Jetpack/kernel/nvidia/drivers/net/wireless/bcmdhd_pcie/aiutils.c

1287 lines
32 KiB
C

/*
* Misc utility routines for accessing chip-specific features
* of the SiliconBackplane-based Broadcom chips.
*
* Portions of this code are copyright (c) 2017 Cypress Semiconductor Corporation
*
* Copyright (C) 1999-2017, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: aiutils.c 607900 2015-12-22 13:38:53Z $
*/
#include <bcm_cfg.h>
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pcicfg.h>
#include "siutils_priv.h"
#define BCM47162_DMP() (0)
#define BCM5357_DMP() (0)
#define BCM53573_DMP() (0)
#define BCM4707_DMP() (0)
#define PMU_DMP() (0)
#define GCI_DMP() (0)
#define remap_coreid(sih, coreid) (coreid)
#define remap_corerev(sih, corerev) (corerev)
/* EROM parsing */
static uint32
get_erom_ent(si_t *sih, uint32 **eromptr, uint32 mask, uint32 match)
{
uint32 ent;
uint inv = 0, nom = 0;
uint32 size = 0;
while (TRUE) {
ent = R_REG(si_osh(sih), *eromptr);
(*eromptr)++;
if (mask == 0)
break;
if ((ent & ER_VALID) == 0) {
inv++;
continue;
}
if (ent == (ER_END | ER_VALID))
break;
if ((ent & mask) == match)
break;
/* escape condition related EROM size if it has invalid values */
size += sizeof(*eromptr);
if (size >= ER_SZ_MAX) {
SI_ERROR(("Failed to find end of EROM marker\n"));
break;
}
nom++;
}
SI_VMSG(("%s: Returning ent 0x%08x\n", __FUNCTION__, ent));
if (inv + nom) {
SI_VMSG((" after %d invalid and %d non-matching entries\n", inv, nom));
}
return ent;
}
static uint32
get_asd(si_t *sih, uint32 **eromptr, uint sp, uint ad, uint st, uint32 *addrl, uint32 *addrh,
uint32 *sizel, uint32 *sizeh)
{
uint32 asd, sz, szd;
asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID);
if (((asd & ER_TAG1) != ER_ADD) ||
(((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) ||
((asd & AD_ST_MASK) != st)) {
/* This is not what we want, "push" it back */
(*eromptr)--;
return 0;
}
*addrl = asd & AD_ADDR_MASK;
if (asd & AD_AG32)
*addrh = get_erom_ent(sih, eromptr, 0, 0);
else
*addrh = 0;
*sizeh = 0;
sz = asd & AD_SZ_MASK;
if (sz == AD_SZ_SZD) {
szd = get_erom_ent(sih, eromptr, 0, 0);
*sizel = szd & SD_SZ_MASK;
if (szd & SD_SG32)
*sizeh = get_erom_ent(sih, eromptr, 0, 0);
} else
*sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT);
SI_VMSG((" SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n",
sp, ad, st, *sizeh, *sizel, *addrh, *addrl));
return asd;
}
static void
ai_hwfixup(si_info_t *sii)
{
}
/* parse the enumeration rom to identify all cores */
void
ai_scan(si_t *sih, void *regs, uint devid)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
chipcregs_t *cc = (chipcregs_t *)regs;
uint32 erombase, *eromptr, *eromlim;
erombase = R_REG(sii->osh, &cc->eromptr);
switch (BUSTYPE(sih->bustype)) {
case SI_BUS:
eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
break;
case PCI_BUS:
/* Set wrappers address */
sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE);
/* Now point the window at the erom */
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase);
eromptr = regs;
break;
#ifdef BCMSDIO
case SPI_BUS:
case SDIO_BUS:
eromptr = (uint32 *)(uintptr)erombase;
break;
#endif /* BCMSDIO */
case PCMCIA_BUS:
default:
SI_ERROR(("Don't know how to do AXI enumertion on bus %d\n", sih->bustype));
ASSERT(0);
return;
}
eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));
SI_VMSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%p, eromlim = 0x%p\n",
regs, erombase, eromptr, eromlim));
while (eromptr < eromlim) {
uint32 cia, cib, cid, mfg, crev, nmw, nsw, nmp, nsp;
uint32 mpd, asd, addrl, addrh, sizel, sizeh;
uint i, j, idx;
bool br;
br = FALSE;
/* Grok a component */
cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI);
if (cia == (ER_END | ER_VALID)) {
SI_VMSG(("Found END of erom after %d cores\n", sii->numcores));
ai_hwfixup(sii);
return;
}
cib = get_erom_ent(sih, &eromptr, 0, 0);
if ((cib & ER_TAG) != ER_CI) {
SI_ERROR(("CIA not followed by CIB\n"));
goto error;
}
cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT;
mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT;
crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT;
nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT;
nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
#ifdef BCMDBG_SI
SI_VMSG(("Found component 0x%04x/0x%04x rev %d at erom addr 0x%p, with nmw = %d, "
"nsw = %d, nmp = %d & nsp = %d\n",
mfg, cid, crev, eromptr - 1, nmw, nsw, nmp, nsp));
#else
BCM_REFERENCE(crev);
#endif
if (((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) || (nsp == 0))
continue;
if ((nmw + nsw == 0)) {
/* A component which is not a core */
if (cid == OOB_ROUTER_CORE_ID) {
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE,
&addrl, &addrh, &sizel, &sizeh);
if (asd != 0) {
sii->oob_router = addrl;
}
}
if (cid != GMAC_COMMON_4706_CORE_ID && cid != NS_CCB_CORE_ID &&
cid != PMU_CORE_ID && cid != GCI_CORE_ID)
continue;
}
idx = sii->numcores;
cores_info->cia[idx] = cia;
cores_info->cib[idx] = cib;
cores_info->coreid[idx] = remap_coreid(sih, cid);
for (i = 0; i < nmp; i++) {
mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
if ((mpd & ER_TAG) != ER_MP) {
SI_ERROR(("Not enough MP entries for component 0x%x\n", cid));
goto error;
}
SI_VMSG((" Master port %d, mp: %d id: %d\n", i,
(mpd & MPD_MP_MASK) >> MPD_MP_SHIFT,
(mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT));
}
/* First Slave Address Descriptor should be port 0:
* the main register space for the core
*/
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
if (asd == 0) {
do {
/* Try again to see if it is a bridge */
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
&sizel, &sizeh);
if (asd != 0)
br = TRUE;
else {
if (br == TRUE) {
break;
}
else if ((addrh != 0) || (sizeh != 0) ||
(sizel != SI_CORE_SIZE)) {
SI_ERROR(("addrh = 0x%x\t sizeh = 0x%x\t size1 ="
"0x%x\n", addrh, sizeh, sizel));
SI_ERROR(("First Slave ASD for"
"core 0x%04x malformed "
"(0x%08x)\n", cid, asd));
goto error;
}
}
} while (1);
}
cores_info->coresba[idx] = addrl;
cores_info->coresba_size[idx] = sizel;
/* Get any more ASDs in port 0 */
j = 1;
do {
asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) {
cores_info->coresba2[idx] = addrl;
cores_info->coresba2_size[idx] = sizel;
}
j++;
} while (asd != 0);
/* Go through the ASDs for other slave ports */
for (i = 1; i < nsp; i++) {
j = 0;
do {
asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0)
break;
j++;
} while (1);
if (j == 0) {
SI_ERROR((" SP %d has no address descriptors\n", i));
goto error;
}
}
/* Now get master wrappers */
for (i = 0; i < nmw; i++) {
asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0) {
SI_ERROR(("Missing descriptor for MW %d\n", i));
goto error;
}
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
SI_ERROR(("Master wrapper %d is not 4KB\n", i));
goto error;
}
if (i == 0)
cores_info->wrapba[idx] = addrl;
else if (i == 1)
cores_info->wrapba2[idx] = addrl;
}
/* And finally slave wrappers */
for (i = 0; i < nsw; i++) {
uint fwp = (nsp == 1) ? 0 : 1;
asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh,
&sizel, &sizeh);
/* cache APB bridge wrapper address for set/clear timeout */
if ((mfg == MFGID_ARM) && (cid == APB_BRIDGE_ID)) {
ASSERT(sii->num_br < SI_MAXBR);
sii->br_wrapba[sii->num_br++] = addrl;
}
if (asd == 0) {
SI_ERROR(("Missing descriptor for SW %d\n", i));
goto error;
}
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
SI_ERROR(("Slave wrapper %d is not 4KB\n", i));
goto error;
}
if ((nmw == 0) && (i == 0))
cores_info->wrapba[idx] = addrl;
else if ((nmw == 0) && (i == 1))
cores_info->wrapba2[idx] = addrl;
}
/* Don't record bridges */
if (br)
continue;
/* Done with core */
sii->numcores++;
}
SI_ERROR(("Reached end of erom without finding END"));
error:
sii->numcores = 0;
return;
}
#define AI_SETCOREIDX_MAPSIZE(coreid) \
(((coreid) == NS_CCB_CORE_ID) ? 15 * SI_CORE_SIZE : SI_CORE_SIZE)
/* This function changes the logical "focus" to the indicated core.
* Return the current core's virtual address.
*/
static void *
_ai_setcoreidx(si_t *sih, uint coreidx, uint use_wrap2)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
uint32 addr, wrap, wrap2;
void *regs;
if (coreidx >= MIN(sii->numcores, SI_MAXCORES))
return (NULL);
addr = cores_info->coresba[coreidx];
wrap = cores_info->wrapba[coreidx];
wrap2 = cores_info->wrapba2[coreidx];
/*
* If the user has provided an interrupt mask enabled function,
* then assert interrupts are disabled before switching the core.
*/
ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg));
switch (BUSTYPE(sih->bustype)) {
case SI_BUS:
/* map new one */
if (!cores_info->regs[coreidx]) {
cores_info->regs[coreidx] = REG_MAP(addr,
AI_SETCOREIDX_MAPSIZE(cores_info->coreid[coreidx]));
ASSERT(GOODREGS(cores_info->regs[coreidx]));
}
sii->curmap = regs = cores_info->regs[coreidx];
if (!cores_info->wrappers[coreidx] && (wrap != 0)) {
cores_info->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->wrappers[coreidx]));
}
if (!cores_info->wrappers2[coreidx] && (wrap2 != 0)) {
cores_info->wrappers2[coreidx] = REG_MAP(wrap2, SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->wrappers2[coreidx]));
}
if (use_wrap2)
sii->curwrap = cores_info->wrappers2[coreidx];
else
sii->curwrap = cores_info->wrappers[coreidx];
break;
case PCI_BUS:
/* point bar0 window */
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, addr);
regs = sii->curmap;
/* point bar0 2nd 4KB window to the primary wrapper */
if (use_wrap2)
wrap = wrap2;
if (PCIE_GEN2(sii))
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_WIN2, 4, wrap);
else
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN2, 4, wrap);
break;
#ifdef BCMSDIO
case SPI_BUS:
case SDIO_BUS:
sii->curmap = regs = (void *)((uintptr)addr);
if (use_wrap2)
sii->curwrap = (void *)((uintptr)wrap2);
else
sii->curwrap = (void *)((uintptr)wrap);
break;
#endif /* BCMSDIO */
case PCMCIA_BUS:
default:
ASSERT(0);
regs = NULL;
break;
}
sii->curmap = regs;
sii->curidx = coreidx;
return regs;
}
void *
ai_setcoreidx(si_t *sih, uint coreidx)
{
return _ai_setcoreidx(sih, coreidx, 0);
}
void *
ai_setcoreidx_2ndwrap(si_t *sih, uint coreidx)
{
return _ai_setcoreidx(sih, coreidx, 1);
}
void
ai_coreaddrspaceX(si_t *sih, uint asidx, uint32 *addr, uint32 *size)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
chipcregs_t *cc = NULL;
uint32 erombase, *eromptr, *eromlim;
uint i, j, cidx;
uint32 cia, cib, nmp, nsp;
uint32 asd, addrl, addrh, sizel, sizeh;
for (i = 0; i < sii->numcores; i++) {
if (cores_info->coreid[i] == CC_CORE_ID) {
cc = (chipcregs_t *)cores_info->regs[i];
break;
}
}
if (cc == NULL)
goto error;
erombase = R_REG(sii->osh, &cc->eromptr);
eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));
cidx = sii->curidx;
cia = cores_info->cia[cidx];
cib = cores_info->cib[cidx];
nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
/* scan for cores */
while (eromptr < eromlim) {
if ((get_erom_ent(sih, &eromptr, ER_TAG, ER_CI) == cia) &&
(get_erom_ent(sih, &eromptr, 0, 0) == cib)) {
break;
}
}
/* skip master ports */
for (i = 0; i < nmp; i++)
get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
/* Skip ASDs in port 0 */
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
if (asd == 0) {
/* Try again to see if it is a bridge */
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
&sizel, &sizeh);
}
j = 1;
do {
asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
j++;
} while (asd != 0);
/* Go through the ASDs for other slave ports */
for (i = 1; i < nsp; i++) {
j = 0;
do {
asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0)
break;
if (!asidx--) {
*addr = addrl;
*size = sizel;
return;
}
j++;
} while (1);
if (j == 0) {
SI_ERROR((" SP %d has no address descriptors\n", i));
break;
}
}
error:
*size = 0;
return;
}
/* Return the number of address spaces in current core */
int
ai_numaddrspaces(si_t *sih)
{
return 2;
}
/* Return the address of the nth address space in the current core */
uint32
ai_addrspace(si_t *sih, uint asidx)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
uint cidx;
cidx = sii->curidx;
if (asidx == 0)
return cores_info->coresba[cidx];
else if (asidx == 1)
return cores_info->coresba2[cidx];
else {
SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n",
__FUNCTION__, asidx));
return 0;
}
}
/* Return the size of the nth address space in the current core */
uint32
ai_addrspacesize(si_t *sih, uint asidx)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
uint cidx;
cidx = sii->curidx;
if (asidx == 0)
return cores_info->coresba_size[cidx];
else if (asidx == 1)
return cores_info->coresba2_size[cidx];
else {
SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n",
__FUNCTION__, asidx));
return 0;
}
}
uint
ai_flag(si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
if (BCM47162_DMP()) {
SI_ERROR(("%s: Attempting to read MIPS DMP registers on 47162a0", __FUNCTION__));
return sii->curidx;
}
if (BCM5357_DMP()) {
SI_ERROR(("%s: Attempting to read USB20H DMP registers on 5357b0\n", __FUNCTION__));
return sii->curidx;
}
if (BCM4707_DMP()) {
SI_ERROR(("%s: Attempting to read CHIPCOMMONB DMP registers on 4707\n",
__FUNCTION__));
return sii->curidx;
}
if (BCM53573_DMP()) {
SI_ERROR(("%s: Attempting to read DMP registers on 53573\n", __FUNCTION__));
return sii->curidx;
}
#ifdef REROUTE_OOBINT
if (PMU_DMP()) {
SI_ERROR(("%s: Attempting to read PMU DMP registers\n",
__FUNCTION__));
return PMU_OOB_BIT;
}
#else
if (PMU_DMP()) {
uint idx, flag;
idx = sii->curidx;
ai_setcoreidx(sih, SI_CC_IDX);
flag = ai_flag_alt(sih);
ai_setcoreidx(sih, idx);
return flag;
}
#endif /* REROUTE_OOBINT */
ai = sii->curwrap;
ASSERT(ai != NULL);
return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f);
}
uint
ai_flag_alt(si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
if (BCM47162_DMP()) {
SI_ERROR(("%s: Attempting to read MIPS DMP registers on 47162a0", __FUNCTION__));
return sii->curidx;
}
if (BCM5357_DMP()) {
SI_ERROR(("%s: Attempting to read USB20H DMP registers on 5357b0\n", __FUNCTION__));
return sii->curidx;
}
if (BCM4707_DMP()) {
SI_ERROR(("%s: Attempting to read CHIPCOMMONB DMP registers on 4707\n",
__FUNCTION__));
return sii->curidx;
}
#ifdef REROUTE_OOBINT
if (PMU_DMP()) {
SI_ERROR(("%s: Attempting to read PMU DMP registers\n",
__FUNCTION__));
return PMU_OOB_BIT;
}
#endif /* REROUTE_OOBINT */
ai = sii->curwrap;
return ((R_REG(sii->osh, &ai->oobselouta30) >> AI_OOBSEL_1_SHIFT) & AI_OOBSEL_MASK);
}
void
ai_setint(si_t *sih, int siflag)
{
}
uint
ai_wrap_reg(si_t *sih, uint32 offset, uint32 mask, uint32 val)
{
si_info_t *sii = SI_INFO(sih);
uint32 *map = (uint32 *) sii->curwrap;
if (mask || val) {
uint32 w = R_REG(sii->osh, map+(offset/4));
w &= ~mask;
w |= val;
W_REG(sii->osh, map+(offset/4), w);
}
return (R_REG(sii->osh, map+(offset/4)));
}
uint
ai_corevendor(si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
uint32 cia;
cia = cores_info->cia[sii->curidx];
return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT);
}
uint
ai_corerev(si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
uint32 cib;
cib = cores_info->cib[sii->curidx];
return remap_corerev(sih, (cib & CIB_REV_MASK) >> CIB_REV_SHIFT);
}
bool
ai_iscoreup(si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
ai = sii->curwrap;
return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) &&
((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0));
}
/*
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
* switch back to the original core, and return the new value.
*
* When using the silicon backplane, no fiddling with interrupts or core switches is needed.
*
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
* and (on newer pci cores) chipcommon registers.
*/
uint
ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
uint origidx = 0;
uint32 *r = NULL;
uint w;
uint intr_val = 0;
bool fast = FALSE;
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
ASSERT(GOODIDX(coreidx));
ASSERT(regoff < SI_CORE_SIZE);
ASSERT((val & ~mask) == 0);
if (coreidx >= SI_MAXCORES)
return 0;
if (BUSTYPE(sih->bustype) == SI_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
/* map if does not exist */
if (!cores_info->regs[coreidx]) {
cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->regs[coreidx]));
}
r = (uint32 *)((uchar *)cores_info->regs[coreidx] + regoff);
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (sii->pub.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if (SI_FAST(sii))
r = (uint32 *)((char *)sii->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (uint32 *)((char *)sii->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
regoff);
}
}
if (!fast) {
INTR_OFF(sii, intr_val);
/* save current core index */
origidx = si_coreidx(&sii->pub);
/* switch core */
r = (uint32*) ((uchar*) ai_setcoreidx(&sii->pub, coreidx) + regoff);
}
ASSERT(r != NULL);
/* mask and set */
if (mask || val) {
w = (R_REG(sii->osh, r) & ~mask) | val;
W_REG(sii->osh, r, w);
}
/* readback */
w = R_REG(sii->osh, r);
if (!fast) {
/* restore core index */
if (origidx != coreidx)
ai_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, intr_val);
}
return (w);
}
/*
* If there is no need for fiddling with interrupts or core switches (typically silicon
* back plane registers, pci registers and chipcommon registers), this function
* returns the register offset on this core to a mapped address. This address can
* be used for W_REG/R_REG directly.
*
* For accessing registers that would need a core switch, this function will return
* NULL.
*/
uint32 *
ai_corereg_addr(si_t *sih, uint coreidx, uint regoff)
{
uint32 *r = NULL;
bool fast = FALSE;
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
ASSERT(GOODIDX(coreidx));
ASSERT(regoff < SI_CORE_SIZE);
if (coreidx >= SI_MAXCORES)
return 0;
if (BUSTYPE(sih->bustype) == SI_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
/* map if does not exist */
if (!cores_info->regs[coreidx]) {
cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->regs[coreidx]));
}
r = (uint32 *)((uchar *)cores_info->regs[coreidx] + regoff);
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (sii->pub.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if (SI_FAST(sii))
r = (uint32 *)((char *)sii->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (uint32 *)((char *)sii->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
regoff);
}
}
if (!fast) {
ASSERT(sii->curidx == coreidx);
r = (uint32*) ((uchar*)sii->curmap + regoff);
}
return (r);
}
void
ai_core_disable(si_t *sih, uint32 bits)
{
si_info_t *sii = SI_INFO(sih);
volatile uint32 dummy;
uint32 status;
aidmp_t *ai;
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
/* if core is already in reset, just return */
if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET)
return;
/* ensure there are no pending backplane operations */
SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
/* if pending backplane ops still, try waiting longer */
if (status != 0) {
/* 300usecs was sufficient to allow backplane ops to clear for big hammer */
/* during driver load we may need more time */
SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 10000);
/* if still pending ops, continue on and try disable anyway */
/* this is in big hammer path, so don't call wl_reinit in this case... */
}
W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
dummy = R_REG(sii->osh, &ai->resetctrl);
BCM_REFERENCE(dummy);
OSL_DELAY(1);
W_REG(sii->osh, &ai->ioctrl, bits);
dummy = R_REG(sii->osh, &ai->ioctrl);
BCM_REFERENCE(dummy);
OSL_DELAY(10);
}
/* reset and re-enable a core
* inputs:
* bits - core specific bits that are set during and after reset sequence
* resetbits - core specific bits that are set only during reset sequence
*/
static void
_ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
volatile uint32 dummy;
uint loop_counter = 10;
#ifdef CUSTOMER_HW4_DEBUG
printf("%s: bits: 0x%x, resetbits: 0x%x\n", __FUNCTION__, bits, resetbits);
#endif
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
/* ensure there are no pending backplane operations */
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
#ifdef CUSTOMER_HW4_DEBUG
printf("%s: resetstatus: %p dummy: %x\n", __FUNCTION__, &ai->resetstatus, dummy);
#endif
/* put core into reset state */
#ifdef CUSTOMER_HW4_DEBUG
printf("%s: resetctrl: %p\n", __FUNCTION__, &ai->resetctrl);
#endif
W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
OSL_DELAY(10);
/* ensure there are no pending backplane operations */
SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
W_REG(sii->osh, &ai->ioctrl, (bits | resetbits | SICF_FGC | SICF_CLOCK_EN));
dummy = R_REG(sii->osh, &ai->ioctrl);
#ifdef CUSTOMER_HW4_DEBUG
printf("%s: ioctrl: %p dummy: 0x%x\n", __FUNCTION__, &ai->ioctrl, dummy);
#endif
BCM_REFERENCE(dummy);
/* ensure there are no pending backplane operations */
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
while (R_REG(sii->osh, &ai->resetctrl) != 0 && --loop_counter != 0) {
/* ensure there are no pending backplane operations */
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
/* take core out of reset */
W_REG(sii->osh, &ai->resetctrl, 0);
#ifdef CUSTOMER_HW4_DEBUG
printf("%s: loop_counter: %d resetstatus: %p resetctrl: %p\n",
__FUNCTION__, loop_counter, &ai->resetstatus, &ai->resetctrl);
#endif
/* ensure there are no pending backplane operations */
SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
}
W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN));
dummy = R_REG(sii->osh, &ai->ioctrl);
#ifdef CUSTOMER_HW4_DEBUG
printf("%s: ioctl: %p dummy: 0x%x\n", __FUNCTION__, &ai->ioctrl, dummy);
#endif
BCM_REFERENCE(dummy);
OSL_DELAY(1);
}
void
ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
uint idx = sii->curidx;
if (cores_info->wrapba2[idx] != 0) {
ai_setcoreidx_2ndwrap(sih, idx);
_ai_core_reset(sih, bits, resetbits);
ai_setcoreidx(sih, idx);
}
_ai_core_reset(sih, bits, resetbits);
}
void
ai_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
uint32 w;
if (BCM47162_DMP()) {
SI_ERROR(("%s: Accessing MIPS DMP register (ioctrl) on 47162a0",
__FUNCTION__));
return;
}
if (BCM5357_DMP()) {
SI_ERROR(("%s: Accessing USB20H DMP register (ioctrl) on 5357\n",
__FUNCTION__));
return;
}
if (BCM4707_DMP()) {
SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
__FUNCTION__));
return;
}
if (PMU_DMP()) {
SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
__FUNCTION__));
return;
}
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
W_REG(sii->osh, &ai->ioctrl, w);
}
}
uint32
ai_core_cflags(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
uint32 w;
if (BCM47162_DMP()) {
SI_ERROR(("%s: Accessing MIPS DMP register (ioctrl) on 47162a0",
__FUNCTION__));
return 0;
}
if (BCM5357_DMP()) {
SI_ERROR(("%s: Accessing USB20H DMP register (ioctrl) on 5357\n",
__FUNCTION__));
return 0;
}
if (BCM4707_DMP()) {
SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
__FUNCTION__));
return 0;
}
if (PMU_DMP()) {
SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
__FUNCTION__));
return 0;
}
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
W_REG(sii->osh, &ai->ioctrl, w);
}
return R_REG(sii->osh, &ai->ioctrl);
}
uint32
ai_core_sflags(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
uint32 w;
if (BCM47162_DMP()) {
SI_ERROR(("%s: Accessing MIPS DMP register (iostatus) on 47162a0",
__FUNCTION__));
return 0;
}
if (BCM5357_DMP()) {
SI_ERROR(("%s: Accessing USB20H DMP register (iostatus) on 5357\n",
__FUNCTION__));
return 0;
}
if (BCM4707_DMP()) {
SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
__FUNCTION__));
return 0;
}
if (PMU_DMP()) {
SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
__FUNCTION__));
return 0;
}
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
ASSERT((mask & ~SISF_CORE_BITS) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val);
W_REG(sii->osh, &ai->iostatus, w);
}
return R_REG(sii->osh, &ai->iostatus);
}
#if defined(BCMDBG_PHYDUMP)
/* print interesting aidmp registers */
void
ai_dumpregs(si_t *sih, struct bcmstrbuf *b)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
osl_t *osh;
aidmp_t *ai;
uint i;
osh = sii->osh;
for (i = 0; i < sii->numcores; i++) {
si_setcoreidx(&sii->pub, i);
ai = sii->curwrap;
bcm_bprintf(b, "core 0x%x: \n", cores_info->coreid[i]);
if (BCM47162_DMP()) {
bcm_bprintf(b, "Skipping mips74k in 47162a0\n");
continue;
}
if (BCM5357_DMP()) {
bcm_bprintf(b, "Skipping usb20h in 5357\n");
continue;
}
if (BCM4707_DMP()) {
bcm_bprintf(b, "Skipping chipcommonb in 4707\n");
continue;
}
if (PMU_DMP()) {
bcm_bprintf(b, "Skipping pmu core\n");
continue;
}
bcm_bprintf(b, "ioctrlset 0x%x ioctrlclear 0x%x ioctrl 0x%x iostatus 0x%x"
"ioctrlwidth 0x%x iostatuswidth 0x%x\n"
"resetctrl 0x%x resetstatus 0x%x resetreadid 0x%x resetwriteid 0x%x\n"
"errlogctrl 0x%x errlogdone 0x%x errlogstatus 0x%x"
"errlogaddrlo 0x%x errlogaddrhi 0x%x\n"
"errlogid 0x%x errloguser 0x%x errlogflags 0x%x\n"
"intstatus 0x%x config 0x%x itcr 0x%x\n",
R_REG(osh, &ai->ioctrlset),
R_REG(osh, &ai->ioctrlclear),
R_REG(osh, &ai->ioctrl),
R_REG(osh, &ai->iostatus),
R_REG(osh, &ai->ioctrlwidth),
R_REG(osh, &ai->iostatuswidth),
R_REG(osh, &ai->resetctrl),
R_REG(osh, &ai->resetstatus),
R_REG(osh, &ai->resetreadid),
R_REG(osh, &ai->resetwriteid),
R_REG(osh, &ai->errlogctrl),
R_REG(osh, &ai->errlogdone),
R_REG(osh, &ai->errlogstatus),
R_REG(osh, &ai->errlogaddrlo),
R_REG(osh, &ai->errlogaddrhi),
R_REG(osh, &ai->errlogid),
R_REG(osh, &ai->errloguser),
R_REG(osh, &ai->errlogflags),
R_REG(osh, &ai->intstatus),
R_REG(osh, &ai->config),
R_REG(osh, &ai->itcr));
}
}
#endif
void
ai_enable_backplane_timeouts(si_t *sih)
{
#ifdef AXI_TIMEOUTS
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
int i;
for (i = 0; i < sii->num_br; ++i) {
ai = (aidmp_t *) sii->br_wrapba[i];
W_REG(sii->osh, &ai->errlogctrl, (1 << AIELC_TO_ENAB_SHIFT) |
((AXI_TO_VAL << AIELC_TO_EXP_SHIFT) & AIELC_TO_EXP_MASK));
}
#endif /* AXI_TIMEOUTS */
}
void
ai_clear_backplane_to(si_t *sih)
{
#ifdef AXI_TIMEOUTS
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
int i;
uint32 errlogstatus;
for (i = 0; i < sii->num_br; ++i) {
ai = (aidmp_t *) sii->br_wrapba[i];
/* check for backplane timeout & clear backplane hang */
errlogstatus = R_REG(sii->osh, &ai->errlogstatus);
if ((errlogstatus & AIELS_TIMEOUT_MASK) != 0) {
/* set ErrDone to clear the condition */
W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
/* SPINWAIT on errlogstatus timeout status bits */
while (R_REG(sii->osh, &ai->errlogstatus) & AIELS_TIMEOUT_MASK)
;
/* only reset APB Bridge on timeout (not slave error, or dec error) */
switch (errlogstatus & AIELS_TIMEOUT_MASK) {
case 0x1:
printf("AXI slave error");
break;
case 0x2:
/* reset APB Bridge */
OR_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
/* sync write */
(void)R_REG(sii->osh, &ai->resetctrl);
/* clear Reset bit */
AND_REG(sii->osh, &ai->resetctrl, ~(AIRC_RESET));
/* sync write */
(void)R_REG(sii->osh, &ai->resetctrl);
printf("AXI timeout");
break;
case 0x3:
printf("AXI decode error");
break;
default:
; /* should be impossible */
}
printf("; APB Bridge %d\n", i);
printf("\t errlog: lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x",
R_REG(sii->osh, &ai->errlogaddrlo),
R_REG(sii->osh, &ai->errlogaddrhi),
R_REG(sii->osh, &ai->errlogid),
R_REG(sii->osh, &ai->errlogflags));
printf(", status 0x%08x\n", errlogstatus);
}
}
#endif /* AXI_TIMEOUTS */
}