Jetpack/kernel/kernel-4.9/drivers/cpufreq/cpufreq_interactive.c

1412 lines
36 KiB
C

/*
* drivers/cpufreq/cpufreq_interactive.c
*
* Copyright (C) 2010-2016 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Mike Chan (mike@android.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/irq_work.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/sched/rt.h>
#include <linux/tick.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#define CREATE_TRACE_POINTS
#include <trace/events/cpufreq_interactive.h>
#define gov_attr_ro(_name) \
static struct governor_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)
#define gov_attr_wo(_name) \
static struct governor_attr _name = \
__ATTR(_name, 0200, NULL, store_##_name)
#define gov_attr_rw(_name) \
static struct governor_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)
/* Separate instance required for each 'interactive' directory in sysfs */
struct interactive_tunables {
struct gov_attr_set attr_set;
/* Hi speed to bump to from lo speed when load burst (default max) */
unsigned int hispeed_freq;
/* Go to hi speed when CPU load at or above this value. */
#define DEFAULT_GO_HISPEED_LOAD 99
unsigned long go_hispeed_load;
/* Target load. Lower values result in higher CPU speeds. */
spinlock_t target_loads_lock;
unsigned int *target_loads;
int ntarget_loads;
/*
* The minimum amount of time to spend at a frequency before we can ramp
* down.
*/
#define DEFAULT_MIN_SAMPLE_TIME (30 * USEC_PER_MSEC)
unsigned long min_sample_time;
/* The sample rate of the timer used to increase frequency */
unsigned long sampling_rate;
/*
* Wait this long before raising speed above hispeed, by default a
* single timer interval.
*/
spinlock_t above_hispeed_delay_lock;
unsigned int *above_hispeed_delay;
int nabove_hispeed_delay;
/* Non-zero means indefinite speed boost active */
int boost;
/* Duration of a boot pulse in usecs */
int boostpulse_duration;
/* End time of boost pulse in ktime converted to usecs */
u64 boostpulse_endtime;
bool boosted;
/*
* Max additional time to wait in idle, beyond sampling_rate, at speeds
* above minimum before wakeup to reduce speed, or -1 if unnecessary.
*/
#define DEFAULT_TIMER_SLACK (4 * DEFAULT_SAMPLING_RATE)
unsigned long timer_slack_delay;
unsigned long timer_slack;
bool io_is_busy;
};
/* Separate instance required for each 'struct cpufreq_policy' */
struct interactive_policy {
struct cpufreq_policy *policy;
struct interactive_tunables *tunables;
struct list_head tunables_hook;
};
/* Separate instance required for each CPU */
struct interactive_cpu {
struct update_util_data update_util;
struct interactive_policy *ipolicy;
struct irq_work irq_work;
u64 last_sample_time;
unsigned long next_sample_jiffies;
bool work_in_progress;
struct rw_semaphore enable_sem;
struct timer_list slack_timer;
spinlock_t load_lock; /* protects the next 4 fields */
u64 time_in_idle;
u64 time_in_idle_timestamp;
u64 cputime_speedadj;
u64 cputime_speedadj_timestamp;
spinlock_t target_freq_lock; /*protects target freq */
unsigned int target_freq;
unsigned int floor_freq;
u64 pol_floor_val_time; /* policy floor_validate_time */
u64 loc_floor_val_time; /* per-cpu floor_validate_time */
u64 pol_hispeed_val_time; /* policy hispeed_validate_time */
u64 loc_hispeed_val_time; /* per-cpu hispeed_validate_time */
};
static DEFINE_PER_CPU(struct interactive_cpu, interactive_cpu);
/* Realtime thread handles frequency scaling */
static struct task_struct *speedchange_task;
static cpumask_t speedchange_cpumask;
static spinlock_t speedchange_cpumask_lock;
/* Target load. Lower values result in higher CPU speeds. */
#define DEFAULT_TARGET_LOAD 90
static unsigned int default_target_loads[] = {DEFAULT_TARGET_LOAD};
#define DEFAULT_SAMPLING_RATE (20 * USEC_PER_MSEC)
#define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_SAMPLING_RATE
static unsigned int default_above_hispeed_delay[] = {
DEFAULT_ABOVE_HISPEED_DELAY
};
/* Iterate over interactive policies for tunables */
#define for_each_ipolicy(__ip) \
list_for_each_entry(__ip, &tunables->attr_set.policy_list, tunables_hook)
static struct interactive_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);
static inline void update_slack_delay(struct interactive_tunables *tunables)
{
tunables->timer_slack_delay = usecs_to_jiffies(tunables->timer_slack +
tunables->sampling_rate);
}
static bool timer_slack_required(struct interactive_cpu *icpu)
{
struct interactive_policy *ipolicy = icpu->ipolicy;
struct interactive_tunables *tunables = ipolicy->tunables;
if (tunables->timer_slack < 0)
return false;
if (icpu->target_freq > ipolicy->policy->min)
return true;
return false;
}
static void gov_slack_timer_start(struct interactive_cpu *icpu, int cpu)
{
struct interactive_tunables *tunables = icpu->ipolicy->tunables;
icpu->slack_timer.expires = jiffies + tunables->timer_slack_delay;
add_timer_on(&icpu->slack_timer, cpu);
}
static void gov_slack_timer_modify(struct interactive_cpu *icpu)
{
struct interactive_tunables *tunables = icpu->ipolicy->tunables;
mod_timer(&icpu->slack_timer, jiffies + tunables->timer_slack_delay);
}
static void slack_timer_resched(struct interactive_cpu *icpu, int cpu,
bool modify)
{
struct interactive_tunables *tunables = icpu->ipolicy->tunables;
unsigned long flags;
spin_lock_irqsave(&icpu->load_lock, flags);
icpu->time_in_idle = get_cpu_idle_time(cpu,
&icpu->time_in_idle_timestamp,
tunables->io_is_busy);
icpu->cputime_speedadj = 0;
icpu->cputime_speedadj_timestamp = icpu->time_in_idle_timestamp;
if (timer_slack_required(icpu)) {
if (modify)
gov_slack_timer_modify(icpu);
else
gov_slack_timer_start(icpu, cpu);
}
spin_unlock_irqrestore(&icpu->load_lock, flags);
}
static unsigned int
freq_to_above_hispeed_delay(struct interactive_tunables *tunables,
unsigned int freq)
{
unsigned long flags;
unsigned int ret;
int i;
spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags);
for (i = 0; i < tunables->nabove_hispeed_delay - 1 &&
freq >= tunables->above_hispeed_delay[i + 1]; i += 2)
;
ret = tunables->above_hispeed_delay[i];
spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags);
return ret;
}
static unsigned int freq_to_targetload(struct interactive_tunables *tunables,
unsigned int freq)
{
unsigned long flags;
unsigned int ret;
int i;
spin_lock_irqsave(&tunables->target_loads_lock, flags);
for (i = 0; i < tunables->ntarget_loads - 1 &&
freq >= tunables->target_loads[i + 1]; i += 2)
;
ret = tunables->target_loads[i];
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
return ret;
}
/*
* If increasing frequencies never map to a lower target load then
* choose_freq() will find the minimum frequency that does not exceed its
* target load given the current load.
*/
static unsigned int choose_freq(struct interactive_cpu *icpu,
unsigned int loadadjfreq)
{
struct cpufreq_policy *policy = icpu->ipolicy->policy;
struct cpufreq_frequency_table *freq_table = policy->freq_table;
unsigned int prevfreq, freqmin = 0, freqmax = UINT_MAX, tl;
unsigned int freq = policy->cur;
int index;
do {
prevfreq = freq;
tl = freq_to_targetload(icpu->ipolicy->tunables, freq);
/*
* Find the lowest frequency where the computed load is less
* than or equal to the target load.
*/
index = cpufreq_frequency_table_target(policy, loadadjfreq / tl,
CPUFREQ_RELATION_L);
freq = freq_table[index].frequency;
if (freq > prevfreq) {
/* The previous frequency is too low */
freqmin = prevfreq;
if (freq < freqmax)
continue;
/* Find highest frequency that is less than freqmax */
index = cpufreq_frequency_table_target(policy,
freqmax - 1, CPUFREQ_RELATION_H);
freq = freq_table[index].frequency;
if (freq == freqmin) {
/*
* The first frequency below freqmax has already
* been found to be too low. freqmax is the
* lowest speed we found that is fast enough.
*/
freq = freqmax;
break;
}
} else if (freq < prevfreq) {
/* The previous frequency is high enough. */
freqmax = prevfreq;
if (freq > freqmin)
continue;
/* Find lowest frequency that is higher than freqmin */
index = cpufreq_frequency_table_target(policy,
freqmin + 1, CPUFREQ_RELATION_L);
freq = freq_table[index].frequency;
/*
* If freqmax is the first frequency above
* freqmin then we have already found that
* this speed is fast enough.
*/
if (freq == freqmax)
break;
}
/* If same frequency chosen as previous then done. */
} while (freq != prevfreq);
return freq;
}
static u64 update_load(struct interactive_cpu *icpu, int cpu)
{
struct interactive_tunables *tunables = icpu->ipolicy->tunables;
u64 now_idle, now, active_time, delta_idle, delta_time;
now_idle = get_cpu_idle_time(cpu, &now, tunables->io_is_busy);
delta_idle = (now_idle - icpu->time_in_idle);
delta_time = (now - icpu->time_in_idle_timestamp);
if (delta_time <= delta_idle)
active_time = 0;
else
active_time = delta_time - delta_idle;
icpu->cputime_speedadj += active_time * icpu->ipolicy->policy->cur;
icpu->time_in_idle = now_idle;
icpu->time_in_idle_timestamp = now;
return now;
}
/* Re-evaluate load to see if a frequency change is required or not */
static void eval_target_freq(struct interactive_cpu *icpu)
{
struct interactive_tunables *tunables = icpu->ipolicy->tunables;
struct cpufreq_policy *policy = icpu->ipolicy->policy;
struct cpufreq_frequency_table *freq_table = policy->freq_table;
u64 cputime_speedadj, now, max_fvtime;
unsigned int new_freq, loadadjfreq, index, delta_time;
unsigned long flags;
int cpu_load;
int cpu = smp_processor_id();
spin_lock_irqsave(&icpu->load_lock, flags);
now = update_load(icpu, smp_processor_id());
delta_time = (unsigned int)(now - icpu->cputime_speedadj_timestamp);
cputime_speedadj = icpu->cputime_speedadj;
spin_unlock_irqrestore(&icpu->load_lock, flags);
if (WARN_ON_ONCE(!delta_time))
return;
spin_lock_irqsave(&icpu->target_freq_lock, flags);
do_div(cputime_speedadj, delta_time);
loadadjfreq = (unsigned int)cputime_speedadj * 100;
cpu_load = loadadjfreq / policy->cur;
tunables->boosted = tunables->boost ||
now < tunables->boostpulse_endtime;
if (cpu_load >= tunables->go_hispeed_load || tunables->boosted) {
if (policy->cur < tunables->hispeed_freq) {
new_freq = tunables->hispeed_freq;
} else {
new_freq = choose_freq(icpu, loadadjfreq);
if (new_freq < tunables->hispeed_freq)
new_freq = tunables->hispeed_freq;
}
} else {
new_freq = choose_freq(icpu, loadadjfreq);
if (new_freq > tunables->hispeed_freq &&
policy->cur < tunables->hispeed_freq)
new_freq = tunables->hispeed_freq;
}
if (policy->cur >= tunables->hispeed_freq &&
new_freq > policy->cur &&
now - icpu->pol_hispeed_val_time < freq_to_above_hispeed_delay(tunables, policy->cur)) {
trace_cpufreq_interactive_notyet(cpu, cpu_load,
icpu->target_freq, policy->cur, new_freq);
goto exit;
}
icpu->loc_hispeed_val_time = now;
index = cpufreq_frequency_table_target(policy, new_freq,
CPUFREQ_RELATION_L);
new_freq = freq_table[index].frequency;
/*
* Do not scale below floor_freq unless we have been at or above the
* floor frequency for the minimum sample time since last validated.
*/
max_fvtime = max(icpu->pol_floor_val_time, icpu->loc_floor_val_time);
if (new_freq < icpu->floor_freq && icpu->target_freq >= policy->cur) {
if (now - max_fvtime < tunables->min_sample_time) {
trace_cpufreq_interactive_notyet(cpu, cpu_load,
icpu->target_freq, policy->cur, new_freq);
goto exit;
}
}
/*
* Update the timestamp for checking whether speed has been held at
* or above the selected frequency for a minimum of min_sample_time,
* if not boosted to hispeed_freq. If boosted to hispeed_freq then we
* allow the speed to drop as soon as the boostpulse duration expires
* (or the indefinite boost is turned off).
*/
if (!tunables->boosted || new_freq > tunables->hispeed_freq) {
icpu->floor_freq = new_freq;
if (icpu->target_freq >= policy->cur || new_freq >= policy->cur)
icpu->loc_floor_val_time = now;
}
if (icpu->target_freq == new_freq &&
icpu->target_freq <= policy->cur) {
trace_cpufreq_interactive_already(cpu, cpu_load,
icpu->target_freq, policy->cur, new_freq);
goto exit;
}
trace_cpufreq_interactive_target(cpu, cpu_load, icpu->target_freq,
policy->cur, new_freq);
icpu->target_freq = new_freq;
spin_unlock_irqrestore(&icpu->target_freq_lock, flags);
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
cpumask_set_cpu(cpu, &speedchange_cpumask);
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags);
wake_up_process(speedchange_task);
return;
exit:
spin_unlock_irqrestore(&icpu->target_freq_lock, flags);
}
static void cpufreq_interactive_update(struct interactive_cpu *icpu)
{
eval_target_freq(icpu);
slack_timer_resched(icpu, smp_processor_id(), true);
}
static void cpufreq_interactive_idle_end(void)
{
struct interactive_cpu *icpu = &per_cpu(interactive_cpu,
smp_processor_id());
if (!down_read_trylock(&icpu->enable_sem))
return;
if (icpu->ipolicy) {
/*
* We haven't sampled load for more than sampling_rate time, do
* it right now.
*/
if (time_after_eq(jiffies, icpu->next_sample_jiffies))
cpufreq_interactive_update(icpu);
}
up_read(&icpu->enable_sem);
}
static void cpufreq_interactive_get_policy_info(struct cpufreq_policy *policy,
unsigned int *pmax_freq,
u64 *phvt, u64 *pfvt)
{
struct interactive_cpu *icpu;
u64 hvt = ~0ULL, fvt = 0;
unsigned int max_freq = 0, i;
for_each_cpu(i, policy->cpus) {
icpu = &per_cpu(interactive_cpu, i);
fvt = max(fvt, icpu->loc_floor_val_time);
if (icpu->target_freq > max_freq) {
max_freq = icpu->target_freq;
hvt = icpu->loc_hispeed_val_time;
} else if (icpu->target_freq == max_freq) {
hvt = min(hvt, icpu->loc_hispeed_val_time);
}
}
*pmax_freq = max_freq;
*phvt = hvt;
*pfvt = fvt;
}
static void cpufreq_interactive_adjust_cpu(unsigned int cpu,
struct cpufreq_policy *policy)
{
struct interactive_cpu *icpu;
u64 hvt, fvt;
unsigned int max_freq;
int i;
cpufreq_interactive_get_policy_info(policy, &max_freq, &hvt, &fvt);
for_each_cpu(i, policy->cpus) {
icpu = &per_cpu(interactive_cpu, i);
icpu->pol_floor_val_time = fvt;
}
if (max_freq != policy->cur) {
__cpufreq_driver_target(policy, max_freq, CPUFREQ_RELATION_H);
for_each_cpu(i, policy->cpus) {
icpu = &per_cpu(interactive_cpu, i);
icpu->pol_hispeed_val_time = hvt;
}
}
trace_cpufreq_interactive_setspeed(cpu, max_freq, policy->cur);
}
static int cpufreq_interactive_speedchange_task(void *data)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
again:
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
if (cpumask_empty(&speedchange_cpumask)) {
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags);
schedule();
if (kthread_should_stop())
return 0;
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
}
set_current_state(TASK_RUNNING);
tmp_mask = speedchange_cpumask;
cpumask_clear(&speedchange_cpumask);
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
struct interactive_cpu *icpu = &per_cpu(interactive_cpu, cpu);
struct cpufreq_policy *policy;
if (unlikely(!down_read_trylock(&icpu->enable_sem)))
continue;
if (likely(icpu->ipolicy)) {
policy = icpu->ipolicy->policy;
cpufreq_interactive_adjust_cpu(cpu, policy);
}
up_read(&icpu->enable_sem);
}
goto again;
}
static void cpufreq_interactive_boost(struct interactive_tunables *tunables)
{
struct interactive_policy *ipolicy;
struct cpufreq_policy *policy;
struct interactive_cpu *icpu;
unsigned long flags[2];
bool wakeup = false;
int i;
tunables->boosted = true;
spin_lock_irqsave(&speedchange_cpumask_lock, flags[0]);
for_each_ipolicy(ipolicy) {
policy = ipolicy->policy;
for_each_cpu(i, policy->cpus) {
icpu = &per_cpu(interactive_cpu, i);
if (!down_read_trylock(&icpu->enable_sem))
continue;
if (!icpu->ipolicy) {
up_read(&icpu->enable_sem);
continue;
}
spin_lock_irqsave(&icpu->target_freq_lock, flags[1]);
if (icpu->target_freq < tunables->hispeed_freq) {
icpu->target_freq = tunables->hispeed_freq;
cpumask_set_cpu(i, &speedchange_cpumask);
icpu->pol_hispeed_val_time = ktime_to_us(ktime_get());
wakeup = true;
}
spin_unlock_irqrestore(&icpu->target_freq_lock, flags[1]);
up_read(&icpu->enable_sem);
}
}
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags[0]);
if (wakeup)
wake_up_process(speedchange_task);
}
static int cpufreq_interactive_notifier(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freq = data;
struct interactive_cpu *icpu = &per_cpu(interactive_cpu, freq->cpu);
unsigned long flags;
if (val != CPUFREQ_POSTCHANGE)
return 0;
if (!down_read_trylock(&icpu->enable_sem))
return 0;
if (!icpu->ipolicy) {
up_read(&icpu->enable_sem);
return 0;
}
spin_lock_irqsave(&icpu->load_lock, flags);
update_load(icpu, freq->cpu);
spin_unlock_irqrestore(&icpu->load_lock, flags);
up_read(&icpu->enable_sem);
return 0;
}
static struct notifier_block cpufreq_notifier_block = {
.notifier_call = cpufreq_interactive_notifier,
};
static unsigned int *get_tokenized_data(const char *buf, int *num_tokens)
{
const char *cp = buf;
int ntokens = 1, i = 0;
unsigned int *tokenized_data;
int err = -EINVAL;
while ((cp = strpbrk(cp + 1, " :")))
ntokens++;
if (!(ntokens & 0x1))
goto err;
tokenized_data = kcalloc(ntokens, sizeof(*tokenized_data), GFP_KERNEL);
if (!tokenized_data) {
err = -ENOMEM;
goto err;
}
cp = buf;
while (i < ntokens) {
if (kstrtouint(cp, 0, &tokenized_data[i++]) < 0)
goto err_kfree;
cp = strpbrk(cp, " :");
if (!cp)
break;
cp++;
}
if (i != ntokens)
goto err_kfree;
*num_tokens = ntokens;
return tokenized_data;
err_kfree:
kfree(tokenized_data);
err:
return ERR_PTR(err);
}
/* Interactive governor sysfs interface */
static struct interactive_tunables *to_tunables(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct interactive_tunables, attr_set);
}
#define show_one(file_name, type) \
static ssize_t show_##file_name(struct gov_attr_set *attr_set, char *buf) \
{ \
struct interactive_tunables *tunables = to_tunables(attr_set); \
return sprintf(buf, type "\n", tunables->file_name); \
}
static ssize_t show_target_loads(struct gov_attr_set *attr_set, char *buf)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long flags;
ssize_t ret = 0;
int i;
spin_lock_irqsave(&tunables->target_loads_lock, flags);
for (i = 0; i < tunables->ntarget_loads; i++)
ret += sprintf(buf + ret, "%u%s", tunables->target_loads[i],
i & 0x1 ? ":" : " ");
sprintf(buf + ret - 1, "\n");
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
return ret;
}
static ssize_t store_target_loads(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned int *new_target_loads;
unsigned long flags;
int ntokens;
new_target_loads = get_tokenized_data(buf, &ntokens);
if (IS_ERR(new_target_loads))
return PTR_ERR(new_target_loads);
spin_lock_irqsave(&tunables->target_loads_lock, flags);
if (tunables->target_loads != default_target_loads)
kfree(tunables->target_loads);
tunables->target_loads = new_target_loads;
tunables->ntarget_loads = ntokens;
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
return count;
}
static ssize_t show_above_hispeed_delay(struct gov_attr_set *attr_set,
char *buf)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long flags;
ssize_t ret = 0;
int i;
spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags);
for (i = 0; i < tunables->nabove_hispeed_delay; i++)
ret += sprintf(buf + ret, "%u%s",
tunables->above_hispeed_delay[i],
i & 0x1 ? ":" : " ");
sprintf(buf + ret - 1, "\n");
spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags);
return ret;
}
static ssize_t store_above_hispeed_delay(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned int *new_above_hispeed_delay = NULL;
unsigned long flags;
int ntokens;
new_above_hispeed_delay = get_tokenized_data(buf, &ntokens);
if (IS_ERR(new_above_hispeed_delay))
return PTR_ERR(new_above_hispeed_delay);
spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags);
if (tunables->above_hispeed_delay != default_above_hispeed_delay)
kfree(tunables->above_hispeed_delay);
tunables->above_hispeed_delay = new_above_hispeed_delay;
tunables->nabove_hispeed_delay = ntokens;
spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags);
return count;
}
static ssize_t store_hispeed_freq(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long int val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->hispeed_freq = val;
return count;
}
static ssize_t store_go_hispeed_load(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->go_hispeed_load = val;
return count;
}
static ssize_t store_min_sample_time(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->min_sample_time = val;
return count;
}
static ssize_t show_timer_rate(struct gov_attr_set *attr_set, char *buf)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
return sprintf(buf, "%lu\n", tunables->sampling_rate);
}
static ssize_t store_timer_rate(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long val, val_round;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
val_round = jiffies_to_usecs(usecs_to_jiffies(val));
if (val != val_round)
pr_warn("timer_rate not aligned to jiffy. Rounded up to %lu\n",
val_round);
tunables->sampling_rate = val_round;
return count;
}
static ssize_t store_timer_slack(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret < 0)
return ret;
tunables->timer_slack = val;
update_slack_delay(tunables);
return count;
}
static ssize_t store_boost(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->boost = val;
if (tunables->boost) {
trace_cpufreq_interactive_boost("on");
if (!tunables->boosted)
cpufreq_interactive_boost(tunables);
} else {
tunables->boostpulse_endtime = ktime_to_us(ktime_get());
trace_cpufreq_interactive_unboost("off");
}
return count;
}
static ssize_t store_boostpulse(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->boostpulse_endtime = ktime_to_us(ktime_get()) +
tunables->boostpulse_duration;
trace_cpufreq_interactive_boost("pulse");
if (!tunables->boosted)
cpufreq_interactive_boost(tunables);
return count;
}
static ssize_t store_boostpulse_duration(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->boostpulse_duration = val;
return count;
}
static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct interactive_tunables *tunables = to_tunables(attr_set);
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->io_is_busy = val;
return count;
}
show_one(hispeed_freq, "%u");
show_one(go_hispeed_load, "%lu");
show_one(min_sample_time, "%lu");
show_one(timer_slack, "%lu");
show_one(boost, "%u");
show_one(boostpulse_duration, "%u");
show_one(io_is_busy, "%u");
gov_attr_rw(target_loads);
gov_attr_rw(above_hispeed_delay);
gov_attr_rw(hispeed_freq);
gov_attr_rw(go_hispeed_load);
gov_attr_rw(min_sample_time);
gov_attr_rw(timer_rate);
gov_attr_rw(timer_slack);
gov_attr_rw(boost);
gov_attr_wo(boostpulse);
gov_attr_rw(boostpulse_duration);
gov_attr_rw(io_is_busy);
static struct attribute *interactive_attributes[] = {
&target_loads.attr,
&above_hispeed_delay.attr,
&hispeed_freq.attr,
&go_hispeed_load.attr,
&min_sample_time.attr,
&timer_rate.attr,
&timer_slack.attr,
&boost.attr,
&boostpulse.attr,
&boostpulse_duration.attr,
&io_is_busy.attr,
NULL
};
static struct kobj_type interactive_tunables_ktype = {
.default_attrs = interactive_attributes,
.sysfs_ops = &governor_sysfs_ops,
};
static int cpufreq_interactive_idle_notifier(struct notifier_block *nb,
unsigned long val, void *data)
{
if (val == IDLE_END)
cpufreq_interactive_idle_end();
return 0;
}
static struct notifier_block cpufreq_interactive_idle_nb = {
.notifier_call = cpufreq_interactive_idle_notifier,
};
/* Interactive Governor callbacks */
struct interactive_governor {
struct cpufreq_governor gov;
unsigned int usage_count;
};
static struct interactive_governor interactive_gov;
#define CPU_FREQ_GOV_INTERACTIVE (&interactive_gov.gov)
static void irq_work(struct irq_work *irq_work)
{
struct interactive_cpu *icpu = container_of(irq_work, struct
interactive_cpu, irq_work);
cpufreq_interactive_update(icpu);
icpu->work_in_progress = false;
}
static void update_util_handler(struct update_util_data *data, u64 time,
unsigned int flags)
{
struct interactive_cpu *icpu = container_of(data,
struct interactive_cpu, update_util);
struct interactive_policy *ipolicy = icpu->ipolicy;
struct interactive_tunables *tunables = ipolicy->tunables;
u64 delta_ns;
/*
* The irq-work may not be allowed to be queued up right now.
* Possible reasons:
* - Work has already been queued up or is in progress.
* - It is too early (too little time from the previous sample).
*/
if (icpu->work_in_progress)
return;
delta_ns = time - icpu->last_sample_time;
if ((s64)delta_ns < tunables->sampling_rate * NSEC_PER_USEC)
return;
icpu->last_sample_time = time;
icpu->next_sample_jiffies = usecs_to_jiffies(tunables->sampling_rate) +
jiffies;
icpu->work_in_progress = true;
irq_work_queue(&icpu->irq_work);
}
static void gov_set_update_util(struct interactive_policy *ipolicy)
{
struct cpufreq_policy *policy = ipolicy->policy;
struct interactive_cpu *icpu;
int cpu;
for_each_cpu(cpu, policy->cpus) {
icpu = &per_cpu(interactive_cpu, cpu);
icpu->last_sample_time = 0;
icpu->next_sample_jiffies = 0;
cpufreq_add_update_util_hook(cpu, &icpu->update_util,
update_util_handler);
}
}
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
{
int i;
for_each_cpu(i, policy->cpus)
cpufreq_remove_update_util_hook(i);
synchronize_sched();
}
static void icpu_cancel_work(struct interactive_cpu *icpu)
{
irq_work_sync(&icpu->irq_work);
icpu->work_in_progress = false;
del_timer_sync(&icpu->slack_timer);
}
static struct interactive_policy *
interactive_policy_alloc(struct cpufreq_policy *policy)
{
struct interactive_policy *ipolicy;
ipolicy = kzalloc(sizeof(*ipolicy), GFP_KERNEL);
if (!ipolicy)
return NULL;
ipolicy->policy = policy;
return ipolicy;
}
static void interactive_policy_free(struct interactive_policy *ipolicy)
{
kfree(ipolicy);
}
static struct interactive_tunables *
interactive_tunables_alloc(struct interactive_policy *ipolicy)
{
struct interactive_tunables *tunables;
tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (!tunables)
return NULL;
gov_attr_set_init(&tunables->attr_set, &ipolicy->tunables_hook);
if (!have_governor_per_policy())
global_tunables = tunables;
ipolicy->tunables = tunables;
return tunables;
}
static void interactive_tunables_free(struct interactive_tunables *tunables)
{
if (!have_governor_per_policy())
global_tunables = NULL;
kfree(tunables);
}
int cpufreq_interactive_init(struct cpufreq_policy *policy)
{
struct interactive_policy *ipolicy;
struct interactive_tunables *tunables;
int ret;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
ipolicy = interactive_policy_alloc(policy);
if (!ipolicy)
return -ENOMEM;
mutex_lock(&global_tunables_lock);
if (global_tunables) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto free_int_policy;
}
policy->governor_data = ipolicy;
ipolicy->tunables = global_tunables;
gov_attr_set_get(&global_tunables->attr_set,
&ipolicy->tunables_hook);
goto out;
}
tunables = interactive_tunables_alloc(ipolicy);
if (!tunables) {
ret = -ENOMEM;
goto free_int_policy;
}
tunables->hispeed_freq = policy->max;
tunables->above_hispeed_delay = default_above_hispeed_delay;
tunables->nabove_hispeed_delay =
ARRAY_SIZE(default_above_hispeed_delay);
tunables->go_hispeed_load = DEFAULT_GO_HISPEED_LOAD;
tunables->target_loads = default_target_loads;
tunables->ntarget_loads = ARRAY_SIZE(default_target_loads);
tunables->min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
tunables->boostpulse_duration = DEFAULT_MIN_SAMPLE_TIME;
tunables->sampling_rate = DEFAULT_SAMPLING_RATE;
tunables->timer_slack = DEFAULT_TIMER_SLACK;
update_slack_delay(tunables);
spin_lock_init(&tunables->target_loads_lock);
spin_lock_init(&tunables->above_hispeed_delay_lock);
policy->governor_data = ipolicy;
ret = kobject_init_and_add(&tunables->attr_set.kobj,
&interactive_tunables_ktype,
get_governor_parent_kobj(policy), "%s",
interactive_gov.gov.name);
if (ret)
goto fail;
/* One time initialization for governor */
if (!interactive_gov.usage_count++) {
idle_notifier_register(&cpufreq_interactive_idle_nb);
cpufreq_register_notifier(&cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
}
out:
mutex_unlock(&global_tunables_lock);
return 0;
fail:
policy->governor_data = NULL;
interactive_tunables_free(tunables);
free_int_policy:
mutex_unlock(&global_tunables_lock);
interactive_policy_free(ipolicy);
pr_err("governor initialization failed (%d)\n", ret);
return ret;
}
void cpufreq_interactive_exit(struct cpufreq_policy *policy)
{
struct interactive_policy *ipolicy = policy->governor_data;
struct interactive_tunables *tunables = ipolicy->tunables;
unsigned int count;
mutex_lock(&global_tunables_lock);
/* Last policy using the governor ? */
if (!--interactive_gov.usage_count) {
cpufreq_unregister_notifier(&cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
idle_notifier_unregister(&cpufreq_interactive_idle_nb);
}
count = gov_attr_set_put(&tunables->attr_set, &ipolicy->tunables_hook);
policy->governor_data = NULL;
if (!count)
interactive_tunables_free(tunables);
mutex_unlock(&global_tunables_lock);
interactive_policy_free(ipolicy);
}
int cpufreq_interactive_start(struct cpufreq_policy *policy)
{
struct interactive_policy *ipolicy = policy->governor_data;
struct interactive_cpu *icpu;
unsigned int cpu;
for_each_cpu(cpu, policy->cpus) {
icpu = &per_cpu(interactive_cpu, cpu);
icpu->target_freq = policy->cur;
icpu->floor_freq = icpu->target_freq;
icpu->pol_floor_val_time = ktime_to_us(ktime_get());
icpu->loc_floor_val_time = icpu->pol_floor_val_time;
icpu->pol_hispeed_val_time = icpu->pol_floor_val_time;
icpu->loc_hispeed_val_time = icpu->pol_floor_val_time;
down_write(&icpu->enable_sem);
icpu->ipolicy = ipolicy;
up_write(&icpu->enable_sem);
slack_timer_resched(icpu, cpu, false);
}
gov_set_update_util(ipolicy);
return 0;
}
void cpufreq_interactive_stop(struct cpufreq_policy *policy)
{
struct interactive_policy *ipolicy = policy->governor_data;
struct interactive_cpu *icpu;
unsigned int cpu;
gov_clear_update_util(ipolicy->policy);
for_each_cpu(cpu, policy->cpus) {
icpu = &per_cpu(interactive_cpu, cpu);
icpu_cancel_work(icpu);
down_write(&icpu->enable_sem);
icpu->ipolicy = NULL;
up_write(&icpu->enable_sem);
}
}
void cpufreq_interactive_limits(struct cpufreq_policy *policy)
{
struct interactive_cpu *icpu;
unsigned int cpu;
unsigned long flags;
cpufreq_policy_apply_limits(policy);
for_each_cpu(cpu, policy->cpus) {
icpu = &per_cpu(interactive_cpu, cpu);
spin_lock_irqsave(&icpu->target_freq_lock, flags);
if (policy->max < icpu->target_freq)
icpu->target_freq = policy->max;
else if (policy->min > icpu->target_freq)
icpu->target_freq = policy->min;
spin_unlock_irqrestore(&icpu->target_freq_lock, flags);
}
}
static struct interactive_governor interactive_gov = {
.gov = {
.name = "interactive",
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
.init = cpufreq_interactive_init,
.exit = cpufreq_interactive_exit,
.start = cpufreq_interactive_start,
.stop = cpufreq_interactive_stop,
.limits = cpufreq_interactive_limits,
}
};
static void cpufreq_interactive_nop_timer(unsigned long data)
{
/*
* The purpose of slack-timer is to wake up the CPU from IDLE, in order
* to decrease its frequency if it is not set to minimum already.
*
* This is important for platforms where CPU with higher frequencies
* consume higher power even at IDLE.
*/
}
static int __init cpufreq_interactive_gov_init(void)
{
struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
struct interactive_cpu *icpu;
unsigned int cpu;
for_each_possible_cpu(cpu) {
icpu = &per_cpu(interactive_cpu, cpu);
init_irq_work(&icpu->irq_work, irq_work);
spin_lock_init(&icpu->load_lock);
spin_lock_init(&icpu->target_freq_lock);
init_rwsem(&icpu->enable_sem);
/* Initialize per-cpu slack-timer */
init_timer_pinned(&icpu->slack_timer);
icpu->slack_timer.function = cpufreq_interactive_nop_timer;
}
spin_lock_init(&speedchange_cpumask_lock);
speedchange_task = kthread_create(cpufreq_interactive_speedchange_task,
NULL, "cfinteractive");
if (IS_ERR(speedchange_task))
return PTR_ERR(speedchange_task);
sched_setscheduler_nocheck(speedchange_task, SCHED_FIFO, &param);
get_task_struct(speedchange_task);
/* wake up so the thread does not look hung to the freezer */
wake_up_process(speedchange_task);
return cpufreq_register_governor(CPU_FREQ_GOV_INTERACTIVE);
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
struct cpufreq_governor *cpufreq_default_governor(void)
{
return CPU_FREQ_GOV_INTERACTIVE;
}
fs_initcall(cpufreq_interactive_gov_init);
#else
module_init(cpufreq_interactive_gov_init);
#endif
static void __exit cpufreq_interactive_gov_exit(void)
{
cpufreq_unregister_governor(CPU_FREQ_GOV_INTERACTIVE);
kthread_stop(speedchange_task);
put_task_struct(speedchange_task);
}
module_exit(cpufreq_interactive_gov_exit);
MODULE_AUTHOR("Mike Chan <mike@android.com>");
MODULE_DESCRIPTION("'cpufreq_interactive' - A dynamic cpufreq governor for Latency sensitive workloads");
MODULE_LICENSE("GPL");