|
ubi_err(ubi, "bad data_pad");
|
|
goto bad;
|
|
}
|
|
|
|
if (data_size > ubi->leb_size) {
|
|
ubi_err(ubi, "bad data_size");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_type == UBI_VID_STATIC) {
|
|
/*
|
|
* Although from high-level point of view static volumes may
|
|
* contain zero bytes of data, but no VID headers can contain
|
|
* zero at these fields, because they empty volumes do not have
|
|
* mapped logical eraseblocks.
|
|
*/
|
|
if (used_ebs == 0) {
|
|
ubi_err(ubi, "zero used_ebs");
|
|
goto bad;
|
|
}
|
|
if (data_size == 0) {
|
|
ubi_err(ubi, "zero data_size");
|
|
goto bad;
|
|
}
|
|
if (lnum < used_ebs - 1) {
|
|
if (data_size != usable_leb_size) {
|
|
ubi_err(ubi, "bad data_size");
|
|
goto bad;
|
|
}
|
|
} else if (lnum == used_ebs - 1) {
|
|
if (data_size == 0) {
|
|
ubi_err(ubi, "bad data_size at last LEB");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
ubi_err(ubi, "too high lnum");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
if (copy_flag == 0) {
|
|
if (data_crc != 0) {
|
|
ubi_err(ubi, "non-zero data CRC");
|
|
goto bad;
|
|
}
|
|
if (data_size != 0) {
|
|
ubi_err(ubi, "non-zero data_size");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
if (data_size == 0) {
|
|
ubi_err(ubi, "zero data_size of copy");
|
|
goto bad;
|
|
}
|
|
}
|
|
if (used_ebs != 0) {
|
|
ubi_err(ubi, "bad used_ebs");
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err(ubi, "bad VID header");
|
|
ubi_dump_vid_hdr(vid_hdr);
|
|
dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_read_vid_hdr - read and check a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to read from
|
|
* @vidb: the volume identifier buffer to store data in
|
|
* @verbose: be verbose if the header is corrupted or wasn't found
|
|
*
|
|
* This function reads the volume identifier header from physical eraseblock
|
|
* @pnum and stores it in @vidb. It also checks CRC checksum of the read
|
|
* volume identifier header. The error codes are the same as in
|
|
* 'ubi_io_read_ec_hdr()'.
|
|
*
|
|
* Note, the implementation of this function is also very similar to
|
|
* 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
|
|
*/
|
|
int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_vid_io_buf *vidb, int verbose)
|
|
{
|
|
int err, read_err;
|
|
uint32_t crc, magic, hdr_crc;
|
|
struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
|
|
void *p = vidb->buffer;
|
|
|
|
dbg_io("read VID header from PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
|
|
if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
|
|
return read_err;
|
|
|
|
magic = be32_to_cpu(vid_hdr->magic);
|
|
if (magic != UBI_VID_HDR_MAGIC) {
|
|
if (mtd_is_eccerr(read_err))
|
|
return UBI_IO_BAD_HDR_EBADMSG;
|
|
|
|
if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
|
|
if (verbose)
|
|
ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
|
|
pnum);
|
|
dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
|
|
pnum);
|
|
if (!read_err)
|
|
return UBI_IO_FF;
|
|
else
|
|
return UBI_IO_FF_BITFLIPS;
|
|
}
|
|
|
|
if (verbose) {
|
|
ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
|
|
pnum, magic, UBI_VID_HDR_MAGIC);
|
|
ubi_dump_vid_hdr(vid_hdr);
|
|
}
|
|
dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
|
|
pnum, magic, UBI_VID_HDR_MAGIC);
|
|
return UBI_IO_BAD_HDR;
|
|
}
|
|
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
|
|
|
|
if (hdr_crc != crc) {
|
|
if (verbose) {
|
|
ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
|
|
pnum, crc, hdr_crc);
|
|
ubi_dump_vid_hdr(vid_hdr);
|
|
}
|
|
dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
|
|
pnum, crc, hdr_crc);
|
|
if (!read_err)
|
|
return UBI_IO_BAD_HDR;
|
|
else
|
|
return UBI_IO_BAD_HDR_EBADMSG;
|
|
}
|
|
|
|
err = validate_vid_hdr(ubi, vid_hdr);
|
|
if (err) {
|
|
ubi_err(ubi, "validation failed for PEB %d", pnum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return read_err ? UBI_IO_BITFLIPS : 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write_vid_hdr - write a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to write to
|
|
* @vidb: the volume identifier buffer to write
|
|
*
|
|
* This function writes the volume identifier header described by @vid_hdr to
|
|
* physical eraseblock @pnum. This function automatically fills the
|
|
* @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
|
|
* header CRC checksum and stores it at vidb->hdr->hdr_crc.
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure. If %-EIO is returned, the physical eraseblock probably went
|
|
* bad.
|
|
*/
|
|
int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_vid_io_buf *vidb)
|
|
{
|
|
struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
|
|
int err;
|
|
uint32_t crc;
|
|
void *p = vidb->buffer;
|
|
|
|
dbg_io("write VID header to PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
err = self_check_peb_ec_hdr(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
|
|
vid_hdr->version = UBI_VERSION;
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
|
|
vid_hdr->hdr_crc = cpu_to_be32(crc);
|
|
|
|
err = self_check_vid_hdr(ubi, pnum, vid_hdr);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
|
|
return -EROFS;
|
|
|
|
err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_alsize);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* self_check_not_bad - ensure that a physical eraseblock is not bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the physical eraseblock is good, %-EINVAL if
|
|
* it is bad and a negative error code if an error occurred.
|
|
*/
|
|
static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
|
|
if (!ubi_dbg_chk_io(ubi))
|
|
return 0;
|
|
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (!err)
|
|
return err;
|
|
|
|
ubi_err(ubi, "self-check failed for PEB %d", pnum);
|
|
dump_stack();
|
|
return err > 0 ? -EINVAL : err;
|
|
}
|
|
|
|
/**
|
|
* self_check_ec_hdr - check if an erase counter header is all right.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number the erase counter header belongs to
|
|
* @ec_hdr: the erase counter header to check
|
|
*
|
|
* This function returns zero if the erase counter header contains valid
|
|
* values, and %-EINVAL if not.
|
|
*/
|
|
static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
int err;
|
|
uint32_t magic;
|
|
|
|
if (!ubi_dbg_chk_io(ubi))
|
|
return 0;
|
|
|
|
magic = be32_to_cpu(ec_hdr->magic);
|
|
if (magic != UBI_EC_HDR_MAGIC) {
|
|
ubi_err(ubi, "bad magic %#08x, must be %#08x",
|
|
magic, UBI_EC_HDR_MAGIC);
|
|
goto fail;
|
|
}
|
|
|
|
err = validate_ec_hdr(ubi, ec_hdr);
|
|
if (err) {
|
|
ubi_err(ubi, "self-check failed for PEB %d", pnum);
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
ubi_dump_ec_hdr(ec_hdr);
|
|
dump_stack();
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* self_check_peb_ec_hdr - check erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the erase counter header is all right and and
|
|
* a negative error code if not or if an error occurred.
|
|
*/
|
|
static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
uint32_t crc, hdr_crc;
|
|
struct ubi_ec_hdr *ec_hdr;
|
|
|
|
if (!ubi_dbg_chk_io(ubi))
|
|
return 0;
|
|
|
|
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
|
|
if (!ec_hdr)
|
|
return -ENOMEM;
|
|
|
|
err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
|
|
if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
|
|
goto exit;
|
|
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
|
|
if (hdr_crc != crc) {
|
|
ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
|
|
crc, hdr_crc);
|
|
ubi_err(ubi, "self-check failed for PEB %d", pnum);
|
|
ubi_dump_ec_hdr(ec_hdr);
|
|
dump_stack();
|
|
err = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
err = self_check_ec_hdr(ubi, pnum, ec_hdr);
|
|
|
|
exit:
|
|
kfree(ec_hdr);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* self_check_vid_hdr - check that a volume identifier header is all right.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number the volume identifier header belongs to
|
|
* @vid_hdr: the volume identifier header to check
|
|
*
|
|
* This function returns zero if the volume identifier header is all right, and
|
|
* %-EINVAL if not.
|
|
*/
|
|
static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int err;
|
|
uint32_t magic;
|
|
|
|
if (!ubi_dbg_chk_io(ubi))
|
|
return 0;
|
|
|
|
magic = be32_to_cpu(vid_hdr->magic);
|
|
if (magic != UBI_VID_HDR_MAGIC) {
|
|
ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
|
|
magic, pnum, UBI_VID_HDR_MAGIC);
|
|
goto fail;
|
|
}
|
|
|
|
err = validate_vid_hdr(ubi, vid_hdr);
|
|
if (err) {
|
|
ubi_err(ubi, "self-check failed for PEB %d", pnum);
|
|
goto fail;
|
|
}
|
|
|
|
return err;
|
|
|
|
fail:
|
|
ubi_err(ubi, "self-check failed for PEB %d", pnum);
|
|
ubi_dump_vid_hdr(vid_hdr);
|
|
dump_stack();
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
/**
|
|
* self_check_peb_vid_hdr - check volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the volume identifier header is all right,
|
|
* and a negative error code if not or if an error occurred.
|
|
*/
|
|
static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
uint32_t crc, hdr_crc;
|
|
struct ubi_vid_io_buf *vidb;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
void *p;
|
|
|
|
if (!ubi_dbg_chk_io(ubi))
|
|
return 0;
|
|
|
|
vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
|
|
if (!vidb)
|
|
return -ENOMEM;
|
|
|
|
vid_hdr = ubi_get_vid_hdr(vidb);
|
|
p = vidb->buffer;
|
|
err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_alsize);
|
|
if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
|
|
goto exit;
|
|
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
|
|
if (hdr_crc != crc) {
|
|
ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
|
|
pnum, crc, hdr_crc);
|
|
ubi_err(ubi, "self-check failed for PEB %d", pnum);
|
|
ubi_dump_vid_hdr(vid_hdr);
|
|
dump_stack();
|
|
err = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
err = self_check_vid_hdr(ubi, pnum, vid_hdr);
|
|
|
|
exit:
|
|
ubi_free_vid_buf(vidb);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* self_check_write - make sure write succeeded.
|
|
* @ubi: UBI device description object
|
|
* @buf: buffer with data which were written
|
|
* @pnum: physical eraseblock number the data were written to
|
|
* @offset: offset within the physical eraseblock the data were written to
|
|
* @len: how many bytes were written
|
|
*
|
|
* This functions reads data which were recently written and compares it with
|
|
* the original data buffer - the data have to match. Returns zero if the data
|
|
* match and a negative error code if not or in case of failure.
|
|
*/
|
|
static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
|
|
int offset, int len)
|
|
{
|
|
int err, i;
|
|
size_t read;
|
|
void *buf1;
|
|
loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
|
|
if (!ubi_dbg_chk_io(ubi))
|
|
return 0;
|
|
|
|
buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
|
|
if (!buf1) {
|
|
ubi_err(ubi, "cannot allocate memory to check writes");
|
|
return 0;
|
|
}
|
|
|
|
err = mtd_read(ubi->mtd, addr, len, &read, buf1);
|
|
if (err && !mtd_is_bitflip(err))
|
|
goto out_free;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
uint8_t c = ((uint8_t *)buf)[i];
|
|
uint8_t c1 = ((uint8_t *)buf1)[i];
|
|
int dump_len;
|
|
|
|
if (c == c1)
|
|
continue;
|
|
|
|
ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
|
|
pnum, offset, len);
|
|
ubi_msg(ubi, "data differ at position %d", i);
|
|
dump_len = max_t(int, 128, len - i);
|
|
ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
|
|
i, i + dump_len);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
|
|
buf + i, dump_len, 1);
|
|
ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
|
|
i, i + dump_len);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
|
|
buf1 + i, dump_len, 1);
|
|
dump_stack();
|
|
err = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
vfree(buf1);
|
|
return 0;
|
|
|
|
out_free:
|
|
vfree(buf1);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_self_check_all_ff - check that a region of flash is empty.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
* @offset: the starting offset within the physical eraseblock to check
|
|
* @len: the length of the region to check
|
|
*
|
|
* This function returns zero if only 0xFF bytes are present at offset
|
|
* @offset of the physical eraseblock @pnum, and a negative error code if not
|
|
* or if an error occurred.
|
|
*/
|
|
int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
|
|
{
|
|
size_t read;
|
|
int err;
|
|
void *buf;
|
|
loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
|
|
if (!ubi_dbg_chk_io(ubi))
|
|
return 0;
|
|
|
|
buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
|
|
if (!buf) {
|
|
ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
|
|
return 0;
|
|
}
|
|
|
|
err = mtd_read(ubi->mtd, addr, len, &read, buf);
|
|
if (err && !mtd_is_bitflip(err)) {
|
|
ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
|
|
err, len, pnum, offset, read);
|
|
goto error;
|
|
}
|
|
|
|
err = ubi_check_pattern(buf, 0xFF, len);
|
|
if (err == 0) {
|
|
ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
|
|
pnum, offset, len);
|
|
goto fail;
|
|
}
|
|
|
|
vfree(buf);
|
|
return 0;
|
|
|
|
fail:
|
|
ubi_err(ubi, "self-check failed for PEB %d", pnum);
|
|
ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
|
|
err = -EINVAL;
|
|
error:
|
|
dump_stack();
|
|
vfree(buf);
|
|
return err;
|
|
}
|