Jetpack/kernel/nvidia/drivers/net/wireless/bcmdhd_pcie/bcmspibrcm.c

1826 lines
50 KiB
C

/*
* Broadcom BCMSDH to gSPI Protocol Conversion Layer
*
* Portions of this code are copyright (c) 2017 Cypress Semiconductor Corporation
*
* Copyright (C) 1999-2017, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: bcmspibrcm.c 662542 2016-10-28 03:26:10Z $
*/
#define HSMODE
#include <typedefs.h>
#include <bcmdevs.h>
#include <bcmendian.h>
#include <bcmutils.h>
#include <osl.h>
#include <hndsoc.h>
#include <siutils.h>
#include <sbchipc.h>
#include <sbsdio.h> /* SDIO device core hardware definitions. */
#include <spid.h>
#include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */
#include <sdiovar.h> /* ioctl/iovars */
#include <sdio.h> /* SDIO Device and Protocol Specs */
#include <pcicfg.h>
#include <bcmspibrcm.h>
#include <bcmspi.h>
/* these are for the older cores... for newer cores we have control for each of them */
#define F0_RESPONSE_DELAY 16
#define F1_RESPONSE_DELAY 16
#define F2_RESPONSE_DELAY F0_RESPONSE_DELAY
#define GSPI_F0_RESP_DELAY 0
#define GSPI_F1_RESP_DELAY F1_RESPONSE_DELAY
#define GSPI_F2_RESP_DELAY 0
#define GSPI_F3_RESP_DELAY 0
#define CMDLEN 4
#define DWORDMODE_ON (sd->chip == BCM4329_CHIP_ID) && (sd->chiprev == 2) && (sd->dwordmode == TRUE)
/* Globals */
#if defined(DHD_DEBUG)
uint sd_msglevel = SDH_ERROR_VAL;
#else
uint sd_msglevel = 0;
#endif
uint sd_hiok = FALSE; /* Use hi-speed mode if available? */
uint sd_sdmode = SDIOH_MODE_SPI; /* Use SD4 mode by default */
uint sd_f2_blocksize = 64; /* Default blocksize */
uint sd_divisor = 2;
uint sd_power = 1; /* Default to SD Slot powered ON */
uint sd_clock = 1; /* Default to SD Clock turned ON */
uint sd_crc = 0; /* Default to SPI CRC Check turned OFF */
uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */
uint8 spi_outbuf[SPI_MAX_PKT_LEN];
uint8 spi_inbuf[SPI_MAX_PKT_LEN];
/* 128bytes buffer is enough to clear data-not-available and program response-delay F0 bits
* assuming we will not exceed F0 response delay > 100 bytes at 48MHz.
*/
#define BUF2_PKT_LEN 128
uint8 spi_outbuf2[BUF2_PKT_LEN];
uint8 spi_inbuf2[BUF2_PKT_LEN];
#define SPISWAP_WD4(x) bcmswap32(x);
#define SPISWAP_WD2(x) (bcmswap16(x & 0xffff)) | \
(bcmswap16((x & 0xffff0000) >> 16) << 16);
/* Prototypes */
static bool bcmspi_test_card(sdioh_info_t *sd);
static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd);
static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode);
static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
uint32 *data, uint32 datalen);
static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr,
int regsize, uint32 *data);
static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr,
int regsize, uint32 data);
static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr,
uint8 *data);
static int bcmspi_driver_init(sdioh_info_t *sd);
static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
uint32 addr, int nbytes, uint32 *data);
static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize,
uint32 *data);
static void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer);
static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg);
/*
* Public entry points & extern's
*/
extern sdioh_info_t *
sdioh_attach(osl_t *osh, void *bar0, uint irq)
{
sdioh_info_t *sd;
sd_trace(("%s\n", __FUNCTION__));
if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) {
sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh)));
return NULL;
}
bzero((char *)sd, sizeof(sdioh_info_t));
sd->osh = osh;
if (spi_osinit(sd) != 0) {
sd_err(("%s: spi_osinit() failed\n", __FUNCTION__));
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return NULL;
}
sd->bar0 = bar0;
sd->irq = irq;
sd->intr_handler = NULL;
sd->intr_handler_arg = NULL;
sd->intr_handler_valid = FALSE;
/* Set defaults */
sd->use_client_ints = TRUE;
sd->sd_use_dma = FALSE; /* DMA Not supported */
/* Spi device default is 16bit mode, change to 4 when device is changed to 32bit
* mode
*/
sd->wordlen = 2;
if (!spi_hw_attach(sd)) {
sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__));
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return (NULL);
}
if (bcmspi_driver_init(sd) != SUCCESS) {
sd_err(("%s: bcmspi_driver_init() failed()\n", __FUNCTION__));
spi_hw_detach(sd);
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return (NULL);
}
if (spi_register_irq(sd, irq) != SUCCESS) {
sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq));
spi_hw_detach(sd);
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return (NULL);
}
sd_trace(("%s: Done\n", __FUNCTION__));
return sd;
}
extern SDIOH_API_RC
sdioh_detach(osl_t *osh, sdioh_info_t *sd)
{
sd_trace(("%s\n", __FUNCTION__));
if (sd) {
sd_err(("%s: detaching from hardware\n", __FUNCTION__));
spi_free_irq(sd->irq, sd);
spi_hw_detach(sd);
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
}
return SDIOH_API_RC_SUCCESS;
}
/* Configure callback to client when we recieve client interrupt */
extern SDIOH_API_RC
sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh)
{
sd_trace(("%s: Entering\n", __FUNCTION__));
#if !defined(OOB_INTR_ONLY) || defined(OOB_PARAM)
OOB_PARAM_IF(dhd_get_oob_disable(argh)) {
sd->intr_handler = fn;
sd->intr_handler_arg = argh;
sd->intr_handler_valid = TRUE;
}
#endif /* !defined(OOB_INTR_ONLY) || defined(OOB_PARAM) */
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_interrupt_deregister(sdioh_info_t *sd)
{
sd_trace(("%s: Entering\n", __FUNCTION__));
#if !defined(OOB_INTR_ONLY) || defined(OOB_PARAM)
OOB_PARAM_IF(sd->intr_handler_valid) {
sd->intr_handler_valid = FALSE;
sd->intr_handler = NULL;
sd->intr_handler_arg = NULL;
}
#endif /* !defined(OOB_INTR_ONLY) || defined(OOB_PARAM) */
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff)
{
sd_trace(("%s: Entering\n", __FUNCTION__));
*onoff = sd->client_intr_enabled;
return SDIOH_API_RC_SUCCESS;
}
#if defined(DHD_DEBUG)
extern bool
sdioh_interrupt_pending(sdioh_info_t *sd)
{
return 0;
}
#endif
extern SDIOH_API_RC
sdioh_query_device(sdioh_info_t *sd)
{
/* Return a BRCM ID appropriate to the dongle class */
return (sd->num_funcs > 1) ? BCM4329_D11N_ID : BCM4318_D11G_ID;
}
/* Provide dstatus bits of spi-transaction for dhd layers. */
extern uint32
sdioh_get_dstatus(sdioh_info_t *sd)
{
return sd->card_dstatus;
}
extern void
sdioh_chipinfo(sdioh_info_t *sd, uint32 chip, uint32 chiprev)
{
sd->chip = chip;
sd->chiprev = chiprev;
}
extern void
sdioh_dwordmode(sdioh_info_t *sd, bool set)
{
uint8 reg = 0;
int status;
if ((status = sdioh_request_byte(sd, SDIOH_READ, SPI_FUNC_0, SPID_STATUS_ENABLE, &reg)) !=
SUCCESS) {
sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
return;
}
if (set) {
reg |= DWORD_PKT_LEN_EN;
sd->dwordmode = TRUE;
sd->client_block_size[SPI_FUNC_2] = 4096; /* h2spi's limit is 4KB, we support 8KB */
} else {
reg &= ~DWORD_PKT_LEN_EN;
sd->dwordmode = FALSE;
sd->client_block_size[SPI_FUNC_2] = 2048;
}
if ((status = sdioh_request_byte(sd, SDIOH_WRITE, SPI_FUNC_0, SPID_STATUS_ENABLE, &reg)) !=
SUCCESS) {
sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
return;
}
}
uint
sdioh_query_iofnum(sdioh_info_t *sd)
{
return sd->num_funcs;
}
/* IOVar table */
enum {
IOV_MSGLEVEL = 1,
IOV_BLOCKMODE,
IOV_BLOCKSIZE,
IOV_DMA,
IOV_USEINTS,
IOV_NUMINTS,
IOV_NUMLOCALINTS,
IOV_HOSTREG,
IOV_DEVREG,
IOV_DIVISOR,
IOV_SDMODE,
IOV_HISPEED,
IOV_HCIREGS,
IOV_POWER,
IOV_CLOCK,
IOV_SPIERRSTATS,
IOV_RESP_DELAY_ALL
};
const bcm_iovar_t sdioh_iovars[] = {
{"sd_msglevel", IOV_MSGLEVEL, 0, IOVT_UINT32, 0 },
{"sd_blocksize", IOV_BLOCKSIZE, 0, IOVT_UINT32, 0 }, /* ((fn << 16) | size) */
{"sd_dma", IOV_DMA, 0, IOVT_BOOL, 0 },
{"sd_ints", IOV_USEINTS, 0, IOVT_BOOL, 0 },
{"sd_numints", IOV_NUMINTS, 0, IOVT_UINT32, 0 },
{"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32, 0 },
{"sd_hostreg", IOV_HOSTREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sd_devreg", IOV_DEVREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sd_divisor", IOV_DIVISOR, 0, IOVT_UINT32, 0 },
{"sd_power", IOV_POWER, 0, IOVT_UINT32, 0 },
{"sd_clock", IOV_CLOCK, 0, IOVT_UINT32, 0 },
{"sd_mode", IOV_SDMODE, 0, IOVT_UINT32, 100},
{"sd_highspeed", IOV_HISPEED, 0, IOVT_UINT32, 0},
{"spi_errstats", IOV_SPIERRSTATS, 0, IOVT_BUFFER, sizeof(struct spierrstats_t) },
{"spi_respdelay", IOV_RESP_DELAY_ALL, 0, IOVT_BOOL, 0 },
{NULL, 0, 0, 0, 0 }
};
int
sdioh_iovar_op(sdioh_info_t *si, const char *name,
void *params, int plen, void *arg, int len, bool set)
{
const bcm_iovar_t *vi = NULL;
int bcmerror = 0;
int val_size;
int32 int_val = 0;
bool bool_val;
uint32 actionid;
/*
sdioh_regs_t *regs;
*/
ASSERT(name);
ASSERT(len >= 0);
/* Get must have return space; Set does not take qualifiers */
ASSERT(set || (arg && len));
ASSERT(!set || (!params && !plen));
sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name));
if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) {
bcmerror = BCME_UNSUPPORTED;
goto exit;
}
if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0)
goto exit;
/* Set up params so get and set can share the convenience variables */
if (params == NULL) {
params = arg;
plen = len;
}
if (vi->type == IOVT_VOID)
val_size = 0;
else if (vi->type == IOVT_BUFFER)
val_size = len;
else
val_size = sizeof(int);
if (plen >= (int)sizeof(int_val))
bcopy(params, &int_val, sizeof(int_val));
bool_val = (int_val != 0) ? TRUE : FALSE;
actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
switch (actionid) {
case IOV_GVAL(IOV_MSGLEVEL):
int_val = (int32)sd_msglevel;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_MSGLEVEL):
sd_msglevel = int_val;
break;
case IOV_GVAL(IOV_BLOCKSIZE):
if ((uint32)int_val > si->num_funcs) {
bcmerror = BCME_BADARG;
break;
}
int_val = (int32)si->client_block_size[int_val];
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_DMA):
int_val = (int32)si->sd_use_dma;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DMA):
si->sd_use_dma = (bool)int_val;
break;
case IOV_GVAL(IOV_USEINTS):
int_val = (int32)si->use_client_ints;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_USEINTS):
break;
case IOV_GVAL(IOV_DIVISOR):
int_val = (uint32)sd_divisor;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DIVISOR):
sd_divisor = int_val;
if (!spi_start_clock(si, (uint16)sd_divisor)) {
sd_err(("%s: set clock failed\n", __FUNCTION__));
bcmerror = BCME_ERROR;
}
break;
case IOV_GVAL(IOV_POWER):
int_val = (uint32)sd_power;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_POWER):
sd_power = int_val;
break;
case IOV_GVAL(IOV_CLOCK):
int_val = (uint32)sd_clock;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_CLOCK):
sd_clock = int_val;
break;
case IOV_GVAL(IOV_SDMODE):
int_val = (uint32)sd_sdmode;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_SDMODE):
sd_sdmode = int_val;
break;
case IOV_GVAL(IOV_HISPEED):
int_val = (uint32)sd_hiok;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_HISPEED):
sd_hiok = int_val;
if (!bcmspi_set_highspeed_mode(si, (bool)sd_hiok)) {
sd_err(("%s: Failed changing highspeed mode to %d.\n",
__FUNCTION__, sd_hiok));
bcmerror = BCME_ERROR;
return ERROR;
}
break;
case IOV_GVAL(IOV_NUMINTS):
int_val = (int32)si->intrcount;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_NUMLOCALINTS):
int_val = (int32)si->local_intrcount;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_DEVREG):
{
sdreg_t *sd_ptr = (sdreg_t *)params;
uint8 data;
if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) {
bcmerror = BCME_SDIO_ERROR;
break;
}
int_val = (int)data;
bcopy(&int_val, arg, sizeof(int_val));
break;
}
case IOV_SVAL(IOV_DEVREG):
{
sdreg_t *sd_ptr = (sdreg_t *)params;
uint8 data = (uint8)sd_ptr->value;
if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) {
bcmerror = BCME_SDIO_ERROR;
break;
}
break;
}
case IOV_GVAL(IOV_SPIERRSTATS):
{
bcopy(&si->spierrstats, arg, sizeof(struct spierrstats_t));
break;
}
case IOV_SVAL(IOV_SPIERRSTATS):
{
bzero(&si->spierrstats, sizeof(struct spierrstats_t));
break;
}
case IOV_GVAL(IOV_RESP_DELAY_ALL):
int_val = (int32)si->resp_delay_all;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_RESP_DELAY_ALL):
si->resp_delay_all = (bool)int_val;
int_val = STATUS_ENABLE|INTR_WITH_STATUS;
if (si->resp_delay_all)
int_val |= RESP_DELAY_ALL;
else {
if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_RESPONSE_DELAY, 1,
F1_RESPONSE_DELAY) != SUCCESS) {
sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
bcmerror = BCME_SDIO_ERROR;
break;
}
}
if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, int_val)
!= SUCCESS) {
sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
bcmerror = BCME_SDIO_ERROR;
break;
}
break;
default:
bcmerror = BCME_UNSUPPORTED;
break;
}
exit:
return bcmerror;
}
extern SDIOH_API_RC
sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
{
SDIOH_API_RC status;
/* No lock needed since sdioh_request_byte does locking */
status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data);
return status;
}
extern SDIOH_API_RC
sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
{
/* No lock needed since sdioh_request_byte does locking */
SDIOH_API_RC status;
if ((fnc_num == SPI_FUNC_1) && (addr == SBSDIO_FUNC1_FRAMECTRL)) {
uint8 dummy_data;
status = sdioh_cfg_read(sd, fnc_num, addr, &dummy_data);
if (status) {
sd_err(("sdioh_cfg_read() failed.\n"));
return status;
}
}
status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data);
return status;
}
extern SDIOH_API_RC
sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length)
{
uint32 count;
int offset;
uint32 cis_byte;
uint16 *cis = (uint16 *)cisd;
uint bar0 = SI_ENUM_BASE;
int status;
uint8 data;
sd_trace(("%s: Func %d\n", __FUNCTION__, func));
spi_lock(sd);
/* Set sb window address to 0x18000000 */
data = (bar0 >> 8) & SBSDIO_SBADDRLOW_MASK;
status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, &data);
if (status == SUCCESS) {
data = (bar0 >> 16) & SBSDIO_SBADDRMID_MASK;
status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, &data);
} else {
sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
spi_unlock(sd);
return (BCME_ERROR);
}
if (status == SUCCESS) {
data = (bar0 >> 24) & SBSDIO_SBADDRHIGH_MASK;
status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, &data);
} else {
sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
spi_unlock(sd);
return (BCME_ERROR);
}
offset = CC_SROM_OTP; /* OTP offset in chipcommon. */
for (count = 0; count < length/2; count++) {
if (bcmspi_card_regread (sd, SDIO_FUNC_1, offset, 2, &cis_byte) < 0) {
sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__));
spi_unlock(sd);
return (BCME_ERROR);
}
*cis = (uint16)cis_byte;
cis++;
offset += 2;
}
spi_unlock(sd);
return (BCME_OK);
}
extern SDIOH_API_RC
sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte)
{
int status;
uint32 cmd_arg;
uint32 dstatus;
uint32 data = (uint32)(*byte);
spi_lock(sd);
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, rw == SDIOH_READ ? 0 : 1);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
if (rw == SDIOH_READ) {
sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x\n",
__FUNCTION__, cmd_arg, func, regaddr));
} else {
sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
__FUNCTION__, cmd_arg, func, regaddr, data));
}
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) {
spi_unlock(sd);
return status;
}
if (rw == SDIOH_READ) {
*byte = (uint8)data;
sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *byte));
}
bcmspi_cmd_getdstatus(sd, &dstatus);
if (dstatus)
sd_trace(("dstatus=0x%x\n", dstatus));
spi_unlock(sd);
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr,
uint32 *word, uint nbytes)
{
int status;
spi_lock(sd);
if (rw == SDIOH_READ)
status = bcmspi_card_regread(sd, func, addr, nbytes, word);
else
status = bcmspi_card_regwrite(sd, func, addr, nbytes, *word);
spi_unlock(sd);
return (status == SUCCESS ? SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL);
}
extern SDIOH_API_RC
sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func,
uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt)
{
int len;
int buflen = (int)buflen_u;
bool fifo = (fix_inc == SDIOH_DATA_FIX);
spi_lock(sd);
ASSERT(reg_width == 4);
ASSERT(buflen_u < (1 << 30));
ASSERT(sd->client_block_size[func]);
sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n",
__FUNCTION__, rw == SDIOH_READ ? 'R' : 'W',
buflen_u, sd->r_cnt, sd->t_cnt, pkt));
/* Break buffer down into blocksize chunks. */
while (buflen > 0) {
len = MIN(sd->client_block_size[func], buflen);
if (bcmspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) {
sd_err(("%s: bcmspi_card_buf %s failed\n",
__FUNCTION__, rw == SDIOH_READ ? "Read" : "Write"));
spi_unlock(sd);
return SDIOH_API_RC_FAIL;
}
buffer += len;
buflen -= len;
if (!fifo)
addr += len;
}
spi_unlock(sd);
return SDIOH_API_RC_SUCCESS;
}
/* This function allows write to gspi bus when another rd/wr function is deep down the call stack.
* Its main aim is to have simpler spi writes rather than recursive writes.
* e.g. When there is a need to program response delay on the fly after detecting the SPI-func
* this call will allow to program the response delay.
*/
static int
bcmspi_card_byterewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 byte)
{
uint32 cmd_arg;
uint32 datalen = 1;
uint32 hostlen;
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, datalen);
sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
/* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen
* according to the wordlen mode(16/32bit) the device is in.
*/
ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
datalen = ROUNDUP(datalen, sd->wordlen);
/* Start by copying command in the spi-outbuffer */
if (sd->wordlen == 4) { /* 32bit spid */
*(uint32 *)spi_outbuf2 = SPISWAP_WD4(cmd_arg);
if (datalen & 0x3)
datalen += (4 - (datalen & 0x3));
} else if (sd->wordlen == 2) { /* 16bit spid */
*(uint32 *)spi_outbuf2 = SPISWAP_WD2(cmd_arg);
if (datalen & 0x1)
datalen++;
} else {
sd_err(("%s: Host is %d bit spid, could not create SPI command.\n",
__FUNCTION__, 8 * sd->wordlen));
return ERROR;
}
/* for Write, put the data into the output buffer */
if (datalen != 0) {
if (sd->wordlen == 4) { /* 32bit spid */
*(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD4(byte);
} else if (sd->wordlen == 2) { /* 16bit spid */
*(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD2(byte);
}
}
/* +4 for cmd, +4 for dstatus */
hostlen = datalen + 8;
hostlen += (4 - (hostlen & 0x3));
spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, hostlen);
/* Last 4bytes are dstatus. Device is configured to return status bits. */
if (sd->wordlen == 4) { /* 32bit spid */
sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
} else if (sd->wordlen == 2) { /* 16bit spid */
sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
} else {
sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
__FUNCTION__, 8 * sd->wordlen));
return ERROR;
}
if (sd->card_dstatus)
sd_trace(("dstatus after byte rewrite = 0x%x\n", sd->card_dstatus));
return (BCME_OK);
}
/* Program the response delay corresponding to the spi function */
static int
bcmspi_prog_resp_delay(sdioh_info_t *sd, int func, uint8 resp_delay)
{
if (sd->resp_delay_all == FALSE)
return (BCME_OK);
if (sd->prev_fun == func)
return (BCME_OK);
if (F0_RESPONSE_DELAY == F1_RESPONSE_DELAY)
return (BCME_OK);
bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_RESPONSE_DELAY, resp_delay);
/* Remember function for which to avoid reprogramming resp-delay in next iteration */
sd->prev_fun = func;
return (BCME_OK);
}
#define GSPI_RESYNC_PATTERN 0x0
/* A resync pattern is a 32bit MOSI line with all zeros. Its a special command in gSPI.
* It resets the spi-bkplane logic so that all F1 related ping-pong buffer logic is
* synchronised and all queued resuests are cancelled.
*/
static int
bcmspi_resync_f1(sdioh_info_t *sd)
{
uint32 cmd_arg = GSPI_RESYNC_PATTERN, data = 0, datalen = 0;
/* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen
* according to the wordlen mode(16/32bit) the device is in.
*/
ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
datalen = ROUNDUP(datalen, sd->wordlen);
/* Start by copying command in the spi-outbuffer */
*(uint32 *)spi_outbuf2 = cmd_arg;
/* for Write, put the data into the output buffer */
*(uint32 *)&spi_outbuf2[CMDLEN] = data;
/* +4 for cmd, +4 for dstatus */
spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, datalen + 8);
/* Last 4bytes are dstatus. Device is configured to return status bits. */
if (sd->wordlen == 4) { /* 32bit spid */
sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
} else if (sd->wordlen == 2) { /* 16bit spid */
sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
} else {
sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
__FUNCTION__, 8 * sd->wordlen));
return ERROR;
}
if (sd->card_dstatus)
sd_trace(("dstatus after resync pattern write = 0x%x\n", sd->card_dstatus));
return (BCME_OK);
}
uint32 dstatus_count = 0;
static int
bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg)
{
uint32 dstatus = sd->card_dstatus;
struct spierrstats_t *spierrstats = &sd->spierrstats;
int err = SUCCESS;
sd_trace(("cmd = 0x%x, dstatus = 0x%x\n", cmd_arg, dstatus));
/* Store dstatus of last few gSPI transactions */
spierrstats->dstatus[dstatus_count % NUM_PREV_TRANSACTIONS] = dstatus;
spierrstats->spicmd[dstatus_count % NUM_PREV_TRANSACTIONS] = cmd_arg;
dstatus_count++;
if (sd->card_init_done == FALSE)
return err;
if (dstatus & STATUS_DATA_NOT_AVAILABLE) {
spierrstats->dna++;
sd_trace(("Read data not available on F1 addr = 0x%x\n",
GFIELD(cmd_arg, SPI_REG_ADDR)));
/* Clear dna bit */
bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, DATA_UNAVAILABLE);
}
if (dstatus & STATUS_UNDERFLOW) {
spierrstats->rdunderflow++;
sd_err(("FIFO underflow happened due to current F2 read command.\n"));
}
if (dstatus & STATUS_OVERFLOW) {
spierrstats->wroverflow++;
sd_err(("FIFO overflow happened due to current (F1/F2) write command.\n"));
bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, F1_OVERFLOW);
bcmspi_resync_f1(sd);
sd_err(("Recovering from F1 FIFO overflow.\n"));
}
if (dstatus & STATUS_F2_INTR) {
spierrstats->f2interrupt++;
sd_trace(("Interrupt from F2. SW should clear corresponding IntStatus bits\n"));
}
if (dstatus & STATUS_F3_INTR) {
spierrstats->f3interrupt++;
sd_err(("Interrupt from F3. SW should clear corresponding IntStatus bits\n"));
}
if (dstatus & STATUS_HOST_CMD_DATA_ERR) {
spierrstats->hostcmddataerr++;
sd_err(("Error in CMD or Host data, detected by CRC/Checksum (optional)\n"));
}
if (dstatus & STATUS_F2_PKT_AVAILABLE) {
spierrstats->f2pktavailable++;
sd_trace(("Packet is available/ready in F2 TX FIFO\n"));
sd_trace(("Packet length = %d\n", sd->dwordmode ?
((dstatus & STATUS_F2_PKT_LEN_MASK) >> (STATUS_F2_PKT_LEN_SHIFT - 2)) :
((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT)));
}
if (dstatus & STATUS_F3_PKT_AVAILABLE) {
spierrstats->f3pktavailable++;
sd_err(("Packet is available/ready in F3 TX FIFO\n"));
sd_err(("Packet length = %d\n",
(dstatus & STATUS_F3_PKT_LEN_MASK) >> STATUS_F3_PKT_LEN_SHIFT));
}
return err;
}
extern int
sdioh_abort(sdioh_info_t *sd, uint func)
{
return 0;
}
int
sdioh_start(sdioh_info_t *sd, int stage)
{
return SUCCESS;
}
int
sdioh_stop(sdioh_info_t *sd)
{
return SUCCESS;
}
int
sdioh_waitlockfree(sdioh_info_t *sd)
{
return SUCCESS;
}
/*
* Private/Static work routines
*/
static int
bcmspi_host_init(sdioh_info_t *sd)
{
/* Default power on mode */
sd->sd_mode = SDIOH_MODE_SPI;
sd->polled_mode = TRUE;
sd->host_init_done = TRUE;
sd->card_init_done = FALSE;
sd->adapter_slot = 1;
return (SUCCESS);
}
static int
get_client_blocksize(sdioh_info_t *sd)
{
uint32 regdata[2];
int status;
/* Find F1/F2/F3 max packet size */
if ((status = bcmspi_card_regread(sd, 0, SPID_F1_INFO_REG,
8, regdata)) != SUCCESS) {
return status;
}
sd_trace(("pkt_size regdata[0] = 0x%x, regdata[1] = 0x%x\n",
regdata[0], regdata[1]));
sd->client_block_size[1] = (regdata[0] & F1_MAX_PKT_SIZE) >> 2;
sd_trace(("Func1 blocksize = %d\n", sd->client_block_size[1]));
ASSERT(sd->client_block_size[1] == BLOCK_SIZE_F1);
sd->client_block_size[2] = ((regdata[0] >> 16) & F2_MAX_PKT_SIZE) >> 2;
sd_trace(("Func2 blocksize = %d\n", sd->client_block_size[2]));
ASSERT(sd->client_block_size[2] == BLOCK_SIZE_F2);
sd->client_block_size[3] = (regdata[1] & F3_MAX_PKT_SIZE) >> 2;
sd_trace(("Func3 blocksize = %d\n", sd->client_block_size[3]));
ASSERT(sd->client_block_size[3] == BLOCK_SIZE_F3);
return 0;
}
static int
bcmspi_client_init(sdioh_info_t *sd)
{
uint32 status_en_reg = 0;
sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot));
#ifdef HSMODE
if (!spi_start_clock(sd, (uint16)sd_divisor)) {
sd_err(("spi_start_clock failed\n"));
return ERROR;
}
#else
/* Start at ~400KHz clock rate for initialization */
if (!spi_start_clock(sd, 128)) {
sd_err(("spi_start_clock failed\n"));
return ERROR;
}
#endif /* HSMODE */
if (!bcmspi_host_device_init_adapt(sd)) {
sd_err(("bcmspi_host_device_init_adapt failed\n"));
return ERROR;
}
if (!bcmspi_test_card(sd)) {
sd_err(("bcmspi_test_card failed\n"));
return ERROR;
}
sd->num_funcs = SPI_MAX_IOFUNCS;
get_client_blocksize(sd);
/* Apply resync pattern cmd with all zeros to reset spi-bkplane F1 logic */
bcmspi_resync_f1(sd);
sd->dwordmode = FALSE;
bcmspi_card_regread(sd, 0, SPID_STATUS_ENABLE, 1, &status_en_reg);
sd_trace(("%s: Enabling interrupt with dstatus \n", __FUNCTION__));
status_en_reg |= INTR_WITH_STATUS;
if (bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_STATUS_ENABLE, 1,
status_en_reg & 0xff) != SUCCESS) {
sd_err(("%s: Unable to set response delay for all fun's.\n", __FUNCTION__));
return ERROR;
}
#ifndef HSMODE
/* After configuring for High-Speed mode, set the desired clock rate. */
if (!spi_start_clock(sd, 4)) {
sd_err(("spi_start_clock failed\n"));
return ERROR;
}
#endif /* HSMODE */
/* check to see if the response delay needs to be programmed properly */
{
uint32 f1_respdelay = 0;
bcmspi_card_regread(sd, 0, SPID_RESP_DELAY_F1, 1, &f1_respdelay);
if ((f1_respdelay == 0) || (f1_respdelay == 0xFF)) {
/* older sdiodevice core and has no separte resp delay for each of */
sd_err(("older corerev < 4 so use the same resp delay for all funcs\n"));
sd->resp_delay_new = FALSE;
}
else {
/* older sdiodevice core and has no separte resp delay for each of */
int ret_val;
sd->resp_delay_new = TRUE;
sd_err(("new corerev >= 4 so set the resp delay for each of the funcs\n"));
sd_trace(("resp delay for funcs f0(%d), f1(%d), f2(%d), f3(%d)\n",
GSPI_F0_RESP_DELAY, GSPI_F1_RESP_DELAY,
GSPI_F2_RESP_DELAY, GSPI_F3_RESP_DELAY));
ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F0, 1,
GSPI_F0_RESP_DELAY);
if (ret_val != SUCCESS) {
sd_err(("%s: Unable to set response delay for F0\n", __FUNCTION__));
return ERROR;
}
ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F1, 1,
GSPI_F1_RESP_DELAY);
if (ret_val != SUCCESS) {
sd_err(("%s: Unable to set response delay for F1\n", __FUNCTION__));
return ERROR;
}
ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F2, 1,
GSPI_F2_RESP_DELAY);
if (ret_val != SUCCESS) {
sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
return ERROR;
}
ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F3, 1,
GSPI_F3_RESP_DELAY);
if (ret_val != SUCCESS) {
sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
return ERROR;
}
}
}
sd->card_init_done = TRUE;
/* get the device rev to program the prop respdelays */
return SUCCESS;
}
static int
bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode)
{
uint32 regdata;
int status;
if ((status = bcmspi_card_regread(sd, 0, SPID_CONFIG,
4, &regdata)) != SUCCESS)
return status;
sd_trace(("In %s spih-ctrl = 0x%x \n", __FUNCTION__, regdata));
if (hsmode == TRUE) {
sd_trace(("Attempting to enable High-Speed mode.\n"));
if (regdata & HIGH_SPEED_MODE) {
sd_trace(("Device is already in High-Speed mode.\n"));
return status;
} else {
regdata |= HIGH_SPEED_MODE;
sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
4, regdata)) != SUCCESS) {
return status;
}
}
} else {
sd_trace(("Attempting to disable High-Speed mode.\n"));
if (regdata & HIGH_SPEED_MODE) {
regdata &= ~HIGH_SPEED_MODE;
sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
4, regdata)) != SUCCESS)
return status;
}
else {
sd_trace(("Device is already in Low-Speed mode.\n"));
return status;
}
}
spi_controller_highspeed_mode(sd, hsmode);
return TRUE;
}
#define bcmspi_find_curr_mode(sd) { \
sd->wordlen = 2; \
status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, &regdata); \
regdata &= 0xff; \
if ((regdata == 0xad) || (regdata == 0x5b) || \
(regdata == 0x5d) || (regdata == 0x5a)) \
break; \
sd->wordlen = 4; \
status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, &regdata); \
regdata &= 0xff; \
if ((regdata == 0xad) || (regdata == 0x5b) || \
(regdata == 0x5d) || (regdata == 0x5a)) \
break; \
sd_trace(("Silicon testability issue: regdata = 0x%x." \
" Expected 0xad, 0x5a, 0x5b or 0x5d.\n", regdata)); \
OSL_DELAY(100000); \
}
#define INIT_ADAPT_LOOP 100
/* Adapt clock-phase-speed-bitwidth between host and device */
static bool
bcmspi_host_device_init_adapt(sdioh_info_t *sd)
{
uint32 wrregdata, regdata = 0;
int status;
int i;
/* Due to a silicon testability issue, the first command from the Host
* to the device will get corrupted (first bit will be lost). So the
* Host should poll the device with a safe read request. ie: The Host
* should try to read F0 addr 0x14 using the Fixed address mode
* (This will prevent a unintended write command to be detected by device)
*/
for (i = 0; i < INIT_ADAPT_LOOP; i++) {
/* If device was not power-cycled it will stay in 32bit mode with
* response-delay-all bit set. Alternate the iteration so that
* read either with or without response-delay for F0 to succeed.
*/
bcmspi_find_curr_mode(sd);
sd->resp_delay_all = (i & 0x1) ? TRUE : FALSE;
bcmspi_find_curr_mode(sd);
sd->dwordmode = TRUE;
bcmspi_find_curr_mode(sd);
sd->dwordmode = FALSE;
}
/* Bail out, device not detected */
if (i == INIT_ADAPT_LOOP)
return FALSE;
/* Softreset the spid logic */
if ((sd->dwordmode) || (sd->wordlen == 4)) {
bcmspi_card_regwrite(sd, 0, SPID_RESET_BP, 1, RESET_ON_WLAN_BP_RESET|RESET_SPI);
bcmspi_card_regread(sd, 0, SPID_RESET_BP, 1, &regdata);
sd_trace(("reset reg read = 0x%x\n", regdata));
sd_trace(("dwordmode = %d, wordlen = %d, resp_delay_all = %d\n", sd->dwordmode,
sd->wordlen, sd->resp_delay_all));
/* Restore default state after softreset */
sd->wordlen = 2;
sd->dwordmode = FALSE;
}
if (sd->wordlen == 4) {
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) !=
SUCCESS)
return FALSE;
if (regdata == TEST_RO_DATA_32BIT_LE) {
sd_trace(("Spid is already in 32bit LE mode. Value read = 0x%x\n",
regdata));
sd_trace(("Spid power was left on.\n"));
} else {
sd_err(("Spid power was left on but signature read failed."
" Value read = 0x%x\n", regdata));
return FALSE;
}
} else {
sd->wordlen = 2;
#define CTRL_REG_DEFAULT 0x00010430 /* according to the host m/c */
wrregdata = (CTRL_REG_DEFAULT);
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
return FALSE;
sd_trace(("(we are still in 16bit mode) 32bit READ LE regdata = 0x%x\n", regdata));
#ifndef HSMODE
wrregdata |= (CLOCK_PHASE | CLOCK_POLARITY);
wrregdata &= ~HIGH_SPEED_MODE;
bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
#endif /* HSMODE */
for (i = 0; i < INIT_ADAPT_LOOP; i++) {
if ((regdata == 0xfdda7d5b) || (regdata == 0xfdda7d5a)) {
sd_trace(("0xfeedbead was leftshifted by 1-bit.\n"));
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4,
&regdata)) != SUCCESS)
return FALSE;
}
OSL_DELAY(1000);
}
#if defined(CHANGE_SPI_INTR_POLARITY_ACTIVE_HIGH)
/* Change to host controller intr-polarity of active-high */
wrregdata |= INTR_POLARITY;
#else
/* Change to host controller intr-polarity of active-low */
wrregdata &= ~INTR_POLARITY;
#endif /* CHANGE_SPI_INTR_POLARITY_ACTIVE_HIGH */
sd_trace(("(we are still in 16bit mode) 32bit Write LE reg-ctrl-data = 0x%x\n",
wrregdata));
/* Change to 32bit mode */
wrregdata |= WORD_LENGTH_32;
bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
/* Change command/data packaging in 32bit LE mode */
sd->wordlen = 4;
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
return FALSE;
if (regdata == TEST_RO_DATA_32BIT_LE) {
sd_trace(("Read spid passed. Value read = 0x%x\n", regdata));
sd_trace(("Spid had power-on cycle OR spi was soft-resetted \n"));
} else {
sd_err(("Stale spid reg values read as it was kept powered. Value read ="
"0x%x\n", regdata));
return FALSE;
}
}
return TRUE;
}
static bool
bcmspi_test_card(sdioh_info_t *sd)
{
uint32 regdata;
int status;
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
return FALSE;
if (regdata == (TEST_RO_DATA_32BIT_LE))
sd_trace(("32bit LE regdata = 0x%x\n", regdata));
else {
sd_trace(("Incorrect 32bit LE regdata = 0x%x\n", regdata));
return FALSE;
}
#define RW_PATTERN1 0xA0A1A2A3
#define RW_PATTERN2 0x4B5B6B7B
regdata = RW_PATTERN1;
if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
return FALSE;
regdata = 0;
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, &regdata)) != SUCCESS)
return FALSE;
if (regdata != RW_PATTERN1) {
sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
RW_PATTERN1, regdata));
return FALSE;
} else
sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
regdata = RW_PATTERN2;
if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
return FALSE;
regdata = 0;
if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, &regdata)) != SUCCESS)
return FALSE;
if (regdata != RW_PATTERN2) {
sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
RW_PATTERN2, regdata));
return FALSE;
} else
sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
return TRUE;
}
static int
bcmspi_driver_init(sdioh_info_t *sd)
{
sd_trace(("%s\n", __FUNCTION__));
if ((bcmspi_host_init(sd)) != SUCCESS) {
return ERROR;
}
if (bcmspi_client_init(sd) != SUCCESS) {
return ERROR;
}
return SUCCESS;
}
/* Read device reg */
static int
bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
{
int status;
uint32 cmd_arg, dstatus;
ASSERT(regsize);
if (func == 2)
sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
__FUNCTION__, cmd_arg, func, regaddr, regsize));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
return status;
bcmspi_cmd_getdstatus(sd, &dstatus);
if (dstatus)
sd_trace(("dstatus =0x%x\n", dstatus));
return SUCCESS;
}
static int
bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
{
int status;
uint32 cmd_arg;
uint32 dstatus;
ASSERT(regsize);
if (func == 2)
sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0); /* Fixed access */
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize);
sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
__FUNCTION__, cmd_arg, func, regaddr, regsize));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
return status;
sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *data));
bcmspi_cmd_getdstatus(sd, &dstatus);
sd_trace(("dstatus =0x%x\n", dstatus));
return SUCCESS;
}
/* write a device register */
static int
bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data)
{
int status;
uint32 cmd_arg, dstatus;
ASSERT(regsize);
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d data=0x%x\n",
__FUNCTION__, cmd_arg, func, regaddr, regsize, data));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, regsize)) != SUCCESS)
return status;
bcmspi_cmd_getdstatus(sd, &dstatus);
if (dstatus)
sd_trace(("dstatus=0x%x\n", dstatus));
return SUCCESS;
}
/* write a device register - 1 byte */
static int
bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *byte)
{
int status;
uint32 cmd_arg;
uint32 dstatus;
uint32 data = (uint32)(*byte);
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
__FUNCTION__, cmd_arg, func, regaddr, data));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS)
return status;
bcmspi_cmd_getdstatus(sd, &dstatus);
if (dstatus)
sd_trace(("dstatus =0x%x\n", dstatus));
return SUCCESS;
}
void
bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer)
{
*dstatus_buffer = sd->card_dstatus;
}
/* 'data' is of type uint32 whereas other buffers are of type uint8 */
static int
bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
uint32 *data, uint32 datalen)
{
uint32 i, j;
uint8 resp_delay = 0;
int err = SUCCESS;
uint32 hostlen;
uint32 spilen = 0;
uint32 dstatus_idx = 0;
uint16 templen, buslen, len, *ptr = NULL;
sd_trace(("spi cmd = 0x%x\n", cmd_arg));
if (DWORDMODE_ON) {
spilen = GFIELD(cmd_arg, SPI_LEN);
if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_0) ||
(GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_1))
dstatus_idx = spilen * 3;
if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) &&
(GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) {
spilen = spilen << 2;
dstatus_idx = (spilen % 16) ? (16 - (spilen % 16)) : 0;
/* convert len to mod16 size */
spilen = ROUNDUP(spilen, 16);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2));
}
}
/* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen
* according to the wordlen mode(16/32bit) the device is in.
*/
if (sd->wordlen == 4) { /* 32bit spid */
*(uint32 *)spi_outbuf = SPISWAP_WD4(cmd_arg);
if (datalen & 0x3)
datalen += (4 - (datalen & 0x3));
} else if (sd->wordlen == 2) { /* 16bit spid */
*(uint32 *)spi_outbuf = SPISWAP_WD2(cmd_arg);
if (datalen & 0x1)
datalen++;
if (datalen < 4)
datalen = ROUNDUP(datalen, 4);
} else {
sd_err(("Host is %d bit spid, could not create SPI command.\n",
8 * sd->wordlen));
return ERROR;
}
/* for Write, put the data into the output buffer */
if (GFIELD(cmd_arg, SPI_RW_FLAG) == 1) {
/* We send len field of hw-header always a mod16 size, both from host and dongle */
if (DWORDMODE_ON) {
if (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) {
ptr = (uint16 *)&data[0];
templen = *ptr;
/* ASSERT(*ptr == ~*(ptr + 1)); */
templen = ROUNDUP(templen, 16);
*ptr = templen;
sd_trace(("actual tx len = %d\n", (uint16)(~*(ptr+1))));
}
}
if (datalen != 0) {
for (i = 0; i < datalen/4; i++) {
if (sd->wordlen == 4) { /* 32bit spid */
*(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
SPISWAP_WD4(data[i]);
} else if (sd->wordlen == 2) { /* 16bit spid */
*(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
SPISWAP_WD2(data[i]);
}
}
}
}
/* Append resp-delay number of bytes and clock them out for F0/1/2 reads. */
if ((GFIELD(cmd_arg, SPI_RW_FLAG) == 0)) {
int func = GFIELD(cmd_arg, SPI_FUNCTION);
switch (func) {
case 0:
if (sd->resp_delay_new)
resp_delay = GSPI_F0_RESP_DELAY;
else
resp_delay = sd->resp_delay_all ? F0_RESPONSE_DELAY : 0;
break;
case 1:
if (sd->resp_delay_new)
resp_delay = GSPI_F1_RESP_DELAY;
else
resp_delay = F1_RESPONSE_DELAY;
break;
case 2:
if (sd->resp_delay_new)
resp_delay = GSPI_F2_RESP_DELAY;
else
resp_delay = sd->resp_delay_all ? F2_RESPONSE_DELAY : 0;
break;
default:
ASSERT(0);
break;
}
/* Program response delay */
if (sd->resp_delay_new == FALSE)
bcmspi_prog_resp_delay(sd, func, resp_delay);
}
/* +4 for cmd and +4 for dstatus */
hostlen = datalen + 8 + resp_delay;
hostlen += dstatus_idx;
hostlen += (4 - (hostlen & 0x3));
spi_sendrecv(sd, spi_outbuf, spi_inbuf, hostlen);
/* for Read, get the data into the input buffer */
if (datalen != 0) {
if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { /* if read cmd */
for (j = 0; j < datalen/4; j++) {
if (sd->wordlen == 4) { /* 32bit spid */
data[j] = SPISWAP_WD4(*(uint32 *)&spi_inbuf[j * 4 +
CMDLEN + resp_delay]);
} else if (sd->wordlen == 2) { /* 16bit spid */
data[j] = SPISWAP_WD2(*(uint32 *)&spi_inbuf[j * 4 +
CMDLEN + resp_delay]);
}
}
if ((DWORDMODE_ON) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) {
ptr = (uint16 *)&data[0];
templen = *ptr;
buslen = len = ~(*(ptr + 1));
buslen = ROUNDUP(buslen, 16);
/* populate actual len in hw-header */
if (templen == buslen)
*ptr = len;
}
}
}
/* Restore back the len field of the hw header */
if (DWORDMODE_ON) {
if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) &&
(GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) {
ptr = (uint16 *)&data[0];
*ptr = (uint16)(~*(ptr+1));
}
}
dstatus_idx += (datalen + CMDLEN + resp_delay);
/* Last 4bytes are dstatus. Device is configured to return status bits. */
if (sd->wordlen == 4) { /* 32bit spid */
sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf[dstatus_idx]);
} else if (sd->wordlen == 2) { /* 16bit spid */
sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf[dstatus_idx]);
} else {
sd_err(("Host is %d bit machine, could not read SPI dstatus.\n",
8 * sd->wordlen));
return ERROR;
}
if (sd->card_dstatus == 0xffffffff) {
sd_err(("looks like not a GSPI device or device is not powered.\n"));
}
err = bcmspi_update_stats(sd, cmd_arg);
return err;
}
static int
bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
uint32 addr, int nbytes, uint32 *data)
{
int status;
uint32 cmd_arg;
bool write = rw == SDIOH_READ ? 0 : 1;
uint retries = 0;
bool enable;
uint32 spilen;
cmd_arg = 0;
ASSERT(nbytes);
ASSERT(nbytes <= sd->client_block_size[func]);
if (write) sd->t_cnt++; else sd->r_cnt++;
if (func == 2) {
/* Frame len check limited by gSPI. */
if ((nbytes > 2000) && write) {
sd_trace((">2KB write: F2 wr of %d bytes\n", nbytes));
}
/* ASSERT(nbytes <= 2048); Fix bigger len gspi issue and uncomment. */
/* If F2 fifo on device is not ready to receive data, don't do F2 transfer */
if (write) {
uint32 dstatus;
/* check F2 ready with cached one */
bcmspi_cmd_getdstatus(sd, &dstatus);
if ((dstatus & STATUS_F2_RX_READY) == 0) {
retries = WAIT_F2RXFIFORDY;
enable = 0;
while (retries-- && !enable) {
OSL_DELAY(WAIT_F2RXFIFORDY_DELAY * 1000);
bcmspi_card_regread(sd, SPI_FUNC_0, SPID_STATUS_REG, 4,
&dstatus);
if (dstatus & STATUS_F2_RX_READY)
enable = TRUE;
}
if (!enable) {
struct spierrstats_t *spierrstats = &sd->spierrstats;
spierrstats->f2rxnotready++;
sd_err(("F2 FIFO is not ready to receive data.\n"));
return ERROR;
}
sd_trace(("No of retries on F2 ready %d\n",
(WAIT_F2RXFIFORDY - retries)));
}
}
}
/* F2 transfers happen on 0 addr */
addr = (func == 2) ? 0 : addr;
/* In pio mode buffer is read using fixed address fifo in func 1 */
if ((func == 1) && (fifo))
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0);
else
cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);
cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, addr);
cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, write);
spilen = sd->data_xfer_count = MIN(sd->client_block_size[func], nbytes);
if ((sd->dwordmode == TRUE) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) {
/* convert len to mod4 size */
spilen = spilen + ((spilen & 0x3) ? (4 - (spilen & 0x3)): 0);
cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2));
} else
cmd_arg = SFIELD(cmd_arg, SPI_LEN, spilen);
if ((func == 2) && (fifo == 1)) {
sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
__FUNCTION__, write ? "Wr" : "Rd", func, "INCR",
addr, nbytes, sd->r_cnt, sd->t_cnt));
}
sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
__FUNCTION__, write ? "Wd" : "Rd", func, "INCR",
addr, nbytes, sd->r_cnt, sd->t_cnt));
if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, nbytes)) != SUCCESS) {
sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__,
(write ? "write" : "read")));
return status;
}
/* gSPI expects that hw-header-len is equal to spi-command-len */
if ((func == 2) && (rw == SDIOH_WRITE) && (sd->dwordmode == FALSE)) {
ASSERT((uint16)sd->data_xfer_count == (uint16)(*data & 0xffff));
ASSERT((uint16)sd->data_xfer_count == (uint16)(~((*data & 0xffff0000) >> 16)));
}
if ((nbytes > 2000) && !write) {
sd_trace((">2KB read: F2 rd of %d bytes\n", nbytes));
}
return SUCCESS;
}
/* Reset and re-initialize the device */
int
sdioh_sdio_reset(sdioh_info_t *si)
{
si->card_init_done = FALSE;
return bcmspi_client_init(si);
}
SDIOH_API_RC
sdioh_gpioouten(sdioh_info_t *sd, uint32 gpio)
{
return SDIOH_API_RC_FAIL;
}
SDIOH_API_RC
sdioh_gpioout(sdioh_info_t *sd, uint32 gpio, bool enab)
{
return SDIOH_API_RC_FAIL;
}
bool
sdioh_gpioin(sdioh_info_t *sd, uint32 gpio)
{
return FALSE;
}
SDIOH_API_RC
sdioh_gpio_init(sdioh_info_t *sd)
{
return SDIOH_API_RC_FAIL;
}