Jetpack/kernel/nvidia/drivers/scsi/ufs/ufs-tegra.c

1653 lines
44 KiB
C

/*
* Copyright (c) 2015-2019, NVIDIA CORPORATION. All rights reserved.
*
* Authors:
* VenkataJagadish.p <vjagadish@nvidia.com>
* Naveen Kumar Arepalli <naveenk@nvidia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/time.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <soc/tegra/chip-id.h>
#include <linux/reset.h>
#include <soc/tegra/pmc.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#endif
#include "ufshcd-pltfrm.h"
#include "ufshcd.h"
#include "unipro.h"
#include "ufs-tegra.h"
#include "ufshci.h"
#include "ufs-provision.h"
#ifdef CONFIG_DEBUG_FS
static int ufs_tegra_show_configuration(struct seq_file *s, void *data)
{
struct ufs_hba *hba = s->private;
u32 major_version;
u32 minor_version;
u32 rx_gear;
u32 tx_gear;
const char *freq_series = "";
struct ufs_pa_layer_attr *configured_params;
configured_params = &hba->pwr_info;
rx_gear = configured_params->gear_rx;
tx_gear = configured_params->gear_tx;
seq_puts(s, "UFS Configuration:\n");
if ((hba->ufs_version == UFSHCI_VERSION_10) ||
(hba->ufs_version == UFSHCI_VERSION_11)) {
major_version = hba->ufs_version >> 16;
minor_version = ((hba->ufs_version) & 0xffff);
} else {
major_version = ((hba->ufs_version) & 0xff00) >> 8;
minor_version = ((hba->ufs_version) & 0xf0) >> 4;
}
seq_puts(s, "\n");
seq_puts(s, "UFSHCI Version Information:\n");
seq_printf(s, "Major Version Number: %u\n", major_version);
seq_printf(s, "Minor Version Number: %u\n", minor_version);
seq_puts(s, "\n");
seq_puts(s, "Number of UTP Transfer Request Slots:\n");
seq_printf(s, "NUTRS: %u\n", hba->nutrs);
seq_puts(s, "\n");
seq_puts(s, "UTP Task Management Request Slots:\n");
seq_printf(s, "NUTMRS: %u\n", hba->nutmrs);
seq_puts(s, "\n");
seq_puts(s, "UTP Power Info:\n");
if (configured_params->hs_rate) {
if (configured_params->hs_rate == PA_HS_MODE_A)
freq_series = "RATE_A";
else if (configured_params->hs_rate == PA_HS_MODE_B)
freq_series = "RATE_B";
seq_printf(s,
"HS Mode RX_Gear:gear_%u TX_Gear:gear_%u %s series\n",
rx_gear, tx_gear, freq_series);
seq_printf(s,
"LANE_RX:%u LANE_TX:%u PWR_RX:%u PWR_TX:%u\n",
configured_params->lane_rx,
configured_params->lane_tx,
configured_params->pwr_rx,
configured_params->pwr_tx);
} else {
seq_printf(s,
"PWM Mode RX_Gear:gear_%u TX_Gear:gear_%u\n",
rx_gear, tx_gear);
}
return 0;
}
static int ufs_tegra_open_configuration(struct inode *inode, struct file *file)
{
return single_open(file, ufs_tegra_show_configuration, inode->i_private);
}
static const struct file_operations ufs_tegra_debugfs_ops = {
.open = ufs_tegra_open_configuration,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
void ufs_tegra_init_debugfs(struct ufs_hba *hba)
{
struct dentry *device_root;
struct ufs_tegra_host *ufs_tegra = hba->priv;
device_root = debugfs_create_dir(dev_name(hba->dev), NULL);
debugfs_create_file("configuration", S_IFREG | S_IRUGO,
device_root, hba, &ufs_tegra_debugfs_ops);
if (ufs_tegra->enable_ufs_provisioning)
debugfs_provision_init(hba, device_root);
}
#endif
static int ufs_schedule_delayed_work(struct delayed_work *work,
unsigned long delay)
{
/*
* We use the system_freezable_wq, because of two reasons.
* First, it allows several works (not the same work item) to be
* executed simultaneously. Second, the queue becomes frozen when
* userspace becomes frozen during system PM.
*/
return queue_delayed_work(system_freezable_wq, work, delay);
}
static bool ufs_tegra_get_cd(struct gpio_desc *cd_gpio_desc)
{
/* If card present then gpio value low, else high */
return (gpiod_get_value_cansleep(cd_gpio_desc) == 0);
}
static irqreturn_t ufs_cd_gpio_isr(int irq, void *dev_id)
{
struct ufs_tegra_host *ufs_tegra = dev_id;
cancel_delayed_work(&ufs_tegra->detect);
ufs_schedule_delayed_work(&ufs_tegra->detect, msecs_to_jiffies(200));
return IRQ_HANDLED;
}
void ufs_rescan(struct work_struct *work)
{
struct ufs_tegra_host *ufs_tegra =
container_of(work, struct ufs_tegra_host, detect.work);
if(ufs_tegra->hba->card_present != ufs_tegra_get_cd(ufs_tegra->cd_gpio_desc)) {
ufs_tegra->hba->card_present =
ufs_tegra_get_cd(ufs_tegra->cd_gpio_desc);
ufshcd_rescan(ufs_tegra->hba);
}
}
/**
* ufs_tegra_cfg_vendor_registers
* @hba: host controller instance
*/
static void ufs_tegra_cfg_vendor_registers(struct ufs_hba *hba)
{
ufshcd_writel(hba, UFS_VNDR_HCLKDIV_1US_TICK, REG_UFS_VNDR_HCLKDIV);
}
static int ufs_tegra_host_clk_get(struct device *dev,
const char *name, struct clk **clk_out)
{
struct clk *clk;
int err = 0;
clk = devm_clk_get(dev, name);
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
dev_err(dev, "%s: failed to get %s err %d",
__func__, name, err);
} else {
*clk_out = clk;
}
return err;
}
static int ufs_tegra_host_clk_enable(struct device *dev,
const char *name, struct clk *clk)
{
int err = 0;
err = clk_prepare_enable(clk);
if (err)
dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err);
return err;
}
/**
* ufs_tegra_mphy_receiver_calibration
* @ufs_tegra: ufs_tegra_host controller instance
*
* Implements MPhy Receiver Calibration Sequence
*
* Returns -1 if receiver calibration fails
* and returns zero on success.
*/
static int ufs_tegra_mphy_receiver_calibration(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int timeout = 0;
u32 mphy_rx_vendor2;
if (!ufs_tegra->enable_mphy_rx_calib)
return 0;
if (ufs_tegra->x2config)
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_RX_APB_VENDOR2_0_RX_CAL_EN,
MPHY_RX_APB_VENDOR2_0);
mphy_update(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_VENDOR2_0_RX_CAL_EN, MPHY_RX_APB_VENDOR2_0);
if (ufs_tegra->x2config)
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_GO_BIT, MPHY_RX_APB_VENDOR2_0);
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
MPHY_RX_APB_VENDOR2_0);
timeout = 10;
while (timeout--) {
mdelay(1);
mphy_rx_vendor2 = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_VENDOR2_0);
if (!(mphy_rx_vendor2 & MPHY_RX_APB_VENDOR2_0_RX_CAL_EN)) {
dev_info(dev, "MPhy Receiver Calibration passed\n");
break;
}
}
if (timeout < 0) {
dev_err(dev, "MPhy Receiver Calibration failed\n");
return -1;
}
return 0;
}
static void ufs_tegra_disable_mphylane_clks(struct ufs_tegra_host *host)
{
if (!host->is_lane_clks_enabled)
return;
clk_disable_unprepare(host->mphy_core_pll_fixed);
clk_disable_unprepare(host->mphy_l0_tx_symb);
clk_disable_unprepare(host->mphy_tx_1mhz_ref);
clk_disable_unprepare(host->mphy_l0_rx_ana);
clk_disable_unprepare(host->mphy_l0_rx_symb);
clk_disable_unprepare(host->mphy_l0_tx_ls_3xbit);
clk_disable_unprepare(host->mphy_l0_rx_ls_bit);
if (host->x2config)
clk_disable_unprepare(host->mphy_l1_rx_ana);
host->is_lane_clks_enabled = false;
}
static int ufs_tegra_enable_mphylane_clks(struct ufs_tegra_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
if (host->is_lane_clks_enabled)
return 0;
err = ufs_tegra_host_clk_enable(dev, "mphy_core_pll_fixed",
host->mphy_core_pll_fixed);
if (err)
goto out;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_tx_symb",
host->mphy_l0_tx_symb);
if (err)
goto disable_l0_tx_symb;
err = ufs_tegra_host_clk_enable(dev, "mphy_tx_1mhz_ref",
host->mphy_tx_1mhz_ref);
if (err)
goto disable_tx_1mhz_ref;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_rx_ana",
host->mphy_l0_rx_ana);
if (err)
goto disable_l0_rx_ana;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_rx_symb",
host->mphy_l0_rx_symb);
if (err)
goto disable_l0_rx_symb;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_tx_ls_3xbit",
host->mphy_l0_tx_ls_3xbit);
if (err)
goto disable_l0_tx_ls_3xbit;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_rx_ls_bit",
host->mphy_l0_rx_ls_bit);
if (err)
goto disable_l0_rx_ls_bit;
if (host->x2config) {
err = ufs_tegra_host_clk_enable(dev, "mphy_l1_rx_ana",
host->mphy_l1_rx_ana);
if (err)
goto disable_l1_rx_ana;
}
host->is_lane_clks_enabled = true;
goto out;
disable_l1_rx_ana:
clk_disable_unprepare(host->mphy_l0_rx_ls_bit);
disable_l0_rx_ls_bit:
clk_disable_unprepare(host->mphy_l0_tx_ls_3xbit);
disable_l0_tx_ls_3xbit:
clk_disable_unprepare(host->mphy_l0_rx_symb);
disable_l0_rx_symb:
clk_disable_unprepare(host->mphy_l0_rx_ana);
disable_l0_rx_ana:
clk_disable_unprepare(host->mphy_tx_1mhz_ref);
disable_tx_1mhz_ref:
clk_disable_unprepare(host->mphy_l0_tx_symb);
disable_l0_tx_symb:
clk_disable_unprepare(host->mphy_core_pll_fixed);
out:
return err;
}
static int ufs_tegra_init_mphy_lane_clks(struct ufs_tegra_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
err = ufs_tegra_host_clk_get(dev,
"mphy_core_pll_fixed", &host->mphy_core_pll_fixed);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev,
"mphy_l0_tx_symb", &host->mphy_l0_tx_symb);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_tx_1mhz_ref",
&host->mphy_tx_1mhz_ref);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_l0_rx_ana",
&host->mphy_l0_rx_ana);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_l0_rx_symb",
&host->mphy_l0_rx_symb);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_l0_tx_ls_3xbit",
&host->mphy_l0_tx_ls_3xbit);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_l0_rx_ls_bit",
&host->mphy_l0_rx_ls_bit);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_force_ls_mode",
&host->mphy_force_ls_mode);
if (err)
goto out;
if (host->x2config)
err = ufs_tegra_host_clk_get(dev, "mphy_l1_rx_ana",
&host->mphy_l1_rx_ana);
out:
return err;
}
static int ufs_tegra_enable_ufs_uphy_pll3(struct ufs_tegra_host *ufs_tegra,
bool is_rate_b)
{
int err = 0;
struct device *dev = ufs_tegra->hba->dev;
if (!ufs_tegra->configure_uphy_pll3)
return 0;
err = ufs_tegra_host_clk_enable(dev, "uphy_pll3",
ufs_tegra->ufs_uphy_pll3);
if (err)
return err;
if (is_rate_b) {
if (ufs_tegra->ufs_uphy_pll3)
err = clk_set_rate(ufs_tegra->ufs_uphy_pll3,
UFS_CLK_UPHY_PLL3_RATEB);
} else {
if (ufs_tegra->ufs_uphy_pll3)
err = clk_set_rate(ufs_tegra->ufs_uphy_pll3,
UFS_CLK_UPHY_PLL3_RATEA);
}
if (err)
dev_err(dev, "%s: failed to set ufs_uphy_pll3 freq err %d",
__func__, err);
return err;
}
static int ufs_tegra_init_uphy_pll3(struct ufs_tegra_host *ufs_tegra)
{
int err = 0;
struct device *dev = ufs_tegra->hba->dev;
if (!ufs_tegra->configure_uphy_pll3)
return 0;
err = ufs_tegra_host_clk_get(dev,
"uphy_pll3", &ufs_tegra->ufs_uphy_pll3);
return err;
}
static int ufs_tegra_init_ufs_clks(struct ufs_tegra_host *ufs_tegra)
{
int err = 0;
struct device *dev = ufs_tegra->hba->dev;
err = ufs_tegra_host_clk_get(dev,
"pll_p", &ufs_tegra->ufshc_parent);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev,
"ufshc", &ufs_tegra->ufshc_clk);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev,
"clk_m", &ufs_tegra->ufsdev_parent);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev,
"ufsdev_ref", &ufs_tegra->ufsdev_ref_clk);
if (err)
goto out;
out:
return err;
}
static int ufs_tegra_enable_ufs_clks(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int err = 0;
err = ufs_tegra_host_clk_enable(dev, "ufshc",
ufs_tegra->ufshc_clk);
if (err)
goto out;
err = clk_set_parent(ufs_tegra->ufshc_clk,
ufs_tegra->ufshc_parent);
if (err)
goto out;
err = clk_set_rate(ufs_tegra->ufshc_clk, UFSHC_CLK_FREQ);
if (err)
goto out;
/* clk_m is the parent for ufsdev_ref
* Frequency is 19.2 MHz.
*/
err = ufs_tegra_host_clk_enable(dev, "ufsdev_ref",
ufs_tegra->ufsdev_ref_clk);
if (err)
goto disable_ufshc;
ufs_tegra->hba->clk_gating.state = CLKS_ON;
return err;
disable_ufshc:
clk_disable_unprepare(ufs_tegra->ufshc_clk);
out:
return err;
}
static void ufs_tegra_disable_ufs_clks(struct ufs_tegra_host *ufs_tegra)
{
if (ufs_tegra->hba->clk_gating.state == CLKS_OFF)
return;
clk_disable_unprepare(ufs_tegra->ufshc_clk);
clk_disable_unprepare(ufs_tegra->ufsdev_ref_clk);
ufs_tegra->hba->clk_gating.state = CLKS_OFF;
}
static int ufs_tegra_set_ufs_mphy_clocks(struct ufs_hba *hba, bool enable)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
int ret = 0;
if (enable) {
ret = ufs_tegra_enable_ufs_clks(ufs_tegra);
if (ret) {
dev_err(hba->dev, "failed to set ufs clks, ret: %d\n",
ret);
goto out;
}
ret = ufs_tegra_enable_mphylane_clks(ufs_tegra);
if (ret) {
dev_err(hba->dev, "failed to set mphy clks, ret: %d\n",
ret);
goto out;
}
} else {
ufs_tegra_disable_mphylane_clks(ufs_tegra);
ufs_tegra_disable_ufs_clks(ufs_tegra);
}
out:
return ret;
}
static int ufs_tegra_ufs_reset_init(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int ret = 0;
ufs_tegra->ufs_rst = devm_reset_control_get(dev, "ufs-rst");
if (IS_ERR(ufs_tegra->ufs_rst)) {
ret = PTR_ERR(ufs_tegra->ufs_rst);
dev_err(dev,
"Reset control for ufs-rst not found: %d\n", ret);
}
ufs_tegra->ufs_axi_m_rst = devm_reset_control_get(dev, "ufs-axi-m-rst");
if (IS_ERR(ufs_tegra->ufs_axi_m_rst)) {
ret = PTR_ERR(ufs_tegra->ufs_axi_m_rst);
dev_err(dev,
"Reset control for ufs-axi-m-rst not found: %d\n", ret);
}
ufs_tegra->ufshc_lp_rst = devm_reset_control_get(dev, "ufshc-lp-rst");
if (IS_ERR(ufs_tegra->ufshc_lp_rst)) {
ret = PTR_ERR(ufs_tegra->ufshc_lp_rst);
dev_err(dev,
"Reset control for ufshc-lp-rst not found: %d\n", ret);
}
return ret;
}
static void ufs_tegra_ufs_deassert_reset(struct ufs_tegra_host *ufs_tegra)
{
reset_control_deassert(ufs_tegra->ufs_rst);
reset_control_deassert(ufs_tegra->ufs_axi_m_rst);
reset_control_deassert(ufs_tegra->ufshc_lp_rst);
}
static int ufs_tegra_mphy_reset_init(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int ret = 0;
ufs_tegra->mphy_l0_rx_rst =
devm_reset_control_get(dev, "mphy-l0-rx-rst");
if (IS_ERR(ufs_tegra->mphy_l0_rx_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_l0_rx_rst);
dev_err(dev,
"Reset control for mphy-l0-rx-rst not found: %d\n",
ret);
}
ufs_tegra->mphy_l0_tx_rst =
devm_reset_control_get(dev, "mphy-l0-tx-rst");
if (IS_ERR(ufs_tegra->mphy_l0_tx_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_l0_tx_rst);
dev_err(dev,
"Reset control for mphy-l0-tx-rst not found: %d\n",
ret);
}
ufs_tegra->mphy_clk_ctl_rst =
devm_reset_control_get(dev, "mphy-clk-ctl-rst");
if (IS_ERR(ufs_tegra->mphy_clk_ctl_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_clk_ctl_rst);
dev_err(dev,
"Reset control for mphy-clk-ctl-rst not found: %d\n",
ret);
}
if (ufs_tegra->x2config) {
ufs_tegra->mphy_l1_rx_rst =
devm_reset_control_get(dev, "mphy-l1-rx-rst");
if (IS_ERR(ufs_tegra->mphy_l1_rx_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_l1_rx_rst);
dev_err(dev,
"Reset control for mphy-l1-rx-rst not found: %d\n",
ret);
}
ufs_tegra->mphy_l1_tx_rst =
devm_reset_control_get(dev, "mphy-l1-tx-rst");
if (IS_ERR(ufs_tegra->mphy_l1_tx_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_l1_tx_rst);
dev_err(dev,
"Reset control for mphy_l1_tx_rst not found: %d\n",
ret);
}
}
return ret;
}
static void ufs_tegra_mphy_assert_reset(struct ufs_tegra_host *ufs_tegra)
{
reset_control_assert(ufs_tegra->mphy_l0_rx_rst);
reset_control_assert(ufs_tegra->mphy_l0_tx_rst);
reset_control_assert(ufs_tegra->mphy_clk_ctl_rst);
if (ufs_tegra->x2config) {
reset_control_assert(ufs_tegra->mphy_l1_rx_rst);
reset_control_assert(ufs_tegra->mphy_l1_tx_rst);
}
}
static void ufs_tegra_mphy_deassert_reset(struct ufs_tegra_host *ufs_tegra)
{
reset_control_deassert(ufs_tegra->mphy_l0_rx_rst);
reset_control_deassert(ufs_tegra->mphy_l0_tx_rst);
reset_control_deassert(ufs_tegra->mphy_clk_ctl_rst);
if (ufs_tegra->x2config) {
reset_control_deassert(ufs_tegra->mphy_l1_rx_rst);
reset_control_deassert(ufs_tegra->mphy_l1_tx_rst);
}
}
void ufs_tegra_disable_mphy_slcg(struct ufs_tegra_host *ufs_tegra)
{
u32 val = 0;
val = (MPHY_TX_CLK_EN_SYMB | MPHY_TX_CLK_EN_SLOW |
MPHY_TX_CLK_EN_FIXED | MPHY_TX_CLK_EN_3X);
mphy_writel(ufs_tegra->mphy_l0_base, val, MPHY_TX_APB_TX_CG_OVR0_0);
mphy_writel(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
MPHY_TX_APB_TX_VENDOR0_0);
if (ufs_tegra->x2config) {
mphy_writel(ufs_tegra->mphy_l1_base, val,
MPHY_TX_APB_TX_CG_OVR0_0);
mphy_writel(ufs_tegra->mphy_l1_base, MPHY_GO_BIT,
MPHY_TX_APB_TX_VENDOR0_0);
}
}
static void ufs_tegra_mphy_rx_sync_capabity(struct ufs_tegra_host *ufs_tegra)
{
u32 val_88_8b = 0;
u32 val_94_97 = 0;
u32 val_8c_8f = 0;
u32 val_98_9b = 0;
/* MPHY RX sync lengths capability changes */
/*Update HS_G1 Sync Length MPHY_RX_APB_CAPABILITY_88_8B_0*/
val_88_8b = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_CAPABILITY_88_8B_0);
val_88_8b &= ~RX_HS_G1_SYNC_LENGTH_CAPABILITY(~0);
val_88_8b |= RX_HS_G1_SYNC_LENGTH_CAPABILITY(RX_HS_SYNC_LENGTH);
/*Update HS_G2&G3 Sync Length MPHY_RX_APB_CAPABILITY_94_97_0*/
val_94_97 = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_CAPABILITY_94_97_0);
val_94_97 &= ~RX_HS_G2_SYNC_LENGTH_CAPABILITY(~0);
val_94_97 |= RX_HS_G2_SYNC_LENGTH_CAPABILITY(RX_HS_SYNC_LENGTH);
val_94_97 &= ~RX_HS_G3_SYNC_LENGTH_CAPABILITY(~0);
val_94_97 |= RX_HS_G3_SYNC_LENGTH_CAPABILITY(RX_HS_SYNC_LENGTH);
/* MPHY RX TActivate_capability changes */
/* Update MPHY_RX_APB_CAPABILITY_8C_8F_0 */
val_8c_8f = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_CAPABILITY_8C_8F_0);
val_8c_8f &= ~RX_MIN_ACTIVATETIME_CAP(~0);
val_8c_8f |= RX_MIN_ACTIVATETIME_CAP(RX_MIN_ACTIVATETIME);
/* Update MPHY_RX_APB_CAPABILITY_98_9B_0 */
val_98_9b = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_CAPABILITY_98_9B_0);
val_98_9b &= ~RX_ADVANCED_FINE_GRANULARITY(~0);
val_98_9b &= ~RX_ADVANCED_GRANULARITY(~0);
val_98_9b &= ~RX_ADVANCED_MIN_ACTIVATETIME(~0);
val_98_9b |= RX_ADVANCED_MIN_ACTIVATETIME(RX_ADVANCED_MIN_AT);
mphy_writel(ufs_tegra->mphy_l0_base, val_88_8b,
MPHY_RX_APB_CAPABILITY_88_8B_0);
mphy_writel(ufs_tegra->mphy_l0_base, val_94_97,
MPHY_RX_APB_CAPABILITY_94_97_0);
mphy_writel(ufs_tegra->mphy_l0_base, val_8c_8f,
MPHY_RX_APB_CAPABILITY_8C_8F_0);
mphy_writel(ufs_tegra->mphy_l0_base, val_98_9b,
MPHY_RX_APB_CAPABILITY_98_9B_0);
mphy_update(ufs_tegra->mphy_l0_base,
MPHY_GO_BIT, MPHY_RX_APB_VENDOR2_0);
if (ufs_tegra->x2config) {
mphy_writel(ufs_tegra->mphy_l1_base, val_88_8b,
MPHY_RX_APB_CAPABILITY_88_8B_0);
mphy_writel(ufs_tegra->mphy_l1_base, val_94_97,
MPHY_RX_APB_CAPABILITY_94_97_0);
mphy_writel(ufs_tegra->mphy_l1_base, val_8c_8f,
MPHY_RX_APB_CAPABILITY_8C_8F_0);
mphy_writel(ufs_tegra->mphy_l1_base, val_98_9b,
MPHY_RX_APB_CAPABILITY_98_9B_0);
/* set gobit */
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_GO_BIT, MPHY_RX_APB_VENDOR2_0);
}
}
void ufs_tegra_mphy_tx_advgran(struct ufs_tegra_host *ufs_tegra)
{
u32 val = 0;
val = (TX_ADVANCED_GRANULARITY | TX_ADVANCED_GRANULARITY_SETTINGS);
mphy_update(ufs_tegra->mphy_l0_base, val,
MPHY_TX_APB_TX_ATTRIBUTE_34_37_0);
mphy_writel(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
MPHY_TX_APB_TX_VENDOR0_0);
if (ufs_tegra->x2config) {
mphy_update(ufs_tegra->mphy_l1_base, val,
MPHY_TX_APB_TX_ATTRIBUTE_34_37_0);
mphy_writel(ufs_tegra->mphy_l1_base, MPHY_GO_BIT,
MPHY_TX_APB_TX_VENDOR0_0);
}
}
void ufs_tegra_mphy_rx_advgran(struct ufs_tegra_host *ufs_tegra)
{
u32 val = 0;
val = mphy_readl(ufs_tegra->mphy_l0_base, MPHY_RX_APB_CAPABILITY_98_9B_0);
val &= ~RX_ADVANCED_GRANULARITY(~0);
val |= RX_ADVANCED_GRANULARITY(0x1);
val &= ~RX_ADVANCED_MIN_ACTIVATETIME(~0);
val |= RX_ADVANCED_MIN_ACTIVATETIME(0x8);
mphy_writel(ufs_tegra->mphy_l0_base, val,
MPHY_RX_APB_CAPABILITY_98_9B_0);
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
MPHY_RX_APB_VENDOR2_0);
if (ufs_tegra->x2config) {
val = mphy_readl(ufs_tegra->mphy_l1_base,
MPHY_RX_APB_CAPABILITY_98_9B_0);
val &= ~RX_ADVANCED_GRANULARITY(~0);
val |= RX_ADVANCED_GRANULARITY(0x1);
val &= ~RX_ADVANCED_MIN_ACTIVATETIME(~0);
val |= RX_ADVANCED_MIN_ACTIVATETIME(0x8);
mphy_writel(ufs_tegra->mphy_l1_base, val,
MPHY_RX_APB_CAPABILITY_98_9B_0);
mphy_update(ufs_tegra->mphy_l1_base, MPHY_GO_BIT,
MPHY_RX_APB_VENDOR2_0);
}
}
void ufs_tegra_ufs_aux_ref_clk_enable(struct ufs_tegra_host *ufs_tegra)
{
ufs_aux_update(ufs_tegra->ufs_aux_base, UFSHC_DEV_CLK_EN,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
}
void ufs_tegra_ufs_aux_ref_clk_disable(struct ufs_tegra_host *ufs_tegra)
{
ufs_aux_clear_bits(ufs_tegra->ufs_aux_base, UFSHC_DEV_CLK_EN,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
}
void ufs_tegra_aux_reset_enable(struct ufs_tegra_host *ufs_tegra)
{
ufs_aux_clear_bits(ufs_tegra->ufs_aux_base,
UFSHC_DEV_RESET,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
}
void ufs_tegra_ufs_aux_prog(struct ufs_tegra_host *ufs_tegra)
{
/*
* Release the reset to UFS device on pin ufs_rst_n
*/
if (ufs_tegra->ufshc_state != UFSHC_SUSPEND)
ufs_aux_update(ufs_tegra->ufs_aux_base, UFSHC_DEV_RESET,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
if (ufs_tegra->ufshc_state == UFSHC_SUSPEND) {
/*
* Disable reference clock to Device
*/
ufs_tegra_ufs_aux_ref_clk_disable(ufs_tegra);
} else {
/*
* Enable reference clock to Device
*/
ufs_tegra_ufs_aux_ref_clk_enable(ufs_tegra);
}
}
static void ufs_tegra_context_save(struct ufs_tegra_host *ufs_tegra)
{
u32 reg_len = 0;
u32 len = 0;
u32 *mphy_context_save = ufs_tegra->mphy_context;
reg_len = ARRAY_SIZE(mphy_rx_apb);
/*
* Save mphy_rx_apb lane0 and lane1 context
*/
ufs_save_regs(ufs_tegra->mphy_l0_base, mphy_context_save,
mphy_rx_apb, reg_len);
len += reg_len;
if (ufs_tegra->x2config) {
ufs_save_regs(ufs_tegra->mphy_l1_base, mphy_context_save + len,
mphy_rx_apb, reg_len);
len += reg_len;
}
reg_len = ARRAY_SIZE(mphy_tx_apb);
/*
* Save mphy_tx_apb lane0 and lane1 context
*/
ufs_save_regs(ufs_tegra->mphy_l0_base, mphy_context_save + len,
mphy_tx_apb, reg_len);
len += reg_len;
if (ufs_tegra->x2config)
ufs_save_regs(ufs_tegra->mphy_l1_base,
mphy_context_save + len, mphy_tx_apb, reg_len);
}
static void ufs_tegra_context_restore(struct ufs_tegra_host *ufs_tegra)
{
u32 reg_len = 0;
u32 len = 0;
u32 *mphy_context_restore = ufs_tegra->mphy_context;
reg_len = ARRAY_SIZE(mphy_rx_apb);
/*
* Restore mphy_rx_apb lane0 and lane1 context
*/
ufs_restore_regs(ufs_tegra->mphy_l0_base, mphy_context_restore,
mphy_rx_apb, reg_len);
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
MPHY_RX_APB_VENDOR2_0);
len += reg_len;
if (ufs_tegra->x2config) {
ufs_restore_regs(ufs_tegra->mphy_l1_base,
mphy_context_restore + len, mphy_rx_apb, reg_len);
mphy_update(ufs_tegra->mphy_l1_base, MPHY_GO_BIT,
MPHY_RX_APB_VENDOR2_0);
len += reg_len;
}
reg_len = ARRAY_SIZE(mphy_tx_apb);
/*
* Restore mphy_tx_apb lane0 and lane1 context
*/
ufs_restore_regs(ufs_tegra->mphy_l0_base, mphy_context_restore + len,
mphy_tx_apb, reg_len);
mphy_writel(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
MPHY_TX_APB_TX_VENDOR0_0);
len += reg_len;
if (ufs_tegra->x2config) {
ufs_restore_regs(ufs_tegra->mphy_l1_base,
mphy_context_restore + len, mphy_tx_apb, reg_len);
mphy_writel(ufs_tegra->mphy_l1_base, MPHY_GO_BIT,
MPHY_TX_APB_TX_VENDOR0_0);
}
}
static int ufs_tegra_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
struct device *dev = hba->dev;
u32 val;
int ret = 0;
int timeout = 500;
bool is_ufs_lp_pwr_gated = false;
if(!hba->card_present)
return 0;
if (pm_op != UFS_SYSTEM_PM)
return 0;
ufs_tegra->ufshc_state = UFSHC_SUSPEND;
/*
* Enable DPD for UFS
*/
if (ufs_tegra->ufs_pinctrl && !IS_ERR_OR_NULL(ufs_tegra->dpd_enable)) {
ret = pinctrl_select_state(ufs_tegra->ufs_pinctrl,
ufs_tegra->dpd_enable);
if (ret)
dev_err(dev, "pinctrl power down fail %d\n", ret);
}
do {
udelay(100);
val = ufs_aux_readl(ufs_tegra->ufs_aux_base,
UFSHC_AUX_UFSHC_STATUS_0);
if (val & UFSHC_HIBERNATE_STATUS) {
is_ufs_lp_pwr_gated = true;
break;
}
timeout--;
} while (timeout > 0);
if (timeout <= 0) {
dev_err(dev, "UFSHC_AUX_UFSHC_STATUS_0 = %x\n", val);
return -ETIMEDOUT;
}
if (is_ufs_lp_pwr_gated) {
/*
* Save all armphy_rx_apb and armphy_tx_apb registers
*/
ufs_tegra_context_save(ufs_tegra);
reset_control_assert(ufs_tegra->ufshc_lp_rst);
}
/* Enable wake irq at end of suspend */
if (device_may_wakeup(dev)) {
ret = enable_irq_wake(ufs_tegra->cd_irq);
if (ret) {
dev_err(dev, "Failed to enable wake irq %u, ret: %d\n",
ufs_tegra->cd_irq, ret);
ufs_tegra->wake_enable_failed = true;
} else {
ufs_tegra->wake_enable_failed = false;
}
}
/*
* Disable ufs, mphy tx/rx lane clocks if they are on
* and assert the reset
*/
ufs_tegra_disable_mphylane_clks(ufs_tegra);
ufs_tegra_mphy_assert_reset(ufs_tegra);
ufs_tegra_disable_ufs_clks(ufs_tegra);
reset_control_assert(ufs_tegra->ufs_axi_m_rst);
return ret;
}
static int ufs_tegra_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
struct device *dev = hba->dev;
int ret = 0;
if(!hba->card_present)
return 0;
if (pm_op != UFS_SYSTEM_PM)
return 0;
if (device_may_wakeup(dev) && !ufs_tegra->wake_enable_failed) {
ret = disable_irq_wake(ufs_tegra->cd_irq);
if (ret)
dev_err(dev, "Failed to disable wakeirq %u,err %d\n",
ufs_tegra->cd_irq, ret);
}
ufs_tegra->ufshc_state = UFSHC_RESUME;
ret = ufs_tegra_enable_ufs_clks(ufs_tegra);
if (ret)
return ret;
ret = ufs_tegra_enable_mphylane_clks(ufs_tegra);
if (ret)
goto out_disable_ufs_clks;
ufs_tegra_mphy_deassert_reset(ufs_tegra);
ufs_tegra_ufs_deassert_reset(ufs_tegra);
ufs_tegra_ufs_aux_prog(ufs_tegra);
if (ufs_tegra->ufs_pinctrl &&
!IS_ERR_OR_NULL(ufs_tegra->dpd_disable)) {
ret = pinctrl_select_state(ufs_tegra->ufs_pinctrl,
ufs_tegra->dpd_disable);
if (ret) {
dev_err(dev, "pinctrl power up fail %d\n", ret);
goto out_disable_mphylane_clks;
}
}
ufs_tegra_context_restore(ufs_tegra);
ufs_tegra_cfg_vendor_registers(hba);
ret = ufs_tegra_mphy_receiver_calibration(ufs_tegra);
if (ret < 0)
goto out_disable_mphylane_clks;
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return ret;
out_disable_mphylane_clks:
ufs_tegra_disable_mphylane_clks(ufs_tegra);
out_disable_ufs_clks:
ufs_tegra_disable_ufs_clks(ufs_tegra);
return ret;
}
static void ufs_tegra_hibern8_entry_notify(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
if (!(ufs_tegra->nvquirks & NVQUIRK_BROKEN_HIBERN8_ENTRY))
return;
ufs_tegra_context_save(ufs_tegra);
reset_control_assert(ufs_tegra->mphy_l0_rx_rst);
if (ufs_tegra->x2config)
reset_control_assert(ufs_tegra->mphy_l1_rx_rst);
udelay(50);
reset_control_deassert(ufs_tegra->mphy_l0_rx_rst);
if (ufs_tegra->x2config)
reset_control_deassert(ufs_tegra->mphy_l1_rx_rst);
ufs_tegra_context_restore(ufs_tegra);
}
static void ufs_tegra_print_power_mode_config(struct ufs_hba *hba,
struct ufs_pa_layer_attr *configured_params)
{
u32 rx_gear;
u32 tx_gear;
const char *freq_series = "";
rx_gear = configured_params->gear_rx;
tx_gear = configured_params->gear_tx;
if (configured_params->hs_rate) {
if (configured_params->hs_rate == PA_HS_MODE_A)
freq_series = "RATE_A";
else if (configured_params->hs_rate == PA_HS_MODE_B)
freq_series = "RATE_B";
dev_info(hba->dev,
"HS Mode RX_Gear:gear_%u TX_Gear:gear_%u %s series\n",
rx_gear, tx_gear, freq_series);
} else {
dev_info(hba->dev,
"PWM Mode RX_Gear:gear_%u TX_Gear:gear_%u\n",
rx_gear, tx_gear);
}
}
static void ufs_tegra_scramble_enable(struct ufs_hba *hba)
{
u32 pa_val;
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PEERSCRAMBLING), &pa_val);
if (pa_val & SCREN) {
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_SCRAMBLING), &pa_val);
pa_val |= SCREN;
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SCRAMBLING), pa_val);
}
}
static int ufs_tegra_pwr_change_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
u32 vs_save_config;
int ret = 0;
u32 pa_reg_check;
if (!dev_req_params) {
pr_err("%s: incoming dev_req_params is NULL\n", __func__);
ret = -EINVAL;
goto out;
}
switch (status) {
case PRE_CHANGE:
/* Update VS_DebugSaveConfigTime Tref */
ufshcd_dme_get(hba, UIC_ARG_MIB(VS_DEBUGSAVECONFIGTIME),
&vs_save_config);
/* Update VS_DebugSaveConfigTime st_sct */
vs_save_config &= ~SET_ST_SCT(~0);
vs_save_config |= SET_ST_SCT(VS_DEBUGSAVECONFIGTIME_ST_SCT);
/* Update VS_DebugSaveConfigTime Tref */
vs_save_config &= ~SET_TREF(~0);
vs_save_config |= SET_TREF(VS_DEBUGSAVECONFIGTIME_TREF);
ufshcd_dme_set(hba, UIC_ARG_MIB(VS_DEBUGSAVECONFIGTIME),
vs_save_config);
memcpy(dev_req_params, dev_max_params,
sizeof(struct ufs_pa_layer_attr));
if (hba->init_prefetch_data.ref_clk_freq)
ufs_tegra->enable_hs_mode = false;
if ((ufs_tegra->enable_hs_mode) && (dev_max_params->hs_rate)) {
if (ufs_tegra->max_hs_gear) {
if (dev_max_params->gear_rx >
ufs_tegra->max_hs_gear)
dev_req_params->gear_rx =
ufs_tegra->max_hs_gear;
if (dev_max_params->gear_tx >
ufs_tegra->max_hs_gear)
dev_req_params->gear_tx =
ufs_tegra->max_hs_gear;
} else {
dev_req_params->gear_rx = UFS_HS_G1;
dev_req_params->gear_tx = UFS_HS_G1;
}
if (ufs_tegra->mask_fast_auto_mode) {
dev_req_params->pwr_rx = FAST_MODE;
dev_req_params->pwr_tx = FAST_MODE;
}
if (ufs_tegra->mask_hs_mode_b) {
dev_req_params->hs_rate = PA_HS_MODE_A;
ufs_tegra_enable_ufs_uphy_pll3(ufs_tegra,
false);
} else {
ufs_tegra_enable_ufs_uphy_pll3(ufs_tegra, true);
}
if (ufs_tegra->enable_scramble)
ufs_tegra_scramble_enable(hba);
} else {
if (ufs_tegra->max_pwm_gear) {
ufshcd_dme_get(hba,
UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&dev_req_params->gear_rx);
ufshcd_dme_peer_get(hba,
UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&dev_req_params->gear_tx);
if (dev_req_params->gear_rx >
ufs_tegra->max_pwm_gear)
dev_req_params->gear_rx =
ufs_tegra->max_pwm_gear;
if (dev_req_params->gear_tx >
ufs_tegra->max_pwm_gear)
dev_req_params->gear_tx =
ufs_tegra->max_pwm_gear;
} else {
dev_req_params->gear_rx = UFS_PWM_G1;
dev_req_params->gear_tx = UFS_PWM_G1;
}
dev_req_params->pwr_rx = SLOWAUTO_MODE;
dev_req_params->pwr_tx = SLOWAUTO_MODE;
dev_req_params->hs_rate = 0;
}
memcpy(&hba->max_pwr_info.info, dev_req_params,
sizeof(struct ufs_pa_layer_attr));
break;
case POST_CHANGE:
ufs_tegra_print_power_mode_config(hba, dev_req_params);
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_SCRAMBLING), &pa_reg_check);
if (pa_reg_check & SCREN)
dev_info(hba->dev, "ufs scrambling feature enabled\n");
break;
default:
break;
}
out:
return ret;
}
static void ufs_tegra_hce_disable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
switch (status) {
case PRE_CHANGE:
ufs_aux_update(ufs_tegra->ufs_aux_base,
UFSHC_CG_SYS_CLK_OVR_ON,
UFSHC_AUX_UFSHC_SW_EN_CLK_SLCG_0);
break;
default:
break;
}
}
static int ufs_tegra_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
struct device *dev = ufs_tegra->hba->dev;
int err = 0;
switch (status) {
case PRE_CHANGE:
err = ufs_tegra_host_clk_enable(dev,
"mphy_force_ls_mode",
ufs_tegra->mphy_force_ls_mode);
if (err)
return err;
udelay(500);
ufs_aux_clear_bits(ufs_tegra->ufs_aux_base,
UFSHC_DEV_RESET,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
break;
case POST_CHANGE:
ufs_aux_clear_bits(ufs_tegra->ufs_aux_base,
UFSHC_CG_SYS_CLK_OVR_ON,
UFSHC_AUX_UFSHC_SW_EN_CLK_SLCG_0);
ufs_tegra_ufs_aux_prog(ufs_tegra);
ufs_tegra_cfg_vendor_registers(hba);
clk_disable_unprepare(ufs_tegra->mphy_force_ls_mode);
break;
default:
break;
}
return err;
}
static void ufs_tegra_unipro_post_linkup(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
/* set cport connection status = 1 */
ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), 0x1);
/* MPHY TX sync length changes to MAX */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TxHsG1SyncLength), 0x4f);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TxHsG2SyncLength), 0x4f);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TxHsG3SyncLength), 0x4f);
/* Local Timer Value Changes */
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_FC0PROTECTIONTIMEOUTVAL), 0x1fff);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_TC0REPLAYTIMEOUTVAL), 0xffff);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_AFC0REQTIMEOUTVAL), 0x7fff);
/* PEER TIMER values changes - PA_PWRModeUserData */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 0x1fff);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 0xffff);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 0x7fff);
/* After link start configuration request from Host controller,
* burst closure delay needs to be configured.
*/
ufshcd_dme_set(hba, UIC_ARG_MIB(VS_TXBURSTCLOSUREDELAY),
ufs_tegra->vs_burst);
}
static void ufs_tegra_unipro_pre_linkup(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
/* Unipro LCC disable */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_Local_TX_LCC_Enable), 0x0);
/* Before link start configuration request from Host controller,
* burst closure delay needs to be configured to 0[7:0]
*/
ufshcd_dme_get(hba, UIC_ARG_MIB(VS_TXBURSTCLOSUREDELAY),
&ufs_tegra->vs_burst);
ufshcd_dme_set(hba, UIC_ARG_MIB(VS_TXBURSTCLOSUREDELAY), 0x0);
}
static int ufs_tegra_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
int err = 0;
switch (status) {
case PRE_CHANGE:
ufs_tegra_mphy_rx_sync_capabity(ufs_tegra);
ufs_tegra_unipro_pre_linkup(hba);
break;
case POST_CHANGE:
/*POST_CHANGE case is called on success of link start-up*/
dev_info(hba->dev, "UFS card detected - dme-link-startup Successful\n");
ufs_tegra_unipro_post_linkup(hba);
err = ufs_tegra_mphy_receiver_calibration(ufs_tegra);
break;
default:
break;
}
return err;
}
static int ufs_tegra_context_save_init(struct ufs_tegra_host *ufs_tegra)
{
u32 context_save_size = 0;
struct device *dev = ufs_tegra->hba->dev;
int err = 0;
/**
* Allocate memory for 2-mphy lanes (lane 0 and lane 1)rx and
* tx registers
*/
context_save_size = 2 * (ARRAY_SIZE(mphy_rx_apb) +
ARRAY_SIZE(mphy_tx_apb));
context_save_size *= sizeof(u32);
ufs_tegra->mphy_context = devm_kzalloc(dev, context_save_size,
GFP_KERNEL);
if (!ufs_tegra->mphy_context) {
err = -ENOMEM;
dev_err(dev, "no memory for tegra ufs mphy_context\n");
}
return err;
}
static void ufs_tegra_config_soc_data(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
struct device_node *np = dev->of_node;
ufs_tegra->enable_mphy_rx_calib =
of_property_read_bool(np, "nvidia,enable-rx-calib");
if (of_property_read_bool(np, "nvidia,enable-hibern8-war"))
ufs_tegra->nvquirks |= NVQUIRK_BROKEN_HIBERN8_ENTRY;
ufs_tegra->x2config =
of_property_read_bool(np, "nvidia,enable-x2-config");
ufs_tegra->enable_hs_mode =
of_property_read_bool(np, "nvidia,enable-hs-mode");
ufs_tegra->mask_fast_auto_mode =
of_property_read_bool(np, "nvidia,mask-fast-auto-mode");
ufs_tegra->mask_hs_mode_b =
of_property_read_bool(np, "nvidia,mask-hs-mode-b");
ufs_tegra->enable_ufs_provisioning =
of_property_read_bool(np, "nvidia,enable-ufs-provisioning");
ufs_tegra->configure_uphy_pll3 =
of_property_read_bool(np, "nvidia,configure-uphy-pll3");
of_property_read_u32(np, "nvidia,max-hs-gear", &ufs_tegra->max_hs_gear);
of_property_read_u32(np, "nvidia,max-pwm-gear",
&ufs_tegra->max_pwm_gear);
if(of_property_read_bool(np, "nvidia,enable-wlu-scsi-device-add"))
ufs_tegra->hba->quirks |= UFSHCD_QUIRK_ENABLE_WLUNS;
ufs_tegra->cd_gpio = of_get_named_gpio(np, "nvidia,cd-gpios", 0);
ufs_tegra->cd_wakeup_capable =
of_property_read_bool(np, "nvidia,cd-wakeup-capable");
ufs_tegra->enable_scramble =
of_property_read_bool(np, "nvidia,enable-scramble");
}
/**
* ufs_tegra_init - bind phy with controller
* @hba: host controller instance
*
* Binds PHY with controller and powers up UPHY enabling clocks
* and regulators.
*
* Returns -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_tegra_init(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra;
struct device *dev = hba->dev;
int err = 0;
ufs_tegra = devm_kzalloc(dev, sizeof(*ufs_tegra), GFP_KERNEL);
if (!ufs_tegra) {
err = -ENOMEM;
dev_err(dev, "no memory for tegra ufs host\n");
goto out;
}
ufs_tegra->ufshc_state = UFSHC_INIT;
ufs_tegra->hba = hba;
hba->priv = (void *)ufs_tegra;
ufs_tegra_config_soc_data(ufs_tegra);
hba->spm_lvl = UFS_PM_LVL_3;
hba->rpm_lvl = UFS_PM_LVL_1;
hba->caps |= UFSHCD_CAP_INTR_AGGR;
ufs_tegra->ufs_pinctrl = devm_pinctrl_get(dev);
if (IS_ERR_OR_NULL(ufs_tegra->ufs_pinctrl)) {
err = PTR_ERR(ufs_tegra->ufs_pinctrl);
ufs_tegra->ufs_pinctrl = NULL;
dev_err(dev, "pad control get failed, error:%d\n", err);
}
ufs_tegra->dpd_enable = pinctrl_lookup_state(ufs_tegra->ufs_pinctrl,
"ufs_dpd_enable");
if (IS_ERR_OR_NULL(ufs_tegra->dpd_enable))
dev_err(dev, "Missing dpd_enable state, err: %ld\n",
PTR_ERR(ufs_tegra->dpd_enable));
ufs_tegra->dpd_disable = pinctrl_lookup_state(ufs_tegra->ufs_pinctrl,
"ufs_dpd_disable");
if (IS_ERR_OR_NULL(ufs_tegra->dpd_disable))
dev_err(dev, "Missing dpd_disable state, err: %ld\n",
PTR_ERR(ufs_tegra->dpd_disable));
if (gpio_is_valid(ufs_tegra->cd_gpio) &&
ufs_tegra->cd_wakeup_capable) {
ufs_tegra->cd_gpio_desc = gpio_to_desc(ufs_tegra->cd_gpio);
hba->card_present = ufs_tegra_get_cd(ufs_tegra->cd_gpio_desc);
ufs_tegra->cd_irq = gpio_to_irq(ufs_tegra->cd_gpio);
if (ufs_tegra->cd_irq <= 0) {
dev_err(dev, "failed to get gpio irq %d, hence wakeup"
" with UFS can't be supported\n",
ufs_tegra->cd_irq);
ufs_tegra->cd_irq = 0;
} else {
device_init_wakeup(dev, 1);
dev_info(dev, "wakeup init done, cdirq %d\n",
ufs_tegra->cd_irq);
err = devm_request_irq(dev, ufs_tegra->cd_irq,
ufs_cd_gpio_isr, IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
"ufs_cd_gpio", ufs_tegra);
if (err)
dev_err(dev, "request irq failed ret: %d,"
"wakeup with UFS can't be supported\n",
err);
}
INIT_DELAYED_WORK(&ufs_tegra->detect, ufs_rescan);
} else {
/*
* If card detect gpio is not specified then assume
* UFS device is non-removable and it is always present
*/
hba->card_present = 1;
}
ufs_tegra->ufs_aux_base = devm_ioremap(dev,
NV_ADDRESS_MAP_UFSHC_AUX_BASE, UFS_AUX_ADDR_RANGE);
if (!ufs_tegra->ufs_aux_base) {
err = -ENOMEM;
dev_err(dev, "ufs_aux_base ioremap failed\n");
goto out;
}
if (tegra_platform_is_silicon()) {
ufs_tegra->mphy_l0_base = devm_ioremap(dev,
NV_ADDRESS_MAP_MPHY_L0_BASE, MPHY_ADDR_RANGE);
if (!ufs_tegra->ufs_aux_base) {
err = -ENOMEM;
dev_err(dev, "mphy_l0_base ioremap failed\n");
goto out;
}
ufs_tegra->mphy_l1_base = devm_ioremap(dev,
NV_ADDRESS_MAP_MPHY_L1_BASE, MPHY_ADDR_RANGE);
if (!ufs_tegra->ufs_aux_base) {
err = -ENOMEM;
dev_err(dev, "mphy_l1_base ioremap failed\n");
goto out;
}
err = ufs_tegra_context_save_init(ufs_tegra);
if (err)
goto out;
}
if (tegra_platform_is_silicon()) {
err = ufs_tegra_init_ufs_clks(ufs_tegra);
if (err)
goto out_host_free;
err = ufs_tegra_init_mphy_lane_clks(ufs_tegra);
if (err)
goto out_host_free;
err = ufs_tegra_init_uphy_pll3(ufs_tegra);
if (err)
goto out_host_free;
err = ufs_tegra_host_clk_enable(dev, "mphy_force_ls_mode",
ufs_tegra->mphy_force_ls_mode);
if (err)
goto out_host_free;
usleep_range(1000, 2000);
clk_disable_unprepare(ufs_tegra->mphy_force_ls_mode);
usleep_range(1000, 2000);
err = ufs_tegra_enable_ufs_clks(ufs_tegra);
if (err)
goto out_host_free;
err = ufs_tegra_enable_mphylane_clks(ufs_tegra);
if (err)
goto out_disable_ufs_clks;
err = ufs_tegra_mphy_reset_init(ufs_tegra);
if (err)
goto out_disable_mphylane_clks;
ufs_tegra_mphy_deassert_reset(ufs_tegra);
err = ufs_tegra_ufs_reset_init(ufs_tegra);
if (err)
goto out_disable_mphylane_clks;
ufs_tegra_ufs_deassert_reset(ufs_tegra);
ufs_tegra_mphy_rx_advgran(ufs_tegra);
ufs_tegra_ufs_aux_ref_clk_disable(ufs_tegra);
ufs_tegra_aux_reset_enable(ufs_tegra);
ufs_tegra_ufs_aux_prog(ufs_tegra);
ufs_tegra_cfg_vendor_registers(hba);
#ifdef CONFIG_DEBUG_FS
ufs_tegra_init_debugfs(hba);
#endif
}
return err;
out_disable_mphylane_clks:
if (tegra_platform_is_silicon())
ufs_tegra_disable_mphylane_clks(ufs_tegra);
out_disable_ufs_clks:
ufs_tegra_disable_ufs_clks(ufs_tegra);
out_host_free:
if (tegra_platform_is_silicon())
hba->priv = NULL;
out:
return err;
}
static void ufs_tegra_exit(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
if (tegra_platform_is_silicon())
ufs_tegra_disable_mphylane_clks(ufs_tegra);
#ifdef CONFIG_DEBUG_FS
if (ufs_tegra->enable_ufs_provisioning)
debugfs_provision_exit(hba);
#endif
}
/**
* struct ufs_hba_tegra_vops - UFS TEGRA specific variant operations
*
* The variant operations configure the necessary controller and PHY
* handshake during initialization.
*/
struct ufs_hba_variant_ops ufs_hba_tegra_vops = {
.name = "ufs-tegra",
.init = ufs_tegra_init,
.exit = ufs_tegra_exit,
.suspend = ufs_tegra_suspend,
.resume = ufs_tegra_resume,
.hce_disable_notify = ufs_tegra_hce_disable_notify,
.hce_enable_notify = ufs_tegra_hce_enable_notify,
.link_startup_notify = ufs_tegra_link_startup_notify,
.pwr_change_notify = ufs_tegra_pwr_change_notify,
.hibern8_entry_notify = ufs_tegra_hibern8_entry_notify,
.set_ufs_mphy_clocks = ufs_tegra_set_ufs_mphy_clocks,
};
static int ufs_tegra_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
/* Perform generic probe */
err = ufshcd_pltfrm_init(pdev, &ufs_hba_tegra_vops);
if (err)
dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err);
return err;
}
static int ufs_tegra_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
return 0;
}
static const struct of_device_id ufs_tegra_of_match[] = {
{ .compatible = "tegra,ufs_variant"},
{},
};
static const struct dev_pm_ops ufs_tegra_pm_ops = {
.suspend = ufshcd_pltfrm_suspend,
.resume = ufshcd_pltfrm_resume,
.runtime_suspend = ufshcd_pltfrm_runtime_suspend,
.runtime_resume = ufshcd_pltfrm_runtime_resume,
.runtime_idle = ufshcd_pltfrm_runtime_idle,
};
static struct platform_driver ufs_tegra_platform = {
.probe = ufs_tegra_probe,
.shutdown = ufshcd_pltfrm_shutdown,
.remove = ufs_tegra_remove,
.driver = {
.name = "ufs_tegra",
.pm = &ufs_tegra_pm_ops,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(ufs_tegra_of_match),
},
};
module_platform_driver(ufs_tegra_platform);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Naveen Kumar Arepalli <naveenk@nvidia.com>");
MODULE_AUTHOR("Venkata Jagadish <vjagadish@nvidia.com>");
MODULE_DEVICE_TABLE(of, ufs_tegra_of_match);