Jetpack/u-boot/arch/sparc/include/asm/srmmu.h

288 lines
8.8 KiB
C

/* SRMMU page table defines and code,
* taken from the SPARC port of Linux
*
* Copyright (C) 2007 Daniel Hellstrom (daniel@gaisler.com)
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef __SPARC_SRMMU_H__
#define __SPARC_SRMMU_H__
#include <asm/asi.h>
#include <asm/page.h>
/* Number of contexts is implementation-dependent; 64k is the most we support */
#define SRMMU_MAX_CONTEXTS 65536
/* PMD_SHIFT determines the size of the area a second-level page table entry can map */
#define SRMMU_REAL_PMD_SHIFT 18
#define SRMMU_REAL_PMD_SIZE (1UL << SRMMU_REAL_PMD_SHIFT)
#define SRMMU_REAL_PMD_MASK (~(SRMMU_REAL_PMD_SIZE-1))
#define SRMMU_REAL_PMD_ALIGN(__addr) (((__addr)+SRMMU_REAL_PMD_SIZE-1)&SRMMU_REAL_PMD_MASK)
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define SRMMU_PGDIR_SHIFT 24
#define SRMMU_PGDIR_SIZE (1UL << SRMMU_PGDIR_SHIFT)
#define SRMMU_PGDIR_MASK (~(SRMMU_PGDIR_SIZE-1))
#define SRMMU_PGDIR_ALIGN(addr) (((addr)+SRMMU_PGDIR_SIZE-1)&SRMMU_PGDIR_MASK)
#define SRMMU_REAL_PTRS_PER_PTE 64
#define SRMMU_REAL_PTRS_PER_PMD 64
#define SRMMU_PTRS_PER_PGD 256
#define SRMMU_REAL_PTE_TABLE_SIZE (SRMMU_REAL_PTRS_PER_PTE*4)
#define SRMMU_PMD_TABLE_SIZE (SRMMU_REAL_PTRS_PER_PMD*4)
#define SRMMU_PGD_TABLE_SIZE (SRMMU_PTRS_PER_PGD*4)
/*
* To support pagetables in highmem, Linux introduces APIs which
* return struct page* and generally manipulate page tables when
* they are not mapped into kernel space. Our hardware page tables
* are smaller than pages. We lump hardware tabes into big, page sized
* software tables.
*
* PMD_SHIFT determines the size of the area a second-level page table entry
* can map, and our pmd_t is 16 times larger than normal. The values which
* were once defined here are now generic for 4c and srmmu, so they're
* found in pgtable.h.
*/
#define SRMMU_PTRS_PER_PMD 4
/* Definition of the values in the ET field of PTD's and PTE's */
#define SRMMU_ET_MASK 0x3
#define SRMMU_ET_INVALID 0x0
#define SRMMU_ET_PTD 0x1
#define SRMMU_ET_PTE 0x2
#define SRMMU_ET_REPTE 0x3 /* AIEEE, SuperSparc II reverse endian page! */
/* Physical page extraction from PTP's and PTE's. */
#define SRMMU_CTX_PMASK 0xfffffff0
#define SRMMU_PTD_PMASK 0xfffffff0
#define SRMMU_PTE_PMASK 0xffffff00
/* The pte non-page bits. Some notes:
* 1) cache, dirty, valid, and ref are frobbable
* for both supervisor and user pages.
* 2) exec and write will only give the desired effect
* on user pages
* 3) use priv and priv_readonly for changing the
* characteristics of supervisor ptes
*/
#define SRMMU_CACHE 0x80
#define SRMMU_DIRTY 0x40
#define SRMMU_REF 0x20
#define SRMMU_NOREAD 0x10
#define SRMMU_EXEC 0x08
#define SRMMU_WRITE 0x04
#define SRMMU_VALID 0x02 /* SRMMU_ET_PTE */
#define SRMMU_PRIV 0x1c
#define SRMMU_PRIV_RDONLY 0x18
#define SRMMU_FILE 0x40 /* Implemented in software */
#define SRMMU_PTE_FILE_SHIFT 8 /* == 32-PTE_FILE_MAX_BITS */
#define SRMMU_CHG_MASK (0xffffff00 | SRMMU_REF | SRMMU_DIRTY)
/* SRMMU swap entry encoding
*
* We use 5 bits for the type and 19 for the offset. This gives us
* 32 swapfiles of 4GB each. Encoding looks like:
*
* oooooooooooooooooootttttRRRRRRRR
* fedcba9876543210fedcba9876543210
*
* The bottom 8 bits are reserved for protection and status bits, especially
* FILE and PRESENT.
*/
#define SRMMU_SWP_TYPE_MASK 0x1f
#define SRMMU_SWP_TYPE_SHIFT SRMMU_PTE_FILE_SHIFT
#define SRMMU_SWP_OFF_MASK 0x7ffff
#define SRMMU_SWP_OFF_SHIFT (SRMMU_PTE_FILE_SHIFT + 5)
/* Some day I will implement true fine grained access bits for
* user pages because the SRMMU gives us the capabilities to
* enforce all the protection levels that vma's can have.
* XXX But for now...
*/
#define SRMMU_PAGE_NONE __pgprot(SRMMU_CACHE | \
SRMMU_PRIV | SRMMU_REF)
#define SRMMU_PAGE_SHARED __pgprot(SRMMU_VALID | SRMMU_CACHE | \
SRMMU_EXEC | SRMMU_WRITE | SRMMU_REF)
#define SRMMU_PAGE_COPY __pgprot(SRMMU_VALID | SRMMU_CACHE | \
SRMMU_EXEC | SRMMU_REF)
#define SRMMU_PAGE_RDONLY __pgprot(SRMMU_VALID | SRMMU_CACHE | \
SRMMU_EXEC | SRMMU_REF)
#define SRMMU_PAGE_KERNEL __pgprot(SRMMU_VALID | SRMMU_CACHE | SRMMU_PRIV | \
SRMMU_DIRTY | SRMMU_REF)
/* SRMMU Register addresses in ASI 0x4. These are valid for all
* current SRMMU implementations that exist.
*/
#define SRMMU_CTRL_REG 0x00000000
#define SRMMU_CTXTBL_PTR 0x00000100
#define SRMMU_CTX_REG 0x00000200
#define SRMMU_FAULT_STATUS 0x00000300
#define SRMMU_FAULT_ADDR 0x00000400
#define WINDOW_FLUSH(tmp1, tmp2) \
mov 0, tmp1; \
98: ld [%g6 + TI_UWINMASK], tmp2; \
orcc %g0, tmp2, %g0; \
add tmp1, 1, tmp1; \
bne 98b; \
save %sp, -64, %sp; \
99: subcc tmp1, 1, tmp1; \
bne 99b; \
restore %g0, %g0, %g0;
#ifndef __ASSEMBLY__
/* This makes sense. Honest it does - Anton */
/* XXX Yes but it's ugly as sin. FIXME. -KMW */
extern void *srmmu_nocache_pool;
#define __nocache_pa(VADDR) (((unsigned long)VADDR) - SRMMU_NOCACHE_VADDR + __pa((unsigned long)srmmu_nocache_pool))
#define __nocache_va(PADDR) (__va((unsigned long)PADDR) - (unsigned long)srmmu_nocache_pool + SRMMU_NOCACHE_VADDR)
#define __nocache_fix(VADDR) __va(__nocache_pa(VADDR))
/* Accessing the MMU control register. */
static __inline__ unsigned int srmmu_get_mmureg(void)
{
unsigned int retval;
__asm__ __volatile__("lda [%%g0] %1, %0\n\t":
"=r"(retval):"i"(ASI_M_MMUREGS));
return retval;
}
static __inline__ void srmmu_set_mmureg(unsigned long regval)
{
__asm__ __volatile__("sta %0, [%%g0] %1\n\t"::"r"(regval),
"i"(ASI_M_MMUREGS):"memory");
}
static __inline__ void srmmu_set_ctable_ptr(unsigned long paddr)
{
paddr = ((paddr >> 4) & SRMMU_CTX_PMASK);
__asm__ __volatile__("sta %0, [%1] %2\n\t"::"r"(paddr),
"r"(SRMMU_CTXTBL_PTR),
"i"(ASI_M_MMUREGS):"memory");
}
static __inline__ unsigned long srmmu_get_ctable_ptr(void)
{
unsigned int retval;
__asm__ __volatile__("lda [%1] %2, %0\n\t":
"=r"(retval):
"r"(SRMMU_CTXTBL_PTR), "i"(ASI_M_MMUREGS));
return (retval & SRMMU_CTX_PMASK) << 4;
}
static __inline__ void srmmu_set_context(int context)
{
__asm__ __volatile__("sta %0, [%1] %2\n\t"::"r"(context),
"r"(SRMMU_CTX_REG), "i"(ASI_M_MMUREGS):"memory");
}
static __inline__ int srmmu_get_context(void)
{
register int retval;
__asm__ __volatile__("lda [%1] %2, %0\n\t":
"=r"(retval):
"r"(SRMMU_CTX_REG), "i"(ASI_M_MMUREGS));
return retval;
}
static __inline__ unsigned int srmmu_get_fstatus(void)
{
unsigned int retval;
__asm__ __volatile__("lda [%1] %2, %0\n\t":
"=r"(retval):
"r"(SRMMU_FAULT_STATUS), "i"(ASI_M_MMUREGS));
return retval;
}
static __inline__ unsigned int srmmu_get_faddr(void)
{
unsigned int retval;
__asm__ __volatile__("lda [%1] %2, %0\n\t":
"=r"(retval):
"r"(SRMMU_FAULT_ADDR), "i"(ASI_M_MMUREGS));
return retval;
}
/* This is guaranteed on all SRMMU's. */
static __inline__ void srmmu_flush_whole_tlb(void)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(0x400), /* Flush entire TLB!! */
"i"(ASI_M_FLUSH_PROBE):"memory");
}
/* These flush types are not available on all chips... */
static __inline__ void srmmu_flush_tlb_ctx(void)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(0x300), /* Flush TLB ctx.. */
"i"(ASI_M_FLUSH_PROBE):"memory");
}
static __inline__ void srmmu_flush_tlb_region(unsigned long addr)
{
addr &= SRMMU_PGDIR_MASK;
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(addr | 0x200), /* Flush TLB region.. */
"i"(ASI_M_FLUSH_PROBE):"memory");
}
static __inline__ void srmmu_flush_tlb_segment(unsigned long addr)
{
addr &= SRMMU_REAL_PMD_MASK;
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(addr | 0x100), /* Flush TLB segment.. */
"i"(ASI_M_FLUSH_PROBE):"memory");
}
static __inline__ void srmmu_flush_tlb_page(unsigned long page)
{
page &= PAGE_MASK;
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(page), /* Flush TLB page.. */
"i"(ASI_M_FLUSH_PROBE):"memory");
}
static __inline__ unsigned long srmmu_hwprobe(unsigned long vaddr)
{
unsigned long retval;
vaddr &= PAGE_MASK;
__asm__ __volatile__("lda [%1] %2, %0\n\t":
"=r"(retval):
"r"(vaddr | 0x400), "i"(ASI_M_FLUSH_PROBE));
return retval;
}
static __inline__ int srmmu_get_pte(unsigned long addr)
{
register unsigned long entry;
__asm__ __volatile__("\n\tlda [%1] %2,%0\n\t":
"=r"(entry):
"r"((addr & 0xfffff000) | 0x400),
"i"(ASI_M_FLUSH_PROBE));
return entry;
}
extern unsigned long (*srmmu_read_physical) (unsigned long paddr);
extern void (*srmmu_write_physical) (unsigned long paddr, unsigned long word);
#endif /* !(__ASSEMBLY__) */
#endif /* !(__SPARC_SRMMU_H__) */