px4-firmware/nuttx/drivers/mmcsd/mmcsd_sdio.c

3179 lines
98 KiB
C

/****************************************************************************
* drivers/mmcsd/mmcsd_sdio.c
*
* Copyright (C) 2009-2012 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/compiler.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <semaphore.h>
#include <debug.h>
#include <errno.h>
#include <nuttx/kmalloc.h>
#include <nuttx/fs/fs.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/clock.h>
#include <nuttx/arch.h>
#include <nuttx/rwbuffer.h>
#include <nuttx/sdio.h>
#include <nuttx/mmcsd.h>
#include "mmcsd_internal.h"
#include "mmcsd_sdio.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* The maximum number of references on the driver (because a uint8_t is used.
* Use a larger type if more references are needed.
*/
#define MAX_CREFS 0xff
/* Timing (all in units of microseconds) */
#define MMCSD_POWERUP_DELAY ((useconds_t)250) /* 74 clock cycles @ 400KHz = 185uS */
#define MMCSD_IDLE_DELAY ((useconds_t)50000) /* Short delay to allow change to IDLE state */
#define MMCSD_DSR_DELAY ((useconds_t)100000) /* Time to wait after setting DSR */
#define MMCSD_CLK_DELAY ((useconds_t)500000) /* Delay after changing clock speeds */
/* Data delays (all in units of milliseconds).
*
* For MMC & SD V1.x, these should be based on Nac = TAAC + NSAC; The maximum
* value of TAAC is 80MS and the maximum value of NSAC is 25.5K clock cycle.
* For SD V2.x, a fixed delay of 100MS is recommend which is pretty close to
* the worst case SD V1.x Nac. Here we just use 100MS delay for all data
* transfers.
*/
#define MMCSD_SCR_DATADELAY (100) /* Wait up to 100MS to get SCR */
#define MMCSD_BLOCK_DATADELAY (100) /* Wait up to 100MS to get one data block */
#define IS_EMPTY(priv) (priv->type == MMCSD_CARDTYPE_UNKNOWN)
/****************************************************************************
* Private Types
****************************************************************************/
/* This structure is contains the unique state of the MMC/SD block driver */
struct mmcsd_state_s
{
FAR struct sdio_dev_s *dev; /* The SDIO device bound to this instance */
uint8_t crefs; /* Open references on the driver */
sem_t sem; /* Assures mutually exclusive access to the slot */
/* Status flags */
uint8_t probed:1; /* true: mmcsd_probe() discovered a card */
uint8_t widebus:1; /* true: Wide 4-bit bus selected */
uint8_t mediachanged:1; /* true: Media changed since last check */
uint8_t wrbusy:1; /* true: Last transfer was a write, card may be busy */
uint8_t wrprotect:1; /* true: Card is write protected (from CSD) */
uint8_t locked:1; /* true: Media is locked (from R1) */
uint8_t dsrimp:1; /* true: card supports CMD4/DSR setting (from CSD) */
#ifdef CONFIG_SDIO_DMA
uint8_t dma:1; /* true: hardware supports DMA */
#endif
uint8_t mode:2; /* (See MMCSDMODE_* definitions) */
uint8_t type:4; /* Card type (See MMCSD_CARDTYPE_* definitions) */
uint8_t buswidth:4; /* Bus widthes supported (SD only) */
uint16_t selblocklen; /* The currently selected block length */
uint16_t rca; /* Relative Card Address (RCS) register */
/* Memory card geometry (extracted from the CSD) */
uint8_t blockshift; /* Log2 of blocksize */
uint16_t blocksize; /* Read block length (== block size) */
uint32_t nblocks; /* Number of blocks */
#ifdef CONFIG_HAVE_LONG_LONG
uint64_t capacity; /* Total capacity of volume */
#else
uint32_t capacity; /* Total capacity of volume (Limited to 4Gb) */
#endif
/* Read-ahead and write buffering support */
#if defined(CONFIG_FS_WRITEBUFFER) || defined(CONFIG_FS_READAHEAD)
struct rwbuffer_s rwbuffer;
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Misc Helpers *************************************************************/
static void mmcsd_takesem(FAR struct mmcsd_state_s *priv);
#ifndef CONFIG_SDIO_MUXBUS
# define mmcsd_givesem(p) sem_post(&priv->sem);
#endif
/* Command/response helpers *************************************************/
static int mmcsd_sendcmdpoll(FAR struct mmcsd_state_s *priv,
uint32_t cmd, uint32_t arg);
static int mmcsd_recvR1(FAR struct mmcsd_state_s *priv, uint32_t cmd);
static int mmcsd_recvR6(FAR struct mmcsd_state_s *priv, uint32_t cmd);
static int mmcsd_getSCR(FAR struct mmcsd_state_s *priv, uint32_t scr[2]);
static void mmcsd_decodeCSD(FAR struct mmcsd_state_s *priv,
uint32_t csd[4]);
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
static void mmcsd_decodeCID(FAR struct mmcsd_state_s *priv,
uint32_t cid[4]);
#else
# define mmcsd_decodeCID(priv,cid)
#endif
static void mmcsd_decodeSCR(FAR struct mmcsd_state_s *priv,
uint32_t scr[2]);
static int mmcsd_getR1(FAR struct mmcsd_state_s *priv, FAR uint32_t *r1);
static int mmcsd_verifystate(FAR struct mmcsd_state_s *priv,
uint32_t status);
/* Transfer helpers *********************************************************/
#ifdef CONFIG_FS_WRITABLE
static bool mmcsd_wrprotected(FAR struct mmcsd_state_s *priv);
#endif
static int mmcsd_eventwait(FAR struct mmcsd_state_s *priv,
sdio_eventset_t failevents, uint32_t timeout);
static int mmcsd_transferready(FAR struct mmcsd_state_s *priv);
#ifndef CONFIG_MMCSD_MULTIBLOCK_DISABLE
static int mmcsd_stoptransmission(FAR struct mmcsd_state_s *priv);
#endif
static int mmcsd_setblocklen(FAR struct mmcsd_state_s *priv,
uint32_t blocklen);
static ssize_t mmcsd_readsingle(FAR struct mmcsd_state_s *priv,
FAR uint8_t *buffer, off_t startblock);
#ifndef CONFIG_MMCSD_MULTIBLOCK_DISABLE
static ssize_t mmcsd_readmultiple(FAR struct mmcsd_state_s *priv,
FAR uint8_t *buffer, off_t startblock, size_t nblocks);
#endif
#ifdef CONFIG_FS_READAHEAD
static ssize_t mmcsd_reload(FAR void *dev, FAR uint8_t *buffer,
off_t startblock, size_t nblocks);
#endif
#ifdef CONFIG_FS_WRITABLE
static ssize_t mmcsd_writesingle(FAR struct mmcsd_state_s *priv,
FAR const uint8_t *buffer, off_t startblock);
#ifndef CONFIG_MMCSD_MULTIBLOCK_DISABLE
static ssize_t mmcsd_writemultiple(FAR struct mmcsd_state_s *priv,
FAR const uint8_t *buffer, off_t startblock, size_t nblocks);
#endif
#ifdef CONFIG_FS_WRITEBUFFER
static ssize_t mmcsd_flush(FAR void *dev, FAR const uint8_t *buffer,
off_t startblock, size_t nblocks);
#endif
#endif
/* Block driver methods *****************************************************/
static int mmcsd_open(FAR struct inode *inode);
static int mmcsd_close(FAR struct inode *inode);
static ssize_t mmcsd_read(FAR struct inode *inode, FAR unsigned char *buffer,
size_t startsector, unsigned int nsectors);
#ifdef CONFIG_FS_WRITABLE
static ssize_t mmcsd_write(FAR struct inode *inode,
FAR const unsigned char *buffer, size_t startsector,
unsigned int nsectors);
#endif
static int mmcsd_geometry(FAR struct inode *inode,
FAR struct geometry *geometry);
static int mmcsd_ioctl(FAR struct inode *inode, int cmd,
unsigned long arg);
/* Initialization/uninitialization/reset ************************************/
static void mmcsd_mediachange(FAR void *arg);
static int mmcsd_widebus(FAR struct mmcsd_state_s *priv);
#ifdef CONFIG_MMCSD_MMCSUPPORT
static int mmcsd_mmcinitialize(FAR struct mmcsd_state_s *priv);
#endif
static int mmcsd_sdinitialize(FAR struct mmcsd_state_s *priv);
static int mmcsd_cardidentify(FAR struct mmcsd_state_s *priv);
static int mmcsd_probe(FAR struct mmcsd_state_s *priv);
static int mmcsd_removed(FAR struct mmcsd_state_s *priv);
static int mmcsd_hwinitialize(FAR struct mmcsd_state_s *priv);
static void mmcsd_hwuninitialize(FAR struct mmcsd_state_s *priv);
/****************************************************************************
* Private Data
****************************************************************************/
static const struct block_operations g_bops =
{
mmcsd_open, /* open */
mmcsd_close, /* close */
mmcsd_read, /* read */
#ifdef CONFIG_FS_WRITABLE
mmcsd_write, /* write */
#else
NULL, /* write */
#endif
mmcsd_geometry, /* geometry */
mmcsd_ioctl /* ioctl */
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Misc Helpers
****************************************************************************/
static void mmcsd_takesem(FAR struct mmcsd_state_s *priv)
{
/* Take the semaphore, giving exclusive access to the driver (perhaps
* waiting)
*/
while (sem_wait(&priv->sem) != 0)
{
/* The only case that an error should occur here is if the wait was
* awakened by a signal.
*/
ASSERT(errno == EINTR);
}
/* Lock the bus if mutually exclusive access to the SDIO bus is required
* on this platform.
*/
#ifdef CONFIG_SDIO_MUXBUS
SDIO_LOCK(priv->dev, TRUE);
#endif
}
#ifdef CONFIG_SDIO_MUXBUS
static void mmcsd_givesem(FAR struct mmcsd_state_s *priv)
{
/* Release the SDIO bus lock, then the MMC/SD driver semaphore in the
* opposite order that they were taken to assure that no deadlock
* conditions will arise.
*/
SDIO_LOCK(priv->dev, FALSE);
sem_post(&priv->sem);
}
#endif
/****************************************************************************
* Command/Response Helpers
****************************************************************************/
/****************************************************************************
* Name: mmcsd_sendcmdpoll
*
* Description:
* Send a command and poll-wait for the response.
*
****************************************************************************/
static int mmcsd_sendcmdpoll(FAR struct mmcsd_state_s *priv, uint32_t cmd,
uint32_t arg)
{
int ret;
/* Send the command */
ret = SDIO_SENDCMD(priv->dev, cmd, arg);
if (ret == OK)
{
/* Then poll-wait until the response is available */
ret = SDIO_WAITRESPONSE(priv->dev, cmd);
if (ret != OK)
{
fdbg("ERROR: Wait for response to cmd: %08x failed: %d\n", cmd, ret);
}
}
return ret;
}
/****************************************************************************
* Name: mmcsd_sendcmd4
*
* Description:
* Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been
* provided and (2) the card supports a DSR register. If no DSR value
* the card default value (0x0404) will be used.
*
****************************************************************************/
static inline int mmcsd_sendcmd4(FAR struct mmcsd_state_s *priv)
{
int ret = OK;
#ifdef CONFIG_MMCSD_DSR
/* The dsr_imp bit from the CSD will tell us if the card supports setting
* the DSR via CMD4 or not.
*/
if (priv->dsrimp != false)
{
/* CMD4 = SET_DSR will set the cards DSR register. The DSR and CMD4
* support are optional. However, since this is a broadcast command
* with no response (like CMD0), we will never know if the DSR was
* set correctly or not
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD4, CONFIG_MMCSD_DSR << 16);
up_udelay(MMCSD_DSR_DELAY);
/* Send it again to have more confidence */
mmcsd_sendcmdpoll(priv, MMCSD_CMD4, CONFIG_MMCSD_DSR << 16);
up_udelay(MMCSD_DSR_DELAY);
}
#endif
return ret;
}
/****************************************************************************
* Name: mmcsd_recvR1
*
* Description:
* Receive R1 response and check for errors.
*
****************************************************************************/
static int mmcsd_recvR1(FAR struct mmcsd_state_s *priv, uint32_t cmd)
{
uint32_t r1;
int ret;
/* Get the R1 response from the hardware */
ret = SDIO_RECVR1(priv->dev, cmd, &r1);
if (ret == OK)
{
/* Check if R1 reports an error */
if ((r1 & MMCSD_R1_ERRORMASK) != 0)
{
/* Card locked is considered an error. Save the card locked
* indication for later use.
*/
fvdbg("ERROR: R1=%08x\n", r1);
priv->locked = ((r1 & MMCSD_R1_CARDISLOCKED) != 0);
ret = -EIO;
}
}
return ret;
}
/****************************************************************************
* Name: mmcsd_recvR6
*
* Description:
* Receive R6 response and check for errors. On success, priv->rca is set
* to the received RCA
*
****************************************************************************/
static int mmcsd_recvR6(FAR struct mmcsd_state_s *priv, uint32_t cmd)
{
uint32_t r6 = 0;
int ret;
/* R6 Published RCA Response (48-bit, SD card only)
* 47 0 Start bit
* 46 0 Transmission bit (0=from card)
* 45:40 bit5 - bit0 Command index (0-63)
* 39:8 bit31 - bit0 32-bit Argument Field, consisting of:
* [31:16] New published RCA of card
* [15:0] Card status bits {23,22,19,12:0}
* 7:1 bit6 - bit0 CRC7
* 0 1 End bit
*
* Get the R1 response from the hardware
*/
ret = SDIO_RECVR6(priv->dev, cmd, &r6);
if (ret == OK)
{
/* Check if R6 reports an error */
if ((r6 & MMCSD_R6_ERRORMASK) == 0)
{
/* No, save the RCA and return success */
priv->rca = (uint16_t)(r6 >> 16);
return OK;
}
/* Otherwise, return an I/O failure */
ret = -EIO;
}
fdbg("ERROR: Failed to get RCA. R6=%08x: %d\n", r6, ret);
return ret;
}
/****************************************************************************
* Name: mmcsd_getSCR
*
* Description:
* Obtain the SD card's Configuration Register (SCR)
*
* Returned Value:
* OK on success; a negated ernno on failure.
*
****************************************************************************/
static int mmcsd_getSCR(FAR struct mmcsd_state_s *priv, uint32_t scr[2])
{
int ret;
/* Set Block Size To 8 Bytes */
ret = mmcsd_setblocklen(priv, 8);
if (ret != OK)
{
fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Send CMD55 APP_CMD with argument as card's RCA */
mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16);
ret = mmcsd_recvR1(priv, SD_CMD55);
if (ret != OK)
{
fdbg("ERROR: RECVR1 for CMD55 failed: %d\n", ret);
return ret;
}
/* Setup up to receive data with interrupt mode */
SDIO_BLOCKSETUP(priv->dev, 8, 1);
SDIO_RECVSETUP(priv->dev, (FAR uint8_t*)scr, 8);
/* Send ACMD51 SD_APP_SEND_SCR with argument as 0 to start data receipt */
(void)SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR);
mmcsd_sendcmdpoll(priv, SD_ACMD51, 0);
ret = mmcsd_recvR1(priv, SD_ACMD51);
if (ret != OK)
{
fdbg("ERROR: RECVR1 for ACMD51 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Wait for data to be transferred */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, MMCSD_SCR_DATADELAY);
if (ret != OK)
{
fdbg("ERROR: mmcsd_eventwait for READ DATA failed: %d\n", ret);
}
return ret;
}
/****************************************************************************
* Name: mmcsd_decodeCSD
*
* Description:
* Decode and extract necessary information from the CSD. If debug is
* enabled, then decode and show the full contents of the CSD.
*
* Returned Value:
* OK on success; a negated ernno on failure. On success, the following
* values will be set in the driver state structure:
*
* priv->dsrimp true: card supports CMD4/DSR setting (from CSD)
* priv->wrprotect true: card is write protected (from CSD)
* priv->blocksize Read block length (== block size)
* priv->nblocks Number of blocks
* priv->capacity Total capacity of volume
*
****************************************************************************/
static void mmcsd_decodeCSD(FAR struct mmcsd_state_s *priv, uint32_t csd[4])
{
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
struct mmcsd_csd_s decoded;
#endif
unsigned int readbllen;
bool permwriteprotect;
bool tmpwriteprotect;
/* Word 1: Bits 127-96:
*
* CSD_STRUCTURE 127:126 CSD structure
* SPEC_VERS 125:122 (MMC) Spec version
* TAAC 119:112 Data read access-time-1
* TIME_VALUE 6:3 Time mantissa
* TIME_UNIT 2:0 Time exponent
* NSAC 111:104 Data read access-time-2 in CLK cycle(NSAC*100)
* TRAN_SPEED 103:96 Max. data transfer rate
* TIME_VALUE 6:3 Rate exponent
* TRANSFER_RATE_UNIT 2:0 Rate mantissa
*/
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
memset(&decoded, 0, sizeof(struct mmcsd_csd_s));
decoded.csdstructure = csd[0] >> 30;
decoded.mmcspecvers = (csd[0] >> 26) & 0x0f;
decoded.taac.timevalue = (csd[0] >> 19) & 0x0f;
decoded.taac.timeunit = (csd[0] >> 16) & 7;
decoded.nsac = (csd[0] >> 8) & 0xff;
decoded.transpeed.timevalue = (csd[0] >> 3) & 0x0f;
decoded.transpeed.transferrateunit = csd[0] & 7;
#endif
/* Word 2: Bits 64:95
* CCC 95:84 Card command classes
* READ_BL_LEN 83:80 Max. read data block length
* READ_BL_PARTIAL 79:79 Partial blocks for read allowed
* WRITE_BLK_MISALIGN 78:78 Write block misalignment
* READ_BLK_MISALIGN 77:77 Read block misalignment
* DSR_IMP 76:76 DSR implemented
* Byte addressed SD and MMC:
* C_SIZE 73:62 Device size
* Block addressed SD:
* 75:70 (reserved)
* C_SIZE 48:69 Device size
*/
priv->dsrimp = (csd[1] >> 12) & 1;
readbllen = (csd[1] >> 16) & 0x0f;
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
decoded.ccc = (csd[1] >> 20) & 0x0fff;
decoded.readbllen = (csd[1] >> 16) & 0x0f;
decoded.readblpartial = (csd[1] >> 15) & 1;
decoded.writeblkmisalign = (csd[1] >> 14) & 1;
decoded.readblkmisalign = (csd[1] >> 13) & 1;
decoded.dsrimp = priv->dsrimp;
#endif
/* Word 3: Bits 32-63
*
* Byte addressed SD:
* C_SIZE 73:62 Device size
* VDD_R_CURR_MIN 61:59 Max. read current at Vcc min
* VDD_R_CURR_MAX 58:56 Max. read current at Vcc max
* VDD_W_CURR_MIN 55:53 Max. write current at Vcc min
* VDD_W_CURR_MAX 52:50 Max. write current at Vcc max
* C_SIZE_MULT 49:47 Device size multiplier
* SD_ER_BLK_EN 46:46 Erase single block enable (SD only)
* SD_SECTOR_SIZE 45:39 Erase sector size
* SD_WP_GRP_SIZE 38:32 Write protect group size
* Block addressed SD:
* 75:70 (reserved)
* C_SIZE 48:69 Device size
* 47:47 (reserved)
* SD_ER_BLK_EN 46:46 Erase single block enable (SD only)
* SD_SECTOR_SIZE 45:39 Erase sector size
* SD_WP_GRP_SIZE 38:32 Write protect group size
* MMC:
* C_SIZE 73:62 Device size
* VDD_R_CURR_MIN 61:59 Max. read current at Vcc min
* VDD_R_CURR_MAX 58:56 Max. read current at Vcc max
* VDD_W_CURR_MIN 55:53 Max. write current at Vcc min
* VDD_W_CURR_MAX 52:50 Max. write current at Vcc max
* C_SIZE_MULT 49:47 Device size multiplier
* MMC_SECTOR_SIZE 46:42 Erase sector size
* MMC_ER_GRP_SIZE 41:37 Erase group size (MMC)
* MMC_WP_GRP_SIZE 36:32 Write protect group size
*/
if (IS_BLOCK(priv->type))
{
/* Block addressed SD:
*
* C_SIZE: 69:64 from Word 2 and 63:48 from Word 3
*
* 512 = (1 << 9)
* 1024 = (1 << 10)
* 512*1024 = (1 << 19)
*/
uint32_t csize = ((csd[1] & 0x3f) << 16) | (csd[2] >> 16);
#ifdef CONFIG_HAVE_LONG_LONG
priv->capacity = ((uint64_t)(csize + 1)) << 19;
#else
priv->capacity = (csize + 1) << 19;
#endif
priv->blockshift = 9;
priv->blocksize = 1 << 9;
priv->nblocks = priv->capacity >> 9;
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
decoded.u.sdblock.csize = csize;
decoded.u.sdblock.sderblen = (csd[2] >> 14) & 1;
decoded.u.sdblock.sdsectorsize = (csd[2] >> 7) & 0x7f;
decoded.u.sdblock.sdwpgrpsize = csd[2] & 0x7f;
#endif
}
else
{
/* Byte addressed SD:
*
* C_SIZE: 73:64 from Word 2 and 63:62 from Word 3
*/
uint16_t csize = ((csd[1] & 0x03ff) << 2) | ((csd[2] >> 30) & 3);
uint8_t csizemult = (csd[2] >> 15) & 7;
priv->nblocks = ((uint32_t)csize + 1) * (1 << (csizemult + 2));
priv->blockshift = readbllen;
priv->blocksize = (1 << readbllen);
priv->capacity = (priv->nblocks << readbllen);
/* Some devices, such as 2Gb devices, report blocksizes larger than 512 bytes
* but still expect to be accessed with a 512 byte blocksize.
*
* NOTE: A minor optimization would be to eliminated priv->blocksize and
* priv->blockshift: Those values will be 512 and 9 in all cases anyway.
*/
if (priv->blocksize > 512)
{
priv->nblocks <<= (priv->blockshift - 9);
priv->blocksize = 512;
priv->blockshift = 9;
}
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
if (IS_SD(priv->type))
{
decoded.u.sdbyte.csize = csize;
decoded.u.sdbyte.vddrcurrmin = (csd[2] >> 27) & 7;
decoded.u.sdbyte.vddrcurrmax = (csd[2] >> 24) & 7;
decoded.u.sdbyte.vddwcurrmin = (csd[2] >> 21) & 7;
decoded.u.sdbyte.vddwcurrmax = (csd[2] >> 18) & 7;
decoded.u.sdbyte.csizemult = csizemult;
decoded.u.sdbyte.sderblen = (csd[2] >> 14) & 1;
decoded.u.sdbyte.sdsectorsize = (csd[2] >> 7) & 0x7f;
decoded.u.sdbyte.sdwpgrpsize = csd[2] & 0x7f;
}
#ifdef CONFIG_MMCSD_MMCSUPPORT
else if (IS_MMC(priv->type))
{
decoded.u.mmc.csize = csize;
decoded.u.mmc.vddrcurrmin = (csd[2] >> 27) & 7;
decoded.u.mmc.vddrcurrmax = (csd[2] >> 24) & 7;
decoded.u.mmc.vddwcurrmin = (csd[2] >> 21) & 7;
decoded.u.mmc.vddwcurrmax = (csd[2] >> 18) & 7;
decoded.u.mmc.csizemult = csizemult;
decoded.u.mmc.er.mmc22.sectorsize = (csd[2] >> 10) & 0x1f;
decoded.u.mmc.er.mmc22.ergrpsize = (csd[2] >> 5) & 0x1f;
decoded.u.mmc.mmcwpgrpsize = csd[2] & 0x1f;
}
#endif
#endif
}
/* Word 4: Bits 0-31
* WP_GRP_EN 31:31 Write protect group enable
* MMC DFLT_ECC 30:29 Manufacturer default ECC (MMC only)
* R2W_FACTOR 28:26 Write speed factor
* WRITE_BL_LEN 25:22 Max. write data block length
* WRITE_BL_PARTIAL 21:21 Partial blocks for write allowed
* FILE_FORMAT_GROUP 15:15 File format group
* COPY 14:14 Copy flag (OTP)
* PERM_WRITE_PROTECT 13:13 Permanent write protection
* TMP_WRITE_PROTECT 12:12 Temporary write protection
* FILE_FORMAT 10:11 File format
* ECC 9:8 ECC (MMC only)
* CRC 7:1 CRC
* Not used 0:0
*/
permwriteprotect = (csd[3] >> 13) & 1;
tmpwriteprotect = (csd[3] >> 12) & 1;
priv->wrprotect = (permwriteprotect || tmpwriteprotect);
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
decoded.wpgrpen = csd[3] >> 31;
decoded.mmcdfltecc = (csd[3] >> 29) & 3;
decoded.r2wfactor = (csd[3] >> 26) & 7;
decoded.writebllen = (csd[3] >> 22) & 0x0f;
decoded.writeblpartial = (csd[3] >> 21) & 1;
decoded.fileformatgrp = (csd[3] >> 15) & 1;
decoded.copy = (csd[3] >> 14) & 1;
decoded.permwriteprotect = permwriteprotect;
decoded.tmpwriteprotect = tmpwriteprotect;
decoded.fileformat = (csd[3] >> 10) & 3;
decoded.mmcecc = (csd[3] >> 8) & 3;
decoded.crc = (csd[3] >> 1) & 0x7f;
fvdbg("CSD:\n");
fvdbg(" CSD_STRUCTURE: %d SPEC_VERS: %d (MMC)\n",
decoded.csdstructure, decoded.mmcspecvers);
fvdbg(" TAAC {TIME_UNIT: %d TIME_VALUE: %d} NSAC: %d\n",
decoded.taac.timeunit, decoded.taac.timevalue, decoded.nsac);
fvdbg(" TRAN_SPEED {TRANSFER_RATE_UNIT: %d TIME_VALUE: %d}\n",
decoded.transpeed.transferrateunit, decoded.transpeed.timevalue);
fvdbg(" CCC: %d\n", decoded.ccc);
fvdbg(" READ_BL_LEN: %d READ_BL_PARTIAL: %d\n",
decoded.readbllen, decoded.readblpartial);
fvdbg(" WRITE_BLK_MISALIGN: %d READ_BLK_MISALIGN: %d\n",
decoded.writeblkmisalign, decoded.readblkmisalign);
fvdbg(" DSR_IMP: %d\n",
decoded.dsrimp);
if (IS_BLOCK(priv->type))
{
fvdbg(" SD Block Addressing:\n");
fvdbg(" C_SIZE: %d SD_ER_BLK_EN: %d\n",
decoded.u.sdblock.csize, decoded.u.sdblock.sderblen);
fvdbg(" SD_SECTOR_SIZE: %d SD_WP_GRP_SIZE: %d\n",
decoded.u.sdblock.sdsectorsize, decoded.u.sdblock.sdwpgrpsize);
}
else if (IS_SD(priv->type))
{
fvdbg(" SD Byte Addressing:\n");
fvdbg(" C_SIZE: %d C_SIZE_MULT: %d\n",
decoded.u.sdbyte.csize, decoded.u.sdbyte.csizemult);
fvdbg(" VDD_R_CURR_MIN: %d VDD_R_CURR_MAX: %d\n",
decoded.u.sdbyte.vddrcurrmin, decoded.u.sdbyte.vddrcurrmax);
fvdbg(" VDD_W_CURR_MIN: %d VDD_W_CURR_MAX: %d\n",
decoded.u.sdbyte.vddwcurrmin, decoded.u.sdbyte.vddwcurrmax);
fvdbg(" SD_ER_BLK_EN: %d SD_SECTOR_SIZE: %d (SD) SD_WP_GRP_SIZE: %d\n",
decoded.u.sdbyte.sderblen, decoded.u.sdbyte.sdsectorsize, decoded.u.sdbyte.sdwpgrpsize);
}
#ifdef CONFIG_MMCSD_MMCSUPPORT
else if (IS_MMC(priv->type))
{
fvdbg(" MMC:\n");
fvdbg(" C_SIZE: %d C_SIZE_MULT: %d\n",
decoded.u.mmc.csize, decoded.u.mmc.csizemult);
fvdbg(" VDD_R_CURR_MIN: %d VDD_R_CURR_MAX: %d\n",
decoded.u.mmc.vddrcurrmin, decoded.u.mmc.vddrcurrmax);
fvdbg(" VDD_W_CURR_MIN: %d VDD_W_CURR_MAX: %d\n",
decoded.u.mmc.vddwcurrmin, decoded.u.mmc.vddwcurrmax);
fvdbg(" MMC_SECTOR_SIZE: %d MMC_ER_GRP_SIZE: %d MMC_WP_GRP_SIZE: %d\n",
decoded.u.mmc.er.mmc22.sectorsize, decoded.u.mmc.er.mmc22.ergrpsize,
decoded.u.mmc.mmcwpgrpsize);
}
#endif
fvdbg(" WP_GRP_EN: %d MMC DFLT_ECC: %d (MMC) R2W_FACTOR: %d\n",
decoded.wpgrpen, decoded.mmcdfltecc, decoded.r2wfactor);
fvdbg(" WRITE_BL_LEN: %d WRITE_BL_PARTIAL: %d\n",
decoded.writebllen, decoded.writeblpartial);
fvdbg(" FILE_FORMAT_GROUP: %d COPY: %d\n",
decoded.fileformatgrp, decoded.copy);
fvdbg(" PERM_WRITE_PROTECT: %d TMP_WRITE_PROTECT: %d\n",
decoded.permwriteprotect, decoded.tmpwriteprotect);
fvdbg(" FILE_FORMAT: %d ECC: %d (MMC) CRC: %d\n",
decoded.fileformat, decoded.mmcecc, decoded.crc);
fvdbg("Capacity: %luKb, Block size: %db, nblocks: %d wrprotect: %d\n",
(unsigned long)(priv->capacity / 1024), priv->blocksize,
priv->nblocks, priv->wrprotect);
#endif
}
/****************************************************************************
* Name: mmcsd_decodeCID
*
* Description:
* Show the contents of the Card Indentification Data (CID) (for debug
* purposes only)
*
****************************************************************************/
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
static void mmcsd_decodeCID(FAR struct mmcsd_state_s *priv, uint32_t cid[4])
{
struct mmcsd_cid_s decoded;
/* Word 1: Bits 127-96:
* mid - 127-120 8-bit Manufacturer ID
* oid - 119-104 16-bit OEM/Application ID (ascii)
* pnm - 103-64 40-bit Product Name (ascii) + null terminator
* pnm[0] 103:96
*/
decoded.mid = cid[0] >> 24;
decoded.oid = (cid[0] >> 16) & 0xffff;
decoded.pnm[0] = cid[0] & 0xff;
/* Word 2: Bits 64:95
* pnm - 103-64 40-bit Product Name (ascii) + null terminator
* pnm[1] 95:88
* pnm[2] 87:80
* pnm[3] 79:72
* pnm[4] 71:64
*/
decoded.pnm[1] = cid[1] >> 24;
decoded.pnm[2] = (cid[1] >> 16) & 0xff;
decoded.pnm[3] = (cid[1] >> 8) & 0xff;
decoded.pnm[4] = cid[1] & 0xff;
decoded.pnm[5] = '\0';
/* Word 3: Bits 32-63
* prv - 63-56 8-bit Product revision
* psn - 55-24 32-bit Product serial number
*/
decoded.prv = cid[2] >> 24;
decoded.psn = cid[2] << 8;
/* Word 4: Bits 0-31
* psn - 55-24 32-bit Product serial number
* 23-20 4-bit (reserved)
* mdt - 19:8 12-bit Manufacturing date
* crc - 7:1 7-bit CRC7
*/
decoded.psn |= cid[3] >> 24;
decoded.mdt = (cid[3] >> 8) & 0x0fff;
decoded.crc = (cid[3] >> 1) & 0x7f;
fvdbg("mid: %02x oid: %04x pnm: %s prv: %d psn: %d mdt: %02x crc: %02x\n",
decoded.mid, decoded.oid, decoded.pnm, decoded.prv,
decoded.psn, decoded.mdt, decoded.crc);
}
#endif
/****************************************************************************
* Name: mmcsd_decodeSCR
*
* Description:
* Show the contents of the SD Configuration Register (SCR). The only
* value retained is: priv->buswidth;
*
****************************************************************************/
static void mmcsd_decodeSCR(FAR struct mmcsd_state_s *priv, uint32_t scr[2])
{
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
struct mmcsd_scr_s decoded;
#endif
/* Word 1, bits 63:32
* SCR_STRUCTURE 63:60 4-bit SCR structure version
* SD_VERSION 59:56 4-bit SD memory spec. version
* DATA_STATE_AFTER_ERASE 55:55 1-bit erase status
* SD_SECURITY 54:52 3-bit SD security support level
* SD_BUS_WIDTHS 51:48 4-bit bus width indicator
* Reserved 47:32 16-bit SD reserved space
*/
#ifdef CONFIG_ENDIAN_BIG /* Card transfers SCR in big-endian order */
priv->buswidth = (scr[0] >> 16) & 15;
#else
priv->buswidth = (scr[0] >> 8) & 15;
#endif
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
#ifdef CONFIG_ENDIAN_BIG /* Card SCR is big-endian order / CPU also big-endian
* 60 56 52 48 44 40 36 32
* VVVV SSSS ESSS BBBB RRRR RRRR RRRR RRRR */
decoded.scrversion = scr[0] >> 28;
decoded.sdversion = (scr[0] >> 24) & 15;
decoded.erasestate = (scr[0] >> 23) & 1;
decoded.security = (scr[0] >> 20) & 7;
#else /* Card SCR is big-endian order / CPU is little-endian
* 36 32 44 40 52 48 60 56
* RRRR RRRR RRRR RRRR ESSS BBBB VVVV SSSS */
decoded.scrversion = (scr[0] >> 4) & 15;
decoded.sdversion = scr[0] & 15;
decoded.erasestate = (scr[0] >> 15) & 1;
decoded.security = (scr[0] >> 12) & 7;
#endif
decoded.buswidth = priv->buswidth;
#endif
/* Word 1, bits 63:32
* Reserved 31:0 32-bits reserved for manufacturing usage.
*/
#if defined(CONFIG_DEBUG) && defined (CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_FS)
decoded.mfgdata = scr[1]; /* Might be byte reversed! */
fvdbg("SCR:\n");
fvdbg(" SCR_STRUCTURE: %d SD_VERSION: %d\n",
decoded.scrversion,decoded.sdversion);
fvdbg(" DATA_STATE_AFTER_ERASE: %d SD_SECURITY: %d SD_BUS_WIDTHS: %x\n",
decoded.erasestate, decoded.security, decoded.buswidth);
fvdbg(" Manufacturing data: %08x\n",
decoded.mfgdata);
#endif
}
/****************************************************************************
* Name: mmcsd_getR1
*
* Description:
* Get the R1 status of the card using CMD13
*
****************************************************************************/
static int mmcsd_getR1(FAR struct mmcsd_state_s *priv, FAR uint32_t *r1)
{
uint32_t localR1;
int ret;
DEBUGASSERT(priv != NULL && r1 != NULL);
/* Send CMD13, SEND_STATUS. The addressed card responds by sending its
* R1 card status register.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD13, (uint32_t)priv->rca << 16);
ret = SDIO_RECVR1(priv->dev, MMCSD_CMD13, &localR1);
if (ret == OK)
{
/* Check if R1 reports an error */
if ((localR1 & MMCSD_R1_ERRORMASK) != 0)
{
/* Card locked is considered an error. Save the card locked
* indication for later use.
*/
priv->locked = ((localR1 & MMCSD_R1_CARDISLOCKED) != 0);
ret = -EIO;
}
else
{
/* No errors, return R1 */
*r1 = localR1;
}
}
return ret;
}
/****************************************************************************
* Name: mmcsd_verifystate
*
* Description:
* Verify that the card is in STANDBY state
*
****************************************************************************/
static int mmcsd_verifystate(FAR struct mmcsd_state_s *priv, uint32_t state)
{
uint32_t r1;
int ret;
/* Get the current R1 status from the card */
ret = mmcsd_getR1(priv, &r1);
if (ret != OK)
{
fdbg("ERROR: mmcsd_getR1 failed: %d\n", ret);
return ret;
}
/* Now check if the card is in the expected state. */
if (IS_STATE(r1, state))
{
/* Yes.. return Success */
priv->wrbusy = false;
return OK;
}
return -EINVAL;
}
/****************************************************************************
* Transfer Helpers
****************************************************************************/
/****************************************************************************
* Name: mmcsd_wrprotected
*
* Description:
* Return true if the the card is unlocked an not write protected. The
*
*
****************************************************************************/
#ifdef CONFIG_FS_WRITABLE
static bool mmcsd_wrprotected(FAR struct mmcsd_state_s *priv)
{
/* Check if the card is locked (priv->locked) or write protected either (1)
* via software as reported via the CSD and retained in priv->wrprotect or
* (2) via the mechanical write protect on the card (which we get from the
* SDIO driver via SDIO_WRPROTECTED)
*/
return (priv->wrprotect || priv->locked || SDIO_WRPROTECTED(priv->dev));
}
#endif
/****************************************************************************
* Name: mmcsd_eventwait
*
* Description:
* Wait for the specified events to occur. Check for wakeup on error events.
*
****************************************************************************/
static int mmcsd_eventwait(FAR struct mmcsd_state_s *priv,
sdio_eventset_t failevents, uint32_t timeout)
{
sdio_eventset_t wkupevent;
/* Wait for the set of events enabled by SDIO_EVENTENABLE. */
wkupevent = SDIO_EVENTWAIT(priv->dev, timeout);
/* SDIO_EVENTWAIT returns the event set containing the event(s) that ended
* the wait. It should always be non-zero, but may contain failure as
* well as success events. Check if it contains any failure events.
*/
if ((wkupevent & failevents) != 0)
{
/* Yes.. the failure event is probably SDIOWAIT_TIMEOUT */
fdbg("ERROR: Awakened with %02x\n", wkupevent);
return wkupevent & SDIOWAIT_TIMEOUT ? -ETIMEDOUT : -EIO;
}
/* Since there are no failure events, we must have been awakened by one
* (or more) success events.
*/
return OK;
}
/****************************************************************************
* Name: mmcsd_transferready
*
* Description:
* Check if the MMC/SD card is ready for the next read or write transfer.
* Ready means: (1) card still in the slot, and (2) if the last transfer
* was a write transfer, the card is no longer busy from that transfer.
*
****************************************************************************/
static int mmcsd_transferready(FAR struct mmcsd_state_s *priv)
{
uint32_t starttime;
uint32_t elapsed;
uint32_t r1;
int ret;
/* First, check if the card has been removed. */
if (!SDIO_PRESENT(priv->dev))
{
fdbg("ERROR: Card has been removed\n");
return -ENODEV;
}
/* If the last data transfer was not a write, then we do not have to check
* the card status.
*/
else if (!priv->wrbusy)
{
return OK;
}
/* The card is still present and the last transfer was a write transfer.
* Loop, querying the card state. Return when (1) the card is in the TRANSFER
* state, (2) the card stays in the PROGRAMMING state too long, or (3) the
* card is in any other state.
*
* The PROGRAMMING state occurs normally after a WRITE operation. During this
* time, the card may be busy completing the WRITE and is not available for
* other operations. The card will transition from the PROGRAMMING state to
* the TRANSFER state when the card completes the WRITE operation.
*/
starttime = clock_systimer();
do
{
/* Get the current R1 status from the card */
ret = mmcsd_getR1(priv, &r1);
if (ret != OK)
{
fdbg("ERROR: mmcsd_getR1 failed: %d\n", ret);
return ret;
}
/* Now check if the card is in the expected transfer state. */
if (IS_STATE(r1, MMCSD_R1_STATE_TRAN))
{
/* Yes.. return Success */
priv->wrbusy = false;
return OK;
}
/* Check for the programming state. This is not an error. It means
* that the card is still busy from the last (write) transfer.
*/
else if (!IS_STATE(r1, MMCSD_R1_STATE_PRG))
{
/* Any other state would be an error in this context. There is
* a possibility that the card is not selected. In this case,
* it could be in STANDBY or DISCONNECTED state and the fix
* might b to send CMD7 to re-select the card. Consider this
* if this error occurs.
*/
fdbg("ERROR: Unexpected R1 state: %08x\n", r1);
return -EINVAL;
}
/* We are still in the programming state. Calculate the elapsed
* time... we can't stay in this loop forever!
*/
elapsed = clock_systimer() - starttime;
}
while (elapsed < TICK_PER_SEC);
return -ETIMEDOUT;
}
/****************************************************************************
* Name: mmcsd_stoptransmission
*
* Description:
* Send STOP_TRANSMISSION
*
****************************************************************************/
#ifndef CONFIG_MMCSD_MULTIBLOCK_DISABLE
static int mmcsd_stoptransmission(FAR struct mmcsd_state_s *priv)
{
int ret;
/* Send CMD12, STOP_TRANSMISSION, and verify good R1 return status */
mmcsd_sendcmdpoll(priv, MMCSD_CMD12, 0);
ret = mmcsd_recvR1(priv, MMCSD_CMD12);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1 for CMD12 failed: %d\n", ret);
}
return ret;
}
#endif
/****************************************************************************
* Name: mmcsd_setblocklen
*
* Description:
* Read a single block of data.
*
****************************************************************************/
static int mmcsd_setblocklen(FAR struct mmcsd_state_s *priv, uint32_t blocklen)
{
int ret = OK;
/* Is the block length already selected in the card? */
if (priv->selblocklen != blocklen)
{
/* Send CMD16 = SET_BLOCKLEN. This command sets the block length (in
* bytes) for all following block commands (read and write). Default
* block length is specified in the CSD.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD16, blocklen);
ret = mmcsd_recvR1(priv, MMCSD_CMD16);
if (ret == OK)
{
priv->selblocklen = blocklen;
}
else
{
fdbg("ERROR: mmcsd_recvR1 for CMD16 failed: %d\n", ret);
}
}
return ret;
}
/****************************************************************************
* Name: mmcsd_readsingle
*
* Description:
* Read a single block of data.
*
****************************************************************************/
static ssize_t mmcsd_readsingle(FAR struct mmcsd_state_s *priv,
FAR uint8_t *buffer, off_t startblock)
{
off_t offset;
int ret;
fvdbg("startblock=%d\n", startblock);
DEBUGASSERT(priv != NULL && buffer != NULL);
/* Check if the card is locked */
if (priv->locked)
{
fdbg("ERROR: Card is locked\n");
return -EPERM;
}
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
fdbg("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* If this is a byte addressed SD card, then convert sector start sector
* number to a byte offset
*/
if (IS_BLOCK(priv->type))
{
offset = startblock;
}
else
{
offset = startblock << priv->blockshift;
}
fvdbg("offset=%d\n", offset);
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Configure SDIO controller hardware for the read transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, 1);
SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR);
#ifdef CONFIG_SDIO_DMA
if (priv->dma)
{
SDIO_DMARECVSETUP(priv->dev, buffer, priv->blocksize);
}
else
#endif
{
SDIO_RECVSETUP(priv->dev, buffer, priv->blocksize);
}
/* Send CMD17, READ_SINGLE_BLOCK: Read a block of the size selected
* by the mmcsd_setblocklen() and verify that good R1 status is
* returned. The card state should change from Transfer to Sending-Data
* state.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD17, offset);
ret = mmcsd_recvR1(priv, MMCSD_CMD17);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1 for CMD17 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Then wait for the data transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, MMCSD_BLOCK_DATADELAY);
if (ret != OK)
{
fdbg("ERROR: CMD17 transfer failed: %d\n", ret);
return ret;
}
/* Return value: One sector read */
return 1;
}
/****************************************************************************
* Name: mmcsd_readmultiple
*
* Description:
* Read multiple, contiguous blocks of data from the physical device.
*
****************************************************************************/
#ifndef CONFIG_MMCSD_MULTIBLOCK_DISABLE
static ssize_t mmcsd_readmultiple(FAR struct mmcsd_state_s *priv,
FAR uint8_t *buffer, off_t startblock,
size_t nblocks)
{
size_t nbytes;
off_t offset;
int ret;
fvdbg("startblock=%d nblocks=%d\n", startblock, nblocks);
DEBUGASSERT(priv != NULL && buffer != NULL && nblocks > 1);
/* Check if the card is locked */
if (priv->locked)
{
fdbg("ERROR: Card is locked\n");
return -EPERM;
}
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
fdbg("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* If this is a byte addressed SD card, then convert both the total transfer
* size to bytes and the sector start sector number to a byte offset
*/
nbytes = nblocks << priv->blockshift;
if (IS_BLOCK(priv->type))
{
offset = startblock;
}
else
{
offset = startblock << priv->blockshift;
}
fvdbg("nbytes=%d byte offset=%d\n", nbytes, offset);
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Configure SDIO controller hardware for the read transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, nblocks);
SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR);
#ifdef CONFIG_SDIO_DMA
if (priv->dma)
{
SDIO_DMARECVSETUP(priv->dev, buffer, nbytes);
}
else
#endif
{
SDIO_RECVSETUP(priv->dev, buffer, nbytes);
}
/* Send CMD18, READ_MULT_BLOCK: Read a block of the size selected by
* the mmcsd_setblocklen() and verify that good R1 status is returned
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD18, offset);
ret = mmcsd_recvR1(priv, MMCSD_CMD18);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1 for CMD18 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Wait for the transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, nblocks * MMCSD_BLOCK_DATADELAY);
if (ret != OK)
{
fdbg("ERROR: CMD18 transfer failed: %d\n", ret);
return ret;
}
/* Send STOP_TRANSMISSION */
ret = mmcsd_stoptransmission(priv);
if (ret != OK)
{
fdbg("ERROR: mmcsd_stoptransmission failed: %d\n", ret);
}
/* On success, return the number of blocks read */
return nblocks;
}
#endif
/****************************************************************************
* Name: mmcsd_reload
*
* Description:
* Reload the specified number of sectors from the physical device into the
* read-ahead buffer.
*
****************************************************************************/
#ifdef CONFIG_FS_READAHEAD
static ssize_t mmcsd_reload(FAR void *dev, FAR uint8_t *buffer,
off_t startblock, size_t nblocks)
{
FAR struct mmcsd_state_s *priv = (FAR struct mmcsd_state_s *)dev;
#ifdef CONFIG_MMCSD_MULTIBLOCK_DISABLE
size_t block;
size_t endblock;
#endif
ssize_t ret;
DEBUGASSERT(priv != NULL && buffer != NULL && nblocks > 0)
#ifdef CONFIG_MMCSD_MULTIBLOCK_DISABLE
/* Read each block using only the single block transfer method */
endblock = startblock + nblocks - 1;
for (block = startblock; block <= endblock; block++)
{
/* Read this block into the user buffer */
ret = mmcsd_readsingle(priv, buffer, block);
if (ret < 0)
{
break;
}
/* Increment the buffer pointer by the block size */
buffer += priv->blocksize;
}
#else
/* Use either the single- or muliple-block transfer method */
if (nblocks == 1)
{
ret = mmcsd_readsingle(priv, buffer, startblock);
}
else
{
ret = mmcsd_readmultiple(priv, buffer, startblock, nblocks);
}
#endif
/* On success, return the number of blocks read */
return ret;
}
#endif
/****************************************************************************
* Name: mmcsd_writesingle
*
* Description:
* Write a single block of data to the physical device.
*
****************************************************************************/
#ifdef CONFIG_FS_WRITABLE
static ssize_t mmcsd_writesingle(FAR struct mmcsd_state_s *priv,
FAR const uint8_t *buffer, off_t startblock)
{
off_t offset;
int ret;
fvdbg("startblock=%d\n", startblock);
DEBUGASSERT(priv != NULL && buffer != NULL);
/* Check if the card is locked or write protected (either via software or
* via the mechanical write protect on the card)
*/
if (mmcsd_wrprotected(priv))
{
fdbg("ERROR: Card is locked or write protected\n");
return -EPERM;
}
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
fdbg("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* If this is a byte addressed SD card, then convert sector start sector
* number to a byte offset
*/
if (IS_BLOCK(priv->type))
{
offset = startblock;
}
else
{
offset = startblock << priv->blockshift;
}
fvdbg("offset=%d\n", offset);
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Send CMD24, WRITE_BLOCK, and verify that good R1 status is returned */
mmcsd_sendcmdpoll(priv, MMCSD_CMD24, offset);
ret = mmcsd_recvR1(priv, MMCSD_CMD24);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1 for CMD24 failed: %d\n", ret);
return ret;
}
/* Configure SDIO controller hardware for the write transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, 1);
SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR);
#ifdef CONFIG_SDIO_DMA
if (priv->dma)
{
SDIO_DMASENDSETUP(priv->dev, buffer, priv->blocksize);
}
else
#endif
{
SDIO_SENDSETUP(priv->dev, buffer, priv->blocksize);
}
/* Flag that a write transfer is pending that we will have to check for
* write complete at the beginning of the next transfer.
*/
priv->wrbusy = true;
/* Wait for the transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, MMCSD_BLOCK_DATADELAY);
if (ret != OK)
{
fdbg("ERROR: CMD24 transfer failed: %d\n", ret);
return ret;
}
/* On success, return the number of blocks written */
return 1;
}
#endif
/****************************************************************************
* Name: mmcsd_writemultiple
*
* Description:
* Write multiple, contiguous blocks of data to the physical device.
*
****************************************************************************/
#if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_MULTIBLOCK_DISABLE)
static ssize_t mmcsd_writemultiple(FAR struct mmcsd_state_s *priv,
FAR const uint8_t *buffer, off_t startblock,
size_t nblocks)
{
off_t offset;
size_t nbytes;
int ret;
fvdbg("startblockr=%d nblocks=%d\n", startblock, nblocks);
DEBUGASSERT(priv != NULL && buffer != NULL && nblocks > 1);
/* Check if the card is locked or write protected (either via software or
* via the mechanical write protect on the card)
*/
if (mmcsd_wrprotected(priv))
{
fdbg("ERROR: Card is locked or write protected\n");
return -EPERM;
}
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
fdbg("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* If this is a byte addressed SD card, then convert both the total transfer
* size to bytes and the sector start sector number to a byte offset
*/
nbytes = nblocks << priv->blockshift;
if (IS_BLOCK(priv->type))
{
offset = startblock;
}
else
{
offset = startblock << priv->blockshift;
}
fvdbg("nbytes=%d byte offset=%d\n", nbytes, offset);
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
fdbg("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* If this is an SD card, then send ACMD23 (SET_WR_BLK_COUNT) just before
* sending CMD25 (WRITE_MULTIPLE_BLOCK). This sets the number of write
* blocks to be pre-erased and might make the following multiple block write
* command faster.
*/
if (IS_SD(priv->type))
{
/* Send CMD55, APP_CMD, a verify that good R1 status is retured */
mmcsd_sendcmdpoll(priv, SD_CMD55, 0);
ret = mmcsd_recvR1(priv, SD_CMD55);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1 for CMD55 (ACMD23) failed: %d\n", ret);
return ret;
}
/* Send CMD23, SET_WR_BLK_COUNT, and verify that good R1 status is returned */
mmcsd_sendcmdpoll(priv, SD_ACMD23, 0);
ret = mmcsd_recvR1(priv, SD_ACMD23);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1 for ACMD23 failed: %d\n", ret);
return ret;
}
}
/* Send CMD25, WRITE_MULTIPLE_BLOCK, and verify that good R1 status
* is returned
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD25, offset);
ret = mmcsd_recvR1(priv, MMCSD_CMD25);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1 for CMD24 failed: %d\n", ret);
return ret;
}
/* Configure SDIO controller hardware for the write transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, nblocks);
SDIO_WAITENABLE(priv->dev, SDIOWAIT_TRANSFERDONE|SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR);
#ifdef CONFIG_SDIO_DMA
if (priv->dma)
{
SDIO_DMASENDSETUP(priv->dev, buffer, nbytes);
}
else
#endif
{
SDIO_SENDSETUP(priv->dev, buffer, nbytes);
}
/* Flag that a write transfer is pending that we will have to check for
* write complete at the beginning of the next transfer.
*/
priv->wrbusy = true;
/* Wait for the transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT|SDIOWAIT_ERROR, nblocks * MMCSD_BLOCK_DATADELAY);
if (ret != OK)
{
fdbg("ERROR: CMD18 transfer failed: %d\n", ret);
return ret;
}
/* Send STOP_TRANSMISSION */
ret = mmcsd_stoptransmission(priv);
if (ret != OK)
{
fdbg("ERROR: mmcsd_stoptransmission failed: %d\n", ret);
return ret;
}
/* On success, return the number of blocks read */
return nblocks;
}
#endif
/****************************************************************************
* Name: mmcsd_flush
*
* Description:
* Flush the specified number of sectors from the write buffer to the card.
*
****************************************************************************/
#if defined(CONFIG_FS_WRITABLE) && defined(CONFIG_FS_WRITEBUFFER)
static ssize_t mmcsd_flush(FAR void *dev, FAR const uint8_t *buffer,
off_t startblock, size_t nblocks)
{
FAR struct mmcsd_state_s *priv = (FAR struct mmcsd_state_s *)dev;
#ifndef CONFIG_MMCSD_MULTIBLOCK_DISABLE
size_t block;
size_t endblock;
#endif
ssize_t ret;
DEBUGASSERT(priv != NULL && buffer != NULL && nblocks > 0)
#ifdef CONFIG_MMCSD_MULTIBLOCK_DISABLE
/* Write each block using only the single block transfer method */
endblock = startblock + nblocks - 1;
for (block = startblock; block <= endblock; block++)
{
/* Write this block from the user buffer */
ret = mmcsd_writesingle(priv, buffer, block);
if (ret < 0)
{
break;
}
/* Increment the buffer pointer by the block size */
buffer += priv->blocksize;
}
#else
if (nblocks == 1)
{
ret = mmcsd_writesingle(priv, buffer, startblock);
}
else
{
ret = mmcsd_writemultiple(priv, buffer, startblock, nblocks);
}
#endif
/* On success, return the number of blocks written */
return ret;
}
#endif
/****************************************************************************
* Block Driver Methods
****************************************************************************/
/****************************************************************************
* Name: mmcsd_open
*
* Description: Open the block device
*
****************************************************************************/
static int mmcsd_open(FAR struct inode *inode)
{
FAR struct mmcsd_state_s *priv;
fvdbg("Entry\n");
DEBUGASSERT(inode && inode->i_private);
priv = (FAR struct mmcsd_state_s *)inode->i_private;
/* Just increment the reference count on the driver */
DEBUGASSERT(priv->crefs < MAX_CREFS);
mmcsd_takesem(priv);
priv->crefs++;
mmcsd_givesem(priv);
return OK;
}
/****************************************************************************
* Name: mmcsd_close
*
* Description: close the block device
*
****************************************************************************/
static int mmcsd_close(FAR struct inode *inode)
{
FAR struct mmcsd_state_s *priv;
fvdbg("Entry\n");
DEBUGASSERT(inode && inode->i_private);
priv = (FAR struct mmcsd_state_s *)inode->i_private;
/* Decrement the reference count on the block driver */
DEBUGASSERT(priv->crefs > 0);
mmcsd_takesem(priv);
priv->crefs--;
mmcsd_givesem(priv);
return OK;
}
/****************************************************************************
* Name: mmcsd_read
*
* Description:
* Read the specified numer of sectors from the read-ahead buffer or from
* the physical device.
*
****************************************************************************/
static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer,
size_t startsector, unsigned int nsectors)
{
FAR struct mmcsd_state_s *priv;
#if !defined(CONFIG_FS_READAHEAD) && defined(CONFIG_MMCSD_MULTIBLOCK_DISABLE)
size_t sector;
size_t endsector;
#endif
ssize_t ret = 0;
DEBUGASSERT(inode && inode->i_private);
priv = (FAR struct mmcsd_state_s *)inode->i_private;
fvdbg("startsector: %d nsectors: %d sectorsize: %d\n",
startsector, nsectors, priv->blocksize);
if (nsectors > 0)
{
mmcsd_takesem(priv);
#if defined(CONFIG_FS_READAHEAD)
/* Get the data from the read-ahead buffer */
ret = rwb_read(&priv->rwbuffer, startsector, nsectors, buffer);
#elif defined(CONFIG_MMCSD_MULTIBLOCK_DISABLE)
/* Read each block using only the single block transfer method */
endsector = startsector + nsectors - 1;
for (sector = startsector; sector <= endsector; sector++)
{
/* Read this sector into the user buffer */
ret = mmcsd_readsingle(priv, buffer, sector);
if (ret < 0)
{
break;
}
/* Increment the buffer pointer by the sector size */
buffer += priv->blocksize;
}
#else
/* Use either the single- or muliple-block transfer method */
if (nsectors == 1)
{
ret = mmcsd_readsingle(priv, buffer, startsector);
}
else
{
ret = mmcsd_readmultiple(priv, buffer, startsector, nsectors);
}
#endif
mmcsd_givesem(priv);
}
/* On success, return the number of blocks read */
return ret;
}
/****************************************************************************
* Name: mmcsd_write
*
* Description:
* Write the specified number of sectors to the write buffer or to the
* physical device.
*
****************************************************************************/
#ifdef CONFIG_FS_WRITABLE
static ssize_t mmcsd_write(FAR struct inode *inode, FAR const unsigned char *buffer,
size_t startsector, unsigned int nsectors)
{
FAR struct mmcsd_state_s *priv;
#if !defined(CONFIG_FS_WRITEBUFFER) && defined(CONFIG_MMCSD_MULTIBLOCK_DISABLE)
size_t sector;
size_t endsector;
#endif
ssize_t ret = 0;
fvdbg("sector: %d nsectors: %d sectorsize: %d\n");
DEBUGASSERT(inode && inode->i_private);
priv = (FAR struct mmcsd_state_s *)inode->i_private;
mmcsd_takesem(priv);
#if defined(CONFIG_FS_WRITEBUFFER)
/* Write the data to the write buffer */
ret = rwb_write(&priv->rwbuffer, startsector, nsectors, buffer);
#elif defined(CONFIG_MMCSD_MULTIBLOCK_DISABLE)
/* Write each block using only the single block transfer method */
endsector = startsector + nsectors - 1;
for (sector = startsector; sector <= endsector; sector++)
{
/* Write this block from the user buffer */
ret = mmcsd_writesingle(priv, buffer, sector);
if (ret < 0)
{
break;
}
/* Increment the buffer pointer by the block size */
buffer += priv->blocksize;
}
#else
/* Use either the single- or multiple-block transfer method */
if (nsectors == 1)
{
ret = mmcsd_writesingle(priv, buffer, startsector);
}
else
{
ret = mmcsd_writemultiple(priv, buffer, startsector, nsectors);
}
#endif
mmcsd_givesem(priv);
/* On success, return the number of blocks written */
return ret;
}
#endif
/****************************************************************************
* Name: mmcsd_geometry
*
* Description: Return device geometry
*
****************************************************************************/
static int mmcsd_geometry(FAR struct inode *inode, struct geometry *geometry)
{
FAR struct mmcsd_state_s *priv;
int ret = -EINVAL;
fvdbg("Entry\n");
DEBUGASSERT(inode && inode->i_private);
if (geometry)
{
/* Is there a (supported) card inserted in the slot? */
priv = (FAR struct mmcsd_state_s *)inode->i_private;
mmcsd_takesem(priv);
if (IS_EMPTY(priv))
{
/* No.. return ENODEV */
fvdbg("IS_EMPTY\n");
ret = -ENODEV;
}
else
{
/* Yes.. return the geometry of the card */
geometry->geo_available = true;
geometry->geo_mediachanged = priv->mediachanged;
#ifdef CONFIG_FS_WRITABLE
geometry->geo_writeenabled = !mmcsd_wrprotected(priv);
#else
geometry->geo_writeenabled = false;
#endif
geometry->geo_nsectors = priv->nblocks;
geometry->geo_sectorsize = priv->blocksize;
fvdbg("available: true mediachanged: %s writeenabled: %s\n",
geometry->geo_mediachanged ? "true" : "false",
geometry->geo_writeenabled ? "true" : "false");
fvdbg("nsectors: %ld sectorsize: %d\n",
(long)geometry->geo_nsectors, geometry->geo_sectorsize);
priv->mediachanged = false;
ret = OK;
}
mmcsd_givesem(priv);
}
return ret;
}
/****************************************************************************
* Name: mmcsd_ioctl
*
* Description: Return device geometry
*
****************************************************************************/
static int mmcsd_ioctl(FAR struct inode *inode, int cmd, unsigned long arg)
{
FAR struct mmcsd_state_s *priv;
int ret;
fvdbg("Entry\n");
DEBUGASSERT(inode && inode->i_private);
priv = (FAR struct mmcsd_state_s *)inode->i_private;
/* Process the IOCTL by command */
mmcsd_takesem(priv);
switch (cmd)
{
case BIOC_PROBE: /* Check for media in the slot */
{
fvdbg("BIOC_PROBE\n");
/* Probe the MMC/SD slot for media */
ret = mmcsd_probe(priv);
if (ret != OK)
{
fdbg("ERROR: mmcsd_probe failed: %d\n", ret);
}
}
break;
case BIOC_EJECT: /* Media has been removed from the slot */
{
fvdbg("BIOC_EJECT\n");
/* Process the removal of the card */
ret = mmcsd_removed(priv);
if (ret != OK)
{
fdbg("ERROR: mmcsd_removed failed: %d\n", ret);
}
/* Enable logic to detect if a card is re-inserted */
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
}
break;
default:
ret = -ENOTTY;
break;
}
mmcsd_givesem(priv);
return ret;
}
/****************************************************************************
* Initialization/uninitialization/reset
****************************************************************************/
/****************************************************************************
* Name: mmcsd_mediachange
*
* Description:
* This is a callback function from the SDIO driver that indicates that
* there has been a change in the slot... either a card has been inserted
* or a card has been removed.
*
* Assumptions:
* This callback is NOT supposd to run in the context of an interrupt
* handler; it is probably running in the context of work thread.
*
****************************************************************************/
static void mmcsd_mediachange(FAR void *arg)
{
FAR struct mmcsd_state_s *priv = (FAR struct mmcsd_state_s *)arg;
fvdbg("arg: %p\n", arg);
DEBUGASSERT(priv);
/* Is there a card present in the slot? */
mmcsd_takesem(priv);
if (SDIO_PRESENT(priv->dev))
{
/* No... process the card insertion. This could cause chaos if we think
* that a card is already present and there are mounted filesystems!
* NOTE that mmcsd_probe() will always re-enable callbacks appropriately.
*/
(void)mmcsd_probe(priv);
}
else
{
/* No... process the card removal. This could have very bad implications
* for any mounted file systems! NOTE that mmcsd_removed() does NOT
* re-enable callbacks so we will need to do that here.
*/
(void)mmcsd_removed(priv);
/* Enable logic to detect if a card is re-inserted */
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
}
mmcsd_givesem(priv);
}
/****************************************************************************
* Name: mmcsd_widebus
*
* Description:
* An SD card has been inserted and its SCR has been obtained. Select wide
* (4-bit) bus operation if the card supports it.
*
* Assumptions:
* This function is called only once per card insertion as part of the SD
* card initialization sequence. It is not necessary to reselect the card
* there is not need to check if wide bus operation has already been
* selected.
*
****************************************************************************/
static int mmcsd_widebus(FAR struct mmcsd_state_s *priv)
{
#ifndef CONFIG_SDIO_WIDTH_D1_ONLY
int ret;
/* Check if the SD card supports this feature (as reported in the SCR) */
if ((priv->buswidth & MMCSD_SCR_BUSWIDTH_4BIT) != 0)
{
/* Disconnect any CD/DAT3 pull up using ACMD42. ACMD42 is optional and
* need not be supported by all SD calls.
*
* First end CMD55 APP_CMD with argument as card's RCA.
*/
mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16);
ret = mmcsd_recvR1(priv, SD_CMD55);
if (ret != OK)
{
fdbg("ERROR: RECVR1 for CMD55 of ACMD42: %d\n", ret);
return ret;
}
/* Then send ACMD42 with the argument to disconnect the CD/DAT3
* pullup
*/
mmcsd_sendcmdpoll(priv, SD_ACMD42, MMCSD_ACMD42_CD_DISCONNECT);
ret = mmcsd_recvR1(priv, SD_ACMD42);
if (ret != OK)
{
fvdbg("WARNING: SD card does not support ACMD42: %d\n", ret);
return ret;
}
/* Now send ACMD6 to select wide, 4-bit bus operation, beginning
* with CMD55, APP_CMD:
*/
mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16);
ret = mmcsd_recvR1(priv, SD_CMD55);
if (ret != OK)
{
fdbg("ERROR: RECVR1 for CMD55 of ACMD6: %d\n", ret);
return ret;
}
/* Then send ACMD6 */
mmcsd_sendcmdpoll(priv, SD_ACMD6, MMCSD_ACMD6_BUSWIDTH_4);
ret = mmcsd_recvR1(priv, SD_ACMD6);
if (ret != OK)
{
return ret;
}
/* Configure the SDIO peripheral */
fvdbg("Wide bus operation selected\n");
SDIO_WIDEBUS(priv->dev, true);
priv->widebus = true;
SDIO_CLOCK(priv->dev, CLOCK_SD_TRANSFER_4BIT);
up_udelay(MMCSD_CLK_DELAY);
return OK;
}
/* Wide bus operation not supported */
fdbg("WARNING: Card does not support wide-bus operation\n");
return -ENOSYS;
#else /* CONFIG_SDIO_WIDTH_D1_ONLY */
fvdbg("Wide-bus operation is disabled\n");
return -ENOSYS;
#endif /* CONFIG_SDIO_WIDTH_D1_ONLY */
}
/****************************************************************************
* Name: mmcsd_mmcinitialize
*
* Description:
* We believe that there is an MMC card in the slot. Attempt to initialize
* and configure the MMC card. This is called only from mmcsd_probe().
*
****************************************************************************/
#ifdef CONFIG_MMCSD_MMCSUPPORT
static int mmcsd_mmcinitialize(FAR struct mmcsd_state_s *priv)
{
uint32_t cid[4];
uint32_t csd[4];
int ret;
/* At this point, slow, ID mode clocking has been supplied to the card
* and CMD0 has been sent successfully. CMD1 succeeded and ACMD41 failed
* so there is good evidence that we have an MMC card inserted into the
* slot.
*
* Send CMD2, ALL_SEND_CID. This implementation supports only one MMC slot.
* If mulitple cards were installed, each card would respond to CMD2 by
* sending its CID (only one card completes the response at a time). The
* driver should send CMD2 and assign an RCAs until no response to
* ALL_SEND_CID is received. CMD2 causes transition to identification state/
* card-identification mode */
mmcsd_sendcmdpoll(priv, MMCSD_CMD2, 0);
ret = SDIO_RECVR2(priv->dev, MMCSD_CMD2, cid);
if (ret != OK)
{
fdbg("ERROR: SDIO_RECVR2 for MMC CID failed: %d\n", ret);
return ret;
}
mmcsd_decodeCID(priv, cid);
/* Send CMD3, SET_RELATIVE_ADDR. This command is used to assign a logical
* address to the card. For MMC, the host assigns the address. CMD3 causes
* transition to standby state/data-transfer mode
*/
priv->rca = 1; /* There is only one card */
mmcsd_sendcmdpoll(priv, MMC_CMD3, priv->rca << 16);
ret = mmcsd_recvR1(priv, MMC_CMD3);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1(CMD3) failed: %d\n", ret);
return ret;
}
/* This should have caused a transition to standby state. However, this will
* not be reflected in the present R1 status. R1/6 contains the state of the
* card when the command was received, not when it completed execution.
*
* Verify that we are in standby state/data-transfer mode
*/
ret = mmcsd_verifystate(priv, MMCSD_R1_STATE_STBY);
if (ret != OK)
{
fdbg("ERROR: Failed to enter standby state\n");
return ret;
}
/* Send CMD9, SEND_CSD in standby state/data-transfer mode to obtain the
* Card Specific Data (CSD) register, e.g., block length, card storage
* capacity, etc. (Stays in standy state/data-transfer mode)
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD9, priv->rca << 16);
ret = SDIO_RECVR2(priv->dev, MMCSD_CMD9, csd);
if (ret != OK)
{
fdbg("ERROR: Could not get SD CSD register: %d\n", ret);
return ret;
}
mmcsd_decodeCSD(priv, csd);
/* Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been
* provided and (2) the card supports a DSR register. If no DSR value
* the card default value (0x0404) will be used.
*/
(void)mmcsd_sendcmd4(priv);
/* Select high speed MMC clocking (which may depend on the DSR setting) */
SDIO_CLOCK(priv->dev, CLOCK_MMC_TRANSFER);
up_udelay(MMCSD_CLK_DELAY);
return OK;
}
#endif
/****************************************************************************
* Name: mmcsd_sdinitialize
*
* Description:
* We believe that there is an SD card in the slot. Attempt to initialize
* and configure the SD card. This is called only from mmcsd_probe().
*
****************************************************************************/
static int mmcsd_sdinitialize(FAR struct mmcsd_state_s *priv)
{
uint32_t cid[4];
uint32_t csd[4];
uint32_t scr[2];
int ret;
/* At this point, clocking has been supplied to the card, both CMD0 and
* ACMD41 (with OCR=0) have been sent successfully, the card is no longer
* busy and (presumably) in the IDLE state so there is good evidence
* that we have an SD card inserted into the slot.
*
* Send CMD2, ALL_SEND_CID. The SD CMD2 is similar to the MMC CMD2 except
* that the buffer type used to transmit to response of the card (SD Memory
* Card: Push-Pull, MMC: Open-Drain). This implementation supports only a
* single SD card. If multiple cards were installed in the slot, each card
* would respond to CMD2 by sending its CID (only one card completes the
* response at a time). The driver should send CMD2 and obtain RCAs until
* no response to ALL_SEND_CID is received.
*
* When an SD card receives the CMD2 command it should transition to the
* identification state/card-identification mode
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD2, 0);
ret = SDIO_RECVR2(priv->dev, MMCSD_CMD2, cid);
if (ret != OK)
{
fdbg("ERROR: SDIO_RECVR2 for SD CID failed: %d\n", ret);
return ret;
}
mmcsd_decodeCID(priv, cid);
/* Send CMD3, SET_RELATIVE_ADDR. In both protocols, this command is used
* to assign a logical address to the card. For MMC, the host assigns the
* address; for SD, the memory card has this responsibility. CMD3 causes
* transition to standby state/data-transfer mode
*
* Send CMD3 with argument 0, SD card publishes its RCA in the response.
*/
mmcsd_sendcmdpoll(priv, SD_CMD3, 0);
ret = mmcsd_recvR6(priv, SD_CMD3);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR2 for SD RCA failed: %d\n", ret);
return ret;
}
fvdbg("RCA: %04x\n", priv->rca);
/* This should have caused a transition to standby state. However, this will
* not be reflected in the present R1 status. R1/6 contains the state of
* the card when the command was received, not when it completed execution.
*
* Verify that we are in standby state/data-transfer mode
*/
ret = mmcsd_verifystate(priv, MMCSD_R1_STATE_STBY);
if (ret != OK)
{
fdbg("ERROR: Failed to enter standby state\n");
return ret;
}
/* Send CMD9, SEND_CSD, in standby state/data-transfer mode to obtain the
* Card Specific Data (CSD) register. The argument is the RCA that we
* just obtained from CMD3. The card stays in standy state/data-transfer
* mode.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD9, (uint32_t)priv->rca << 16);
ret = SDIO_RECVR2(priv->dev, MMCSD_CMD9, csd);
if (ret != OK)
{
fdbg("ERROR: Could not get SD CSD register(%d)\n", ret);
return ret;
}
mmcsd_decodeCSD(priv, csd);
/* Send CMD7 with the argument == RCA in order to select the card.
* Since we are supporting only a single card, we just leave the
* card selected all of the time.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD7S, (uint32_t)priv->rca << 16);
ret = mmcsd_recvR1(priv, MMCSD_CMD7S);
if (ret != OK)
{
fdbg("ERROR: mmcsd_recvR1 for CMD7 failed: %d\n", ret);
return ret;
}
/* Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been
* provided and (2) the card supports a DSR register. If no DSR value
* the card default value (0x0404) will be used.
*/
(void)mmcsd_sendcmd4(priv);
/* Select high speed SD clocking (which may depend on the DSR setting) */
SDIO_CLOCK(priv->dev, CLOCK_SD_TRANSFER_1BIT);
up_udelay(MMCSD_CLK_DELAY);
/* Get the SD card Configuration Register (SCR). We need this now because
* that configuration register contains the indication whether or not
* this card supports wide bus operation.
*/
ret = mmcsd_getSCR(priv, scr);
if (ret != OK)
{
fdbg("ERROR: Could not get SD SCR register(%d)\n", ret);
return ret;
}
mmcsd_decodeSCR(priv, scr);
/* Select width (4-bit) bus operation (if the card supports it) */
ret = mmcsd_widebus(priv);
if (ret != OK)
{
fdbg("WARN: Failed to set wide bus operation: %d\n", ret);
}
/* TODO: If widebus selected, then send CMD6 to see if the card supports
* high speed mode. A new SDIO method will be needed to set high speed
* mode.
*/
return OK;
}
/****************************************************************************
* Name: mmcsd_cardidentify
*
* Description:
* We believe that there is media in the slot. Attempt to initialize and
* configure the card. This is called only from mmcsd_probe().
*
****************************************************************************/
static int mmcsd_cardidentify(FAR struct mmcsd_state_s *priv)
{
uint32_t response;
uint32_t start;
uint32_t elapsed;
uint32_t sdcapacity = MMCSD_ACMD41_STDCAPACITY;
int ret;
/* Assume failure to identify the card */
priv->type = MMCSD_CARDTYPE_UNKNOWN;
/* Check if there is a card present in the slot. This is normally a matter is
* of GPIO sensing.
*/
if (!SDIO_PRESENT(priv->dev))
{
fvdbg("No card present\n");
return -ENODEV;
}
/* Set ID mode clocking (<400KHz) */
SDIO_CLOCK(priv->dev, CLOCK_IDMODE);
/* After power up at least 74 clock cycles are required prior to starting bus
* communication
*/
up_udelay(MMCSD_POWERUP_DELAY);
/* Then send CMD0 (twice just to be sure) */
mmcsd_sendcmdpoll(priv, MMCSD_CMD0, 0);
mmcsd_sendcmdpoll(priv, MMCSD_CMD0, 0);
up_udelay(MMCSD_IDLE_DELAY);
/* Check for SDHC Version 2.x. Send CMD8 to verify SD card interface
* operating condition. CMD 8 is reserved on SD version 1.0 and MMC.
*
* CMD8 Argument:
* [31:12]: Reserved (shall be set to '0')
* [11:8]: Supply Voltage (VHS) 0x1 (Range: 2.7-3.6 V)
* [7:0]: Check Pattern (recommended 0xaa)
* CMD8 Response: R7
*/
ret = mmcsd_sendcmdpoll(priv, SD_CMD8, MMCSD_CMD8CHECKPATTERN|MMCSD_CMD8VOLTAGE_27);
if (ret == OK)
{
/* CMD8 was sent successfully... Get the R7 response */
ret = SDIO_RECVR7(priv->dev, SD_CMD8, &response);
}
/* Were both the command sent and response received correctly? */
if (ret == OK)
{
/* CMD8 succeeded this is probably a SDHC card. Verify the operating
* voltage and that the check pattern was correctly echoed
*/
if (((response & MMCSD_R7VOLTAGE_MASK) == MMCSD_R7VOLTAGE_27) &&
((response & MMCSD_R7ECHO_MASK) == MMCSD_R7CHECKPATTERN))
{
fvdbg("SD V2.x card\n");
priv->type = MMCSD_CARDTYPE_SDV2;
sdcapacity = MMCSD_ACMD41_HIGHCAPACITY;
}
else
{
fdbg("ERROR: R7: %08x\n", response);
return -EIO;
}
}
/* At this point, type is either UNKNOWN or SDV2. Try sending
* CMD55 and (maybe) ACMD41 for up to 1 second or until the card
* exits the IDLE state. CMD55 is supported by SD V1.x and SD V2.x,
* but not MMC
*/
start = clock_systimer();
elapsed = 0;
do
{
/* We may have already determined that his card is an MMC card from
* an earlier pass through through this loop. In that case, we should
* skip the SD-specific commands.
*/
#ifdef CONFIG_MMCSD_MMCSUPPORT
if (priv->type != MMCSD_CARDTYPE_MMC)
#endif
{
/* Send CMD55 with argument = 0 */
mmcsd_sendcmdpoll(priv, SD_CMD55, 0);
ret = mmcsd_recvR1(priv, SD_CMD55);
if (ret != OK)
{
/* I am a little confused.. I think both SD and MMC cards support
* CMD55 (but maybe only SD cards support CMD55). We'll make the
* the MMC vs. SD decision based on CMD1 and ACMD41.
*/
fdbg("ERROR: mmcsd_recvR1(CMD55) failed: %d\n", ret);
}
else
{
/* Send ACMD41 */
mmcsd_sendcmdpoll(priv, SD_ACMD41, MMCSD_ACMD41_VOLTAGEWINDOW|sdcapacity);
ret = SDIO_RECVR3(priv->dev, SD_ACMD41, &response);
if (ret != OK)
{
/* If the error is a timeout, then it is probably an MMC card,
* but we will make the decision based on CMD1 below
*/
fdbg("ERROR: ACMD41 RECVR3: %d\n", ret);
}
else
{
/* ACMD41 succeeded. ACMD41 is supported by SD V1.x and SD V2.x,
* but not MMC. If we did not previously determine that this is
* an SD V2.x (via CMD8), then this must be SD V1.x
*/
fvdbg("R3: %08x\n", response);
if (priv->type == MMCSD_CARDTYPE_UNKNOWN)
{
fvdbg("SD V1.x card\n");
priv->type = MMCSD_CARDTYPE_SDV1;
}
/* Check if the card is busy. Very confusing, BUSY is set LOW
* if the card has not finished its initialization, so it really
* means NOT busy.
*/
if ((response & MMCSD_CARD_BUSY) != 0)
{
/* No.. We really should check the current state to see if
* the SD card successfully made it to the IDLE state, but
* at least for now, we will simply assume that that is the
* case.
*
* Now, check if this is a SD V2.x card that supports block
* addressing
*/
if ((response & MMCSD_R3_HIGHCAPACITY) != 0)
{
fvdbg("SD V2.x card with block addressing\n");
DEBUGASSERT(priv->type == MMCSD_CARDTYPE_SDV2);
priv->type |= MMCSD_CARDTYPE_BLOCK;
}
/* And break out of the loop with an SD card identified */
break;
}
}
}
}
/* If we get here then either (1) CMD55 failed, (2) CMD41 failed, or (3)
* and SD or MMC card has been identified, but it is not yet in the IDLE state.
* If SD card has not been identified, then we might be looking at an
* MMC card. We can send the CMD1 to find out for sure. CMD1 is supported
* by MMC cards, but not by SD cards.
*/
#ifdef CONFIG_MMCSD_MMCSUPPORT
if (priv->type == MMCSD_CARDTYPE_UNKNOWN || priv->type == MMCSD_CARDTYPE_MMC)
{
/* Send the MMC CMD1 to specify the operating voltage. CMD1 causes
* transition to ready state/ card-identification mode. NOTE: If the
* card does not support this voltage range, it will go the inactive
* state.
*
* NOTE: An MMC card will only respond once to CMD1 (unless it is busy).
* This is part of the logic used to determine how many MMC cards are
* connected (This implementation supports only a single MMC card). So
* we cannot re-send CMD1 without first placing the card back into
* stand-by state (if the card is busy, it will automatically
* go back to the the standby state).
*/
mmcsd_sendcmdpoll(priv, MMC_CMD1, MMCSD_VDD_33_34);
ret = SDIO_RECVR3(priv->dev, MMC_CMD1, &response);
/* Was the operating range set successfully */
if (ret != OK)
{
fdbg("ERROR: CMD1 RECVR3: %d\n", ret);
}
else
{
/* CMD1 succeeded... this must be an MMC card */
fdbg("CMD1 succeeded, assuming MMC card\n");
priv->type = MMCSD_CARDTYPE_MMC;
/* Check if the card is busy. Very confusing, BUSY is set LOW
* if the card has not finished its initialization, so it really
* means NOT busy.
*/
if ((response & MMCSD_CARD_BUSY) != 0)
{
/* NO.. We really should check the current state to see if the
* MMC successfully made it to the IDLE state, but at least for now,
* we will simply assume that that is the case.
*
* Then break out of the look with an MMC card identified
*/
break;
}
}
}
#endif
/* Check the elapsed time. We won't keep trying this forever! */
elapsed = clock_systimer() - start;
}
while( elapsed < TICK_PER_SEC ); /* On successful reception while 'breaks', see above. */
/* We get here when the above loop completes, either (1) we could not
* communicate properly with the card due to errors (and the loop times
* out), or (3) it is an MMC or SD card that has successfully transitioned
* to the IDLE state (well, at least, it provided its OCR saying that it
* it is no longer busy).
*/
if (elapsed >= TICK_PER_SEC || priv->type == MMCSD_CARDTYPE_UNKNOWN)
{
fdbg("ERROR: Failed to identify card\n");
return -EIO;
}
return OK;
}
/****************************************************************************
* Name: mmcsd_probe
*
* Description:
* Check for media inserted in a slot. Called (1) during initialization to
* see if there was a card in the slot at power up, (2) when/if a media
* insertion event occurs, or (3) if the BIOC_PROBE ioctl command is
* received.
*
****************************************************************************/
static int mmcsd_probe(FAR struct mmcsd_state_s *priv)
{
int ret;
fvdbg("type: %d probed: %d\n", priv->type, priv->probed);
/* If we have reliable card detection events and if we have
* already probed the card, then we don't need to do anything
* else
*/
#ifdef CONFIG_MMCSD_HAVECARDDETECT
if (priv->probed && SDIO_PRESENT(priv->dev))
{
return OK;
}
#endif
/* Otherwise, we are going to probe the card. There are lots of
* possibilities here: We may think that there is a card in the slot,
* or not. There may be a card in the slot, or not. If there is
* card in the slot, perhaps it is a different card than we one we
* think is there? The safest thing to do is to process the card
* removal first and start from known place.
*/
mmcsd_removed(priv);
/* Now.. is there a card in the slot? */
if (SDIO_PRESENT(priv->dev))
{
/* Yes.. probe it. First, what kind of card was inserted? */
ret = mmcsd_cardidentify(priv);
if (ret != OK)
{
fdbg("ERROR: Failed to initialize card: %d\n", ret);
#ifdef CONFIG_MMCSD_HAVECARDDETECT
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
#endif
}
else
{
/* Then initialize the driver according to the identified card type */
switch (priv->type)
{
case MMCSD_CARDTYPE_SDV1: /* Bit 1: SD version 1.x */
case MMCSD_CARDTYPE_SDV2: /* SD version 2.x with byte addressing */
case MMCSD_CARDTYPE_SDV2|MMCSD_CARDTYPE_BLOCK: /* SD version 2.x with block addressing */
ret = mmcsd_sdinitialize(priv);
break;
case MMCSD_CARDTYPE_MMC: /* MMC card */
#ifdef CONFIG_MMCSD_MMCSUPPORT
ret = mmcsd_mmcinitialize(priv);
break;
#endif
case MMCSD_CARDTYPE_UNKNOWN: /* Unknown card type */
default:
fdbg("ERROR: Internal confusion: %d\n", priv->type);
ret = -EPERM;
break;
};
/* Was the card configured successfully? */
if (ret == OK)
{
/* Yes... */
fvdbg("Capacity: %lu Kbytes\n", (unsigned long)(priv->capacity / 1024));
priv->mediachanged = true;
/* Set up to receive asynchronous, media removal events */
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_EJECTED);
}
}
/* In any event, we have probed this card */
priv->probed = true;
}
else
{
/* There is no card in the slot */
fvdbg("No card\n");
#ifdef CONFIG_MMCSD_HAVECARDDETECT
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
#endif
ret = -ENODEV;
}
return ret;
}
/****************************************************************************
* Name: mmcsd_removed
*
* Description:
* Disable support for media in the slot. Called (1) when/if a media
* removal event occurs, or (2) if the BIOC_EJECT ioctl command is
* received.
*
****************************************************************************/
static int mmcsd_removed(FAR struct mmcsd_state_s *priv)
{
fvdbg("type: %d present: %d\n", priv->type, SDIO_PRESENT(priv->dev));
/* Forget the card geometry, pretend the slot is empty (it might not
* be), and that the card has never been initialized.
*/
priv->capacity = 0; /* Capacity=0 sometimes means no media */
priv->blocksize = 0;
priv->mediachanged = false;
priv->type = MMCSD_CARDTYPE_UNKNOWN;
priv->probed = false;
priv->rca = 0;
priv->selblocklen = 0;
/* Go back to the default 1-bit data bus. */
SDIO_WIDEBUS(priv->dev, false);
priv->widebus = false;
/* Disable clocking to the card */
(void)SDIO_CLOCK(priv->dev, CLOCK_SDIO_DISABLED);
return OK;
}
/****************************************************************************
* Name: mmcsd_hwinitialize
*
* Description:
* One-time hardware initialization. Called only from sdio_slotinitialize.
*
****************************************************************************/
static int mmcsd_hwinitialize(FAR struct mmcsd_state_s *priv)
{
int ret;
mmcsd_takesem(priv);
#ifdef CONFIG_SDIO_DMA
/* Does this architecture support DMA with the MMC/SD device? */
priv->dma = SDIO_DMASUPPORTED(priv->dev);
fvdbg("DMA supported: %d\n", priv->dma);
#endif
/* Attach and prepare MMC/SD interrupts */
if (SDIO_ATTACH(priv->dev))
{
fdbg("ERROR: Unable to attach MMC/SD interrupts\n");
mmcsd_givesem(priv);
return -EBUSY;
}
fvdbg("Attached MMC/SD interrupts\n");
/* Register a callback so that we get informed if media is inserted or
* removed from the slot (Initially all callbacks are disabled).
*/
SDIO_REGISTERCALLBACK(priv->dev, mmcsd_mediachange, (FAR void *)priv);
/* Is there a card in the slot now? For an MMC/SD card, there are three
* possible card detect mechanisms:
*
* 1. Mechanical insertion that can be detected using the WP switch
* that is closed when a card is inserted into then SD slot (SD
* "hot insertion capable" card conector only)
* 2. Electrical insertion that can be sensed using the pull-up resistor
* on CD/DAT3 (both SD/MMC),
* 3. Or by periodic attempts to initialize the card from software.
*
* The behavior of SDIO_PRESENT() is to use whatever information is available
* on the particular platform. If no card insertion information is available
* (polling only), then SDIO_PRESENT() will always return true and we will
* try to initialize the card.
*/
if (SDIO_PRESENT(priv->dev))
{
/* Yes... probe for a card in the slot */
ret = mmcsd_probe(priv);
if (ret != OK)
{
fvdbg("Slot not empty, but initialization failed: %d\n", ret);
/* NOTE: The failure to initialize a card does not mean that
* initialization has failed! A card could be installed in the slot
* at a later time. ENODEV is return in this case,
* sdio_slotinitialize will use this return value to set up the
* card inserted callback event.
*/
ret = -ENODEV;
}
}
else
{
/* ENODEV is returned to indicate that no card is inserted in the slot.
* sdio_slotinitialize will use this return value to set up the card
* inserted callback event.
*/
ret = -ENODEV;
}
/* OK is returned only if the slot initialized correctly AND the card in
* the slot was successfully configured.
*/
mmcsd_givesem(priv);
return ret;
}
/****************************************************************************
* Name: mmcsd_hwuninitialize
*
* Description:
* Restore the MMC/SD slot to the uninitialized state. Called only from
* sdio_slotinitialize on a failure to initialize.
*
****************************************************************************/
static void mmcsd_hwuninitialize(FAR struct mmcsd_state_s *priv)
{
if (priv)
{
mmcsd_removed(priv);
SDIO_RESET(priv->dev);
kfree(priv);
}
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: mmcsd_slotinitialize
*
* Description:
* Initialize one slot for operation using the MMC/SD interface
*
* Input Parameters:
* minor - The MMC/SD minor device number. The MMC/SD device will be
* registered as /dev/mmcsdN where N is the minor number
* dev - And instance of an MMC/SD interface. The MMC/SD hardware should
* be initialized and ready to use.
*
****************************************************************************/
int mmcsd_slotinitialize(int minor, FAR struct sdio_dev_s *dev)
{
FAR struct mmcsd_state_s *priv;
char devname[16];
int ret = -ENOMEM;
fvdbg("minor: %d\n", minor);
/* Sanity check */
#ifdef CONFIG_DEBUG
if (minor < 0 || minor > 255 || !dev)
{
return -EINVAL;
}
#endif
/* Allocate a MMC/SD state structure */
priv = (FAR struct mmcsd_state_s *)kmalloc(sizeof(struct mmcsd_state_s));
if (priv)
{
/* Initialize the MMC/SD state structure */
memset(priv, 0, sizeof(struct mmcsd_state_s));
sem_init(&priv->sem, 0, 1);
/* Bind the MMCSD driver to the MMCSD state structure */
priv->dev = dev;
/* Initialize the hardware associated with the slot */
ret = mmcsd_hwinitialize(priv);
/* Was the slot initialized successfully? */
if (ret != OK)
{
/* No... But the error ENODEV is returned if hardware initialization
* succeeded but no card is inserted in the slot. In this case, the
* no error occurred, but the driver is still not ready.
*/
if (ret == -ENODEV)
{
/* No card in the slot (or if there is, we could not recognize
* it).. Setup to receive the media inserted event
*/
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
fdbg("MMC/SD slot is empty\n");
}
else
{
/* Some other non-recoverable bad thing happened */
fdbg("ERROR: Failed to initialize MMC/SD slot: %d\n", ret);
goto errout_with_alloc;
}
}
/* Initialize buffering */
#if defined(CONFIG_FS_WRITEBUFFER) || defined(CONFIG_FS_READAHEAD)
ret = rwb_initialize(&priv->rwbuffer);
if (ret < 0)
{
fdbg("ERROR: Buffer setup failed: %d\n", ret);
goto errout_with_hwinit;
}
#endif
/* Create a MMCSD device name */
snprintf(devname, 16, "/dev/mmcsd%d", minor);
/* Inode private data is a reference to the MMCSD state structure */
ret = register_blockdriver(devname, &g_bops, 0, priv);
if (ret < 0)
{
fdbg("ERROR: register_blockdriver failed: %d\n", ret);
goto errout_with_buffers;
}
}
return OK;
errout_with_buffers:
#if defined(CONFIG_FS_WRITEBUFFER) || defined(CONFIG_FS_READAHEAD)
rwb_uninitialize(&priv->rwbuffer);
errout_with_hwinit:
#endif
mmcsd_hwuninitialize(priv);
errout_with_alloc:
kfree(priv);
return ret;
}