forked from rrcarlosr/Jetpack
902 lines
25 KiB
C
902 lines
25 KiB
C
/*
|
|
* A fairly generic DMA-API to IOMMU-API glue layer.
|
|
*
|
|
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (C) 2014-2015 ARM Ltd.
|
|
*
|
|
* based in part on arch/arm/mm/dma-mapping.c:
|
|
* Copyright (C) 2000-2004 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "%s():%d: " fmt, __func__, __LINE__
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/dma-iommu.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/huge_mm.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/iova.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/dma-contiguous.h>
|
|
|
|
#include <trace/events/dmadebug.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/dma-iommu.h>
|
|
#include <asm/memory.h>
|
|
|
|
struct iommu_dma_msi_page {
|
|
struct list_head list;
|
|
dma_addr_t iova;
|
|
phys_addr_t phys;
|
|
};
|
|
|
|
struct iommu_dma_cookie {
|
|
struct iova_domain iovad;
|
|
struct list_head msi_page_list;
|
|
spinlock_t msi_lock;
|
|
};
|
|
|
|
static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
|
|
{
|
|
return &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
|
|
}
|
|
|
|
int iommu_dma_init(void)
|
|
{
|
|
return iova_cache_get();
|
|
}
|
|
|
|
/**
|
|
* iommu_get_dma_cookie - Acquire DMA-API resources for a domain
|
|
* @domain: IOMMU domain to prepare for DMA-API usage
|
|
*
|
|
* IOMMU drivers should normally call this from their domain_alloc
|
|
* callback when domain->type == IOMMU_DOMAIN_DMA.
|
|
*/
|
|
int iommu_get_dma_cookie(struct iommu_domain *domain)
|
|
{
|
|
struct iommu_dma_cookie *cookie;
|
|
|
|
if (domain->iova_cookie)
|
|
return -EEXIST;
|
|
|
|
cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
|
|
if (!cookie)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&cookie->msi_lock);
|
|
INIT_LIST_HEAD(&cookie->msi_page_list);
|
|
domain->iova_cookie = cookie;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iommu_get_dma_cookie);
|
|
|
|
/**
|
|
* iommu_put_dma_cookie - Release a domain's DMA mapping resources
|
|
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
|
|
*
|
|
* IOMMU drivers should normally call this from their domain_free callback.
|
|
*/
|
|
void iommu_put_dma_cookie(struct iommu_domain *domain)
|
|
{
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iommu_dma_msi_page *msi, *tmp;
|
|
|
|
if (!cookie)
|
|
return;
|
|
|
|
if (cookie->iovad.granule)
|
|
put_iova_domain(&cookie->iovad);
|
|
|
|
list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
|
|
list_del(&msi->list);
|
|
kfree(msi);
|
|
}
|
|
kfree(cookie);
|
|
domain->iova_cookie = NULL;
|
|
}
|
|
EXPORT_SYMBOL(iommu_put_dma_cookie);
|
|
|
|
static void iova_reserve_pci_windows(struct pci_dev *dev,
|
|
struct iova_domain *iovad)
|
|
{
|
|
struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
|
|
struct resource_entry *window;
|
|
unsigned long lo, hi;
|
|
|
|
resource_list_for_each_entry(window, &bridge->windows) {
|
|
if (resource_type(window->res) != IORESOURCE_MEM)
|
|
continue;
|
|
|
|
lo = iova_pfn(iovad, window->res->start - window->offset);
|
|
hi = iova_pfn(iovad, window->res->end - window->offset);
|
|
reserve_iova(iovad, lo, hi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* iommu_dma_init_domain - Initialise a DMA mapping domain
|
|
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
|
|
* @base: IOVA at which the mappable address space starts
|
|
* @size: Size of IOVA space
|
|
* @dev: Device the domain is being initialised for
|
|
*
|
|
* @base and @size should be exact multiples of IOMMU page granularity to
|
|
* avoid rounding surprises. If necessary, we reserve the page at address 0
|
|
* to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
|
|
* any change which could make prior IOVAs invalid will fail.
|
|
*/
|
|
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
|
|
u64 size, struct device *dev)
|
|
{
|
|
struct iova_domain *iovad = cookie_iovad(domain);
|
|
unsigned long order, base_pfn, end_pfn;
|
|
|
|
if (!iovad)
|
|
return -ENODEV;
|
|
|
|
/* Use the smallest supported page size for IOVA granularity */
|
|
order = __ffs(domain->pgsize_bitmap);
|
|
base_pfn = max_t(unsigned long, 1, base >> order);
|
|
end_pfn = (base + size - 1) >> order;
|
|
|
|
/* Check the domain allows at least some access to the device... */
|
|
if (domain->geometry.force_aperture) {
|
|
if (base > domain->geometry.aperture_end ||
|
|
base + size <= domain->geometry.aperture_start) {
|
|
pr_warn("specified DMA range outside IOMMU capability\n");
|
|
return -EFAULT;
|
|
}
|
|
/* ...then finally give it a kicking to make sure it fits */
|
|
base_pfn = max_t(unsigned long, base_pfn,
|
|
domain->geometry.aperture_start >> order);
|
|
end_pfn = min_t(unsigned long, end_pfn,
|
|
domain->geometry.aperture_end >> order);
|
|
}
|
|
|
|
/* All we can safely do with an existing domain is enlarge it */
|
|
if (iovad->start_pfn) {
|
|
if (1UL << order != iovad->granule ||
|
|
base_pfn != iovad->start_pfn ||
|
|
end_pfn < iovad->dma_32bit_pfn) {
|
|
pr_warn("Incompatible range for DMA domain\n");
|
|
return -EFAULT;
|
|
}
|
|
iovad->dma_32bit_pfn = end_pfn;
|
|
} else {
|
|
init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
|
|
if (dev && dev_is_pci(dev))
|
|
iova_reserve_pci_windows(to_pci_dev(dev), iovad);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iommu_dma_init_domain);
|
|
|
|
/**
|
|
* dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
|
|
* @dir: Direction of DMA transfer
|
|
* @coherent: Is the DMA master cache-coherent?
|
|
*
|
|
* Return: corresponding IOMMU API page protection flags
|
|
*/
|
|
int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
|
|
{
|
|
int prot = coherent ? IOMMU_CACHE : 0;
|
|
|
|
switch (dir) {
|
|
case DMA_BIDIRECTIONAL:
|
|
return prot | IOMMU_READ | IOMMU_WRITE;
|
|
case DMA_TO_DEVICE:
|
|
return prot | IOMMU_READ;
|
|
case DMA_FROM_DEVICE:
|
|
return prot | IOMMU_WRITE;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
dma_addr_t __iommu_dma_alloc_iova(struct iommu_domain *domain,
|
|
size_t size, dma_addr_t dma_limit, bool size_aligned)
|
|
{
|
|
struct iova_domain *iovad = cookie_iovad(domain);
|
|
unsigned long shift, iova_len;
|
|
|
|
shift = iova_shift(iovad);
|
|
iova_len = size >> shift;
|
|
|
|
if (is_power_of_2(iova_len)) {
|
|
unsigned long iova = 0;
|
|
/*
|
|
* We can only free and allocate power-of-two allocations
|
|
* into the IOVA caches. Nvidia only needs fast allocations
|
|
* for multithreaded optimizations on 4Kb pages, so it
|
|
* doesn't matter if other allocations take slightly longer.
|
|
*/
|
|
iova = alloc_iova_fast(iovad, iova_len,
|
|
dma_limit >> shift, size_aligned);
|
|
return (dma_addr_t) iova << shift;
|
|
} else {
|
|
struct iova *iova = NULL;
|
|
/*
|
|
* Enforce size-alignment to be safe - there could perhaps be an
|
|
* attribute to control this per-device, or at least per-domain...
|
|
*/
|
|
iova = alloc_iova(iovad, iova_len,
|
|
dma_limit >> shift, size_aligned);
|
|
if (iova)
|
|
return (dma_addr_t) iova->pfn_lo << shift;
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
dma_addr_t iommu_dma_alloc_iova(struct device *dev, size_t size,
|
|
dma_addr_t dma_limit)
|
|
{
|
|
struct iommu_domain *domain;
|
|
|
|
domain = iommu_get_domain_for_dev(dev);
|
|
if (!domain) {
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
|
domain = mapping->domain;
|
|
if (!domain)
|
|
return 0;
|
|
}
|
|
|
|
return __iommu_dma_alloc_iova(domain, size, dma_limit, true);
|
|
}
|
|
|
|
void __iommu_dma_free_iova(struct iova_domain *iovad,
|
|
dma_addr_t iova, size_t size)
|
|
{
|
|
unsigned long shift = iova_shift(iovad);
|
|
|
|
if (is_power_of_2(size >> shift)) {
|
|
free_iova_fast(iovad, iova >> shift, size >> shift);
|
|
} else {
|
|
struct iova *iova_rbnode;
|
|
|
|
iova_rbnode = find_iova(iovad, iova_pfn(iovad, iova));
|
|
if (WARN_ON(!iova_rbnode))
|
|
return;
|
|
__free_iova(iovad, iova_rbnode);
|
|
}
|
|
|
|
}
|
|
|
|
void iommu_dma_free_iova(struct device *dev, dma_addr_t iova, size_t size)
|
|
{
|
|
struct iommu_domain *domain;
|
|
struct iova_domain *iovad;
|
|
|
|
domain = iommu_get_domain_for_dev(dev);
|
|
if (!domain) {
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
|
domain = mapping->domain;
|
|
if (!domain)
|
|
return;
|
|
}
|
|
|
|
iovad = cookie_iovad(domain);
|
|
__iommu_dma_free_iova(iovad, iova, size);
|
|
}
|
|
|
|
static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
|
|
size_t size)
|
|
{
|
|
struct iova_domain *iovad = cookie_iovad(domain);
|
|
size_t iova_off = iova_offset(iovad, dma_addr);
|
|
|
|
dma_addr -= iova_off;
|
|
size = iova_align(iovad, size + iova_off);
|
|
|
|
WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
|
|
__iommu_dma_free_iova(iovad, dma_addr, size);
|
|
}
|
|
|
|
static void __iommu_dma_free_cont_pages(struct device *dev, struct page **pages,
|
|
int count)
|
|
{
|
|
dma_release_from_contiguous(dev, pages[0], count);
|
|
kvfree(pages);
|
|
}
|
|
|
|
static void __iommu_dma_free_pages(struct page **pages, int count)
|
|
{
|
|
while (count--)
|
|
__free_page(pages[count]);
|
|
kvfree(pages);
|
|
}
|
|
|
|
static struct page **__iommu_dma_alloc_cont_pages(struct device *dev,
|
|
size_t size, gfp_t gfp)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
int array_size = count * sizeof(struct page *);
|
|
int i = 0;
|
|
struct page *page;
|
|
struct page **pages;
|
|
|
|
if (array_size <= PAGE_SIZE)
|
|
pages = kzalloc(array_size, GFP_KERNEL);
|
|
else
|
|
pages = vzalloc(array_size);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
page = dma_alloc_from_contiguous(dev, count, order);
|
|
if (!page)
|
|
goto error;
|
|
|
|
for (i = 0; i < count; i++)
|
|
pages[i] = page + i;
|
|
return pages;
|
|
|
|
error:
|
|
if (array_size <= PAGE_SIZE)
|
|
kfree(pages);
|
|
else
|
|
vfree(pages);
|
|
return NULL;
|
|
|
|
}
|
|
|
|
static struct page **__iommu_dma_alloc_pages(unsigned int count,
|
|
unsigned long order_mask, gfp_t gfp)
|
|
{
|
|
struct page **pages;
|
|
unsigned int i = 0, array_size = count * sizeof(*pages);
|
|
|
|
order_mask &= (2U << MAX_ORDER) - 1;
|
|
if (!order_mask)
|
|
return NULL;
|
|
|
|
if (array_size <= PAGE_SIZE)
|
|
pages = kzalloc(array_size, GFP_KERNEL);
|
|
else
|
|
pages = vzalloc(array_size);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
/* IOMMU can map any pages, so himem can also be used here */
|
|
if (!(gfp & GFP_DMA) && !(gfp & GFP_DMA32))
|
|
gfp |= __GFP_HIGHMEM;
|
|
|
|
gfp |= __GFP_NOWARN;
|
|
|
|
while (count) {
|
|
int j, order = __fls(count);
|
|
|
|
pages[i] = alloc_pages(gfp, order);
|
|
while (!pages[i] && order)
|
|
pages[i] = alloc_pages(gfp, --order);
|
|
if (!pages[i])
|
|
goto error;
|
|
|
|
if (order) {
|
|
split_page(pages[i], order);
|
|
j = 1 << order;
|
|
while (--j)
|
|
pages[i + j] = pages[i] + j;
|
|
}
|
|
i += 1 << order;
|
|
count -= 1 << order;
|
|
}
|
|
|
|
return pages;
|
|
error:
|
|
while (i--)
|
|
if (pages[i])
|
|
__free_pages(pages[i], 0);
|
|
if (array_size <= PAGE_SIZE)
|
|
kfree(pages);
|
|
else
|
|
vfree(pages);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
|
|
* @dev: Device which owns this buffer
|
|
* @pages: Array of buffer pages as returned by iommu_dma_alloc()
|
|
* @size: Size of buffer in bytes
|
|
* @handle: DMA address of buffer
|
|
*
|
|
* Frees both the pages associated with the buffer, and the array
|
|
* describing them
|
|
*/
|
|
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
|
|
dma_addr_t *handle, unsigned long attrs)
|
|
{
|
|
int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
|
|
if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
|
|
__iommu_dma_free_cont_pages(dev, pages, count);
|
|
else
|
|
__iommu_dma_free_pages(pages, count);
|
|
*handle = DMA_ERROR_CODE;
|
|
}
|
|
|
|
/**
|
|
* iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
|
|
* @dev: Device to allocate memory for. Must be a real device
|
|
* attached to an iommu_dma_domain
|
|
* @size: Size of buffer in bytes
|
|
* @gfp: Allocation flags
|
|
* @attrs: DMA attributes for this allocation
|
|
* @prot: IOMMU mapping flags
|
|
* @handle: Out argument for allocated DMA handle
|
|
* @flush_page: Arch callback which must ensure the full sg is visible to the
|
|
* given non-coherent device.
|
|
*
|
|
* If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
|
|
* but an IOMMU which supports smaller pages might not map the whole thing.
|
|
*
|
|
* Return: Array of struct page pointers describing the buffer,
|
|
* or NULL on failure.
|
|
*/
|
|
struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
|
|
unsigned long attrs, int prot, dma_addr_t *handle,
|
|
void (*flush_sg)(struct device *, struct sg_table *))
|
|
{
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
struct iova_domain *iovad = cookie_iovad(domain);
|
|
struct page **pages;
|
|
struct sg_table sgt;
|
|
struct scatterlist *s;
|
|
dma_addr_t iova;
|
|
unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
|
|
int i;
|
|
|
|
min_size = alloc_sizes & -alloc_sizes;
|
|
if (min_size < PAGE_SIZE) {
|
|
min_size = PAGE_SIZE;
|
|
alloc_sizes |= PAGE_SIZE;
|
|
} else {
|
|
size = ALIGN(size, min_size);
|
|
}
|
|
if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
|
|
alloc_sizes = min_size;
|
|
|
|
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
|
|
pages = __iommu_dma_alloc_cont_pages(dev, size, gfp);
|
|
else
|
|
pages = __iommu_dma_alloc_pages(count,
|
|
alloc_sizes >> PAGE_SHIFT, gfp);
|
|
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
size = iova_align(iovad, size);
|
|
if (*handle == DMA_ERROR_CODE) {
|
|
iova = __iommu_dma_alloc_iova(domain, size,
|
|
dev->coherent_dma_mask, true);
|
|
} else {
|
|
phys_addr_t limit_addr = *handle + size - iovad->granule;
|
|
iova = __iommu_dma_alloc_iova(domain, size,
|
|
limit_addr, false);
|
|
if (iova != *handle) {
|
|
pr_err("iova alloc failed, da=%pad, handle=%pad, "
|
|
"size=%zx, limit=%pa, spfn=%lx, dpfn=%lx\n",
|
|
&iova, handle, size, &limit_addr,
|
|
iovad->start_pfn, iovad->dma_32bit_pfn);
|
|
__iommu_dma_free_iova(iovad, iova, size);
|
|
iova = 0;
|
|
}
|
|
}
|
|
if (!iova)
|
|
goto out_free_pages;
|
|
|
|
if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
|
|
goto out_free_iova;
|
|
|
|
for_each_sg(sgt.sgl, s, sgt.orig_nents, i) {
|
|
memset(sg_virt(s), 0, s->length);
|
|
}
|
|
|
|
if (!(prot & IOMMU_CACHE)) {
|
|
flush_sg(dev, &sgt);
|
|
}
|
|
|
|
if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
|
|
< size)
|
|
goto out_free_sg;
|
|
|
|
*handle = iova;
|
|
sg_free_table(&sgt);
|
|
return pages;
|
|
|
|
out_free_sg:
|
|
sg_free_table(&sgt);
|
|
out_free_iova:
|
|
__iommu_dma_free_iova(iovad, iova, size);
|
|
out_free_pages:
|
|
__iommu_dma_free_pages(pages, count);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* iommu_dma_mmap - Map a buffer into provided user VMA
|
|
* @pages: Array representing buffer from iommu_dma_alloc()
|
|
* @size: Size of buffer in bytes
|
|
* @vma: VMA describing requested userspace mapping
|
|
*
|
|
* Maps the pages of the buffer in @pages into @vma. The caller is responsible
|
|
* for verifying the correct size and protection of @vma beforehand.
|
|
*/
|
|
|
|
int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
|
|
{
|
|
unsigned long uaddr = vma->vm_start;
|
|
unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
int ret = -ENXIO;
|
|
|
|
for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
|
|
ret = vm_insert_page(vma, uaddr, pages[i]);
|
|
if (ret)
|
|
break;
|
|
uaddr += PAGE_SIZE;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, int prot)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
struct iova_domain *iovad = cookie_iovad(domain);
|
|
phys_addr_t phys = page_to_phys(page) + offset;
|
|
size_t iova_off = iova_offset(iovad, phys);
|
|
size_t len = iova_align(iovad, size + iova_off);
|
|
dma_addr_t dma_addr = __iommu_dma_alloc_iova(domain, len,
|
|
dma_get_mask(dev), true);
|
|
|
|
if (!dma_addr)
|
|
return DMA_ERROR_CODE;
|
|
|
|
if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
|
|
__iommu_dma_free_iova(iovad, dma_addr, size);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
return dma_addr + iova_off;
|
|
}
|
|
|
|
dma_addr_t iommu_dma_map_at(struct device *dev, dma_addr_t dma_handle,
|
|
phys_addr_t phys, size_t size, int prot)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
struct iova_domain *iovad = domain->iova_cookie;
|
|
size_t iova_off = iova_offset(iovad, phys);
|
|
size_t len = iova_align(iovad, size + iova_off);
|
|
/* limit addr is inclusive. */
|
|
dma_addr_t limit_addr = dma_handle + iova_align(iovad, size) -
|
|
iovad->granule;
|
|
|
|
if (iova_pfn(iovad, dma_handle) > iovad->dma_32bit_pfn) {
|
|
if (iommu_map(domain, dma_handle, phys, len, prot))
|
|
return DMA_ERROR_CODE;
|
|
return dma_handle + iova_off;
|
|
}
|
|
|
|
dma_addr = __iommu_dma_alloc_iova(domain, len, limit_addr, false);
|
|
|
|
if (!dma_addr)
|
|
return DMA_ERROR_CODE;
|
|
|
|
if (dma_addr != dma_handle) {
|
|
pr_err("iova alloc don't match, dh=%pad, da=%pad\n",
|
|
&dma_handle, &dma_addr);
|
|
__iommu_dma_free_iova(iovad, dma_addr, size);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
if (iommu_map(domain, dma_addr, phys, len, prot)) {
|
|
__iommu_dma_free_iova(iovad, dma_addr, size);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
trace_dmadebug_map_page(dev, dma_handle + iova_off, size,
|
|
phys_to_page(phys));
|
|
return dma_addr + iova_off;
|
|
}
|
|
|
|
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
|
|
}
|
|
|
|
/*
|
|
* Prepare a successfully-mapped scatterlist to give back to the caller.
|
|
*
|
|
* At this point the segments are already laid out by iommu_dma_map_sg() to
|
|
* avoid individually crossing any boundaries, so we merely need to check a
|
|
* segment's start address to avoid concatenating across one.
|
|
*/
|
|
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
dma_addr_t dma_addr)
|
|
{
|
|
struct scatterlist *s, *cur = sg;
|
|
unsigned long seg_mask = dma_get_seg_boundary(dev);
|
|
unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
|
|
int i, count = 0;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
/* Restore this segment's original unaligned fields first */
|
|
unsigned int s_iova_off = sg_dma_address(s);
|
|
unsigned int s_length = sg_dma_len(s);
|
|
unsigned int s_iova_len = s->length;
|
|
|
|
s->offset += s_iova_off;
|
|
s->length = s_length;
|
|
sg_dma_address(s) = DMA_ERROR_CODE;
|
|
sg_dma_len(s) = 0;
|
|
|
|
/*
|
|
* Now fill in the real DMA data. If...
|
|
* - there is a valid output segment to append to
|
|
* - and this segment starts on an IOVA page boundary
|
|
* - but doesn't fall at a segment boundary
|
|
* - and wouldn't make the resulting output segment too long
|
|
*/
|
|
if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
|
|
(cur_len + s_length <= max_len)) {
|
|
/* ...then concatenate it with the previous one */
|
|
cur_len += s_length;
|
|
} else {
|
|
/* Otherwise start the next output segment */
|
|
if (i > 0)
|
|
cur = sg_next(cur);
|
|
cur_len = s_length;
|
|
count++;
|
|
|
|
sg_dma_address(cur) = dma_addr + s_iova_off;
|
|
}
|
|
|
|
sg_dma_len(cur) = cur_len;
|
|
dma_addr += s_iova_len;
|
|
|
|
if (s_length + s_iova_off < s_iova_len)
|
|
cur_len = 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* If mapping failed, then just restore the original list,
|
|
* but making sure the DMA fields are invalidated.
|
|
*/
|
|
static void __invalidate_sg(struct scatterlist *sg, int nents)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
if (sg_dma_address(s) != DMA_ERROR_CODE)
|
|
s->offset += sg_dma_address(s);
|
|
if (sg_dma_len(s))
|
|
s->length = sg_dma_len(s);
|
|
sg_dma_address(s) = DMA_ERROR_CODE;
|
|
sg_dma_len(s) = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The DMA API client is passing in a scatterlist which could describe
|
|
* any old buffer layout, but the IOMMU API requires everything to be
|
|
* aligned to IOMMU pages. Hence the need for this complicated bit of
|
|
* impedance-matching, to be able to hand off a suitably-aligned list,
|
|
* but still preserve the original offsets and sizes for the caller.
|
|
*/
|
|
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
|
|
int nents, int prot)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
struct iova_domain *iovad = cookie_iovad(domain);
|
|
struct scatterlist *s, *prev = NULL;
|
|
dma_addr_t dma_addr;
|
|
size_t iova_len = 0;
|
|
unsigned long mask = dma_get_seg_boundary(dev);
|
|
int i;
|
|
|
|
/*
|
|
* Work out how much IOVA space we need, and align the segments to
|
|
* IOVA granules for the IOMMU driver to handle. With some clever
|
|
* trickery we can modify the list in-place, but reversibly, by
|
|
* stashing the unaligned parts in the as-yet-unused DMA fields.
|
|
*/
|
|
for_each_sg(sg, s, nents, i) {
|
|
size_t s_iova_off = iova_offset(iovad, s->offset);
|
|
size_t s_length = s->length;
|
|
size_t pad_len = (mask - iova_len + 1) & mask;
|
|
|
|
sg_dma_address(s) = s_iova_off;
|
|
sg_dma_len(s) = s_length;
|
|
s->offset -= s_iova_off;
|
|
s_length = iova_align(iovad, s_length + s_iova_off);
|
|
s->length = s_length;
|
|
|
|
/*
|
|
* Due to the alignment of our single IOVA allocation, we can
|
|
* depend on these assumptions about the segment boundary mask:
|
|
* - If mask size >= IOVA size, then the IOVA range cannot
|
|
* possibly fall across a boundary, so we don't care.
|
|
* - If mask size < IOVA size, then the IOVA range must start
|
|
* exactly on a boundary, therefore we can lay things out
|
|
* based purely on segment lengths without needing to know
|
|
* the actual addresses beforehand.
|
|
* - The mask must be a power of 2, so pad_len == 0 if
|
|
* iova_len == 0, thus we cannot dereference prev the first
|
|
* time through here (i.e. before it has a meaningful value).
|
|
*/
|
|
if (pad_len && pad_len < s_length - 1) {
|
|
prev->length += pad_len;
|
|
iova_len += pad_len;
|
|
}
|
|
|
|
iova_len += s_length;
|
|
prev = s;
|
|
}
|
|
|
|
dma_addr = __iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev),
|
|
true);
|
|
if (!dma_addr)
|
|
goto out_restore_sg;
|
|
|
|
/*
|
|
* We'll leave any physical concatenation to the IOMMU driver's
|
|
* implementation - it knows better than we do.
|
|
*/
|
|
if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
|
|
goto out_free_iova;
|
|
|
|
trace_dmadebug_map_sg(dev, dma_addr, sg_dma_len(sg),
|
|
sg_page(sg));
|
|
return __finalise_sg(dev, sg, nents, dma_addr);
|
|
|
|
out_free_iova:
|
|
__iommu_dma_free_iova(iovad, dma_addr, iova_len);
|
|
out_restore_sg:
|
|
__invalidate_sg(sg, nents);
|
|
return 0;
|
|
}
|
|
|
|
void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
dma_addr_t start, end;
|
|
struct scatterlist *tmp;
|
|
int i;
|
|
/*
|
|
* The scatterlist segments are mapped into a single
|
|
* contiguous IOVA allocation, so this is incredibly easy.
|
|
*/
|
|
start = sg_dma_address(sg);
|
|
for_each_sg(sg_next(sg), tmp, nents - 1, i) {
|
|
if (sg_dma_len(tmp) == 0)
|
|
break;
|
|
sg = tmp;
|
|
}
|
|
trace_dmadebug_unmap_sg(dev, sg_dma_address(sg), sg_dma_len(sg),
|
|
sg_page(sg));
|
|
end = sg_dma_address(sg) + sg_dma_len(sg);
|
|
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
|
|
}
|
|
|
|
int iommu_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
/*
|
|
* 'Special' IOMMUs which don't have the same addressing capability
|
|
* as the CPU will have to wait until we have some way to query that
|
|
* before they'll be able to use this framework.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return dma_addr == DMA_ERROR_CODE;
|
|
}
|
|
|
|
static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
|
|
phys_addr_t msi_addr, struct iommu_domain *domain)
|
|
{
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iommu_dma_msi_page *msi_page;
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
|
|
dma_addr_t iova;
|
|
|
|
msi_addr &= ~(phys_addr_t)iova_mask(iovad);
|
|
list_for_each_entry(msi_page, &cookie->msi_page_list, list)
|
|
if (msi_page->phys == msi_addr)
|
|
return msi_page;
|
|
|
|
msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
|
|
if (!msi_page)
|
|
return NULL;
|
|
|
|
iova = __iommu_dma_alloc_iova(domain, iovad->granule, dma_get_mask(dev),
|
|
true);
|
|
if (!iova)
|
|
goto out_free_page;
|
|
|
|
msi_page->phys = msi_addr;
|
|
msi_page->iova = iova;
|
|
if (iommu_map(domain, msi_page->iova, msi_addr, iovad->granule, prot))
|
|
goto out_free_iova;
|
|
|
|
INIT_LIST_HEAD(&msi_page->list);
|
|
list_add(&msi_page->list, &cookie->msi_page_list);
|
|
return msi_page;
|
|
|
|
out_free_iova:
|
|
__iommu_dma_free_iova(iovad, iova, iovad->granule);
|
|
out_free_page:
|
|
kfree(msi_page);
|
|
return NULL;
|
|
}
|
|
|
|
void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
|
|
{
|
|
struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
struct iommu_dma_cookie *cookie;
|
|
struct iommu_dma_msi_page *msi_page;
|
|
phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
|
|
unsigned long flags;
|
|
|
|
if (!domain || !domain->iova_cookie)
|
|
return;
|
|
|
|
cookie = domain->iova_cookie;
|
|
|
|
/*
|
|
* We disable IRQs to rule out a possible inversion against
|
|
* irq_desc_lock if, say, someone tries to retarget the affinity
|
|
* of an MSI from within an IPI handler.
|
|
*/
|
|
spin_lock_irqsave(&cookie->msi_lock, flags);
|
|
msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
|
|
spin_unlock_irqrestore(&cookie->msi_lock, flags);
|
|
|
|
if (WARN_ON(!msi_page)) {
|
|
/*
|
|
* We're called from a void callback, so the best we can do is
|
|
* 'fail' by filling the message with obviously bogus values.
|
|
* Since we got this far due to an IOMMU being present, it's
|
|
* not like the existing address would have worked anyway...
|
|
*/
|
|
msg->address_hi = ~0U;
|
|
msg->address_lo = ~0U;
|
|
msg->data = ~0U;
|
|
} else {
|
|
msg->address_hi = upper_32_bits(msi_page->iova);
|
|
msg->address_lo &= iova_mask(&cookie->iovad);
|
|
msg->address_lo += lower_32_bits(msi_page->iova);
|
|
}
|
|
}
|