px4-firmware/apps/mavlink/mavlink.c

1363 lines
45 KiB
C

/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: @author Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mavlink.c
* MAVLink 1.0 protocol implementation.
*/
#include <nuttx/config.h>
#include <unistd.h>
#include <pthread.h>
#include <stdio.h>
#include <math.h>
#include <stdbool.h>
#include <fcntl.h>
#include <mqueue.h>
#include <string.h>
#include "mavlink_bridge_header.h"
#include <v1.0/common/mavlink.h>
#include <arch/board/up_hrt.h>
#include <time.h>
#include <float.h>
#include <unistd.h>
#include <nuttx/sched.h>
#include <sys/prctl.h>
#include <termios.h>
#include <errno.h>
#include <stdlib.h>
#include <poll.h>
#include <uORB/uORB.h>
#include <uORB/topics/sensor_combined.h>
#include <uORB/topics/rc_channels.h>
#include <uORB/topics/ardrone_control.h>
#include <uORB/topics/fixedwing_control.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_gps_position.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/ardrone_motors_setpoint.h>
#include <uORB/topics/vehicle_command.h>
#include <uORB/topics/vehicle_local_position_setpoint.h>
#include <uORB/topics/vehicle_global_position_setpoint.h>
#include <uORB/topics/vehicle_attitude_setpoint.h>
#include <uORB/topics/optical_flow.h>
#include "waypoints.h"
#include "mavlink_log.h"
__EXPORT int mavlink_main(int argc, char *argv[]);
/* terminate MAVLink on user request - disabled by default */
static bool mavlink_link_termination_allowed = false;
static bool mavlink_exit_requested = false;
static int system_type = MAV_TYPE_FIXED_WING;
mavlink_system_t mavlink_system = {100, 50, 0, 0, 0, 0}; // System ID, 1-255, Component/Subsystem ID, 1-255
static uint8_t chan = MAVLINK_COMM_0;
static mavlink_status_t status;
/* pthreads */
static pthread_t receive_thread;
static pthread_t uorb_receive_thread;
static uint16_t mavlink_message_intervals[256]; /**< intervals at which to send MAVLink packets */
/* Allocate storage space for waypoints */
mavlink_wpm_storage wpm_s;
/** Global position */
static struct vehicle_global_position_s global_pos;
/** Local position */
static struct vehicle_local_position_s local_pos;
/** Vehicle status */
static struct vehicle_status_s v_status;
/** RC channels */
static struct rc_channels_s rc;
/* HIL publishers */
static int pub_hil_attitude = -1;
/** HIL attitude */
static struct vehicle_attitude_s hil_attitude;
static struct vehicle_global_position_s hil_global_pos;
static struct fixedwing_control_s fw_control;
static struct ardrone_motors_setpoint_s ardrone_motors;
static struct vehicle_command_s vcmd;
static int pub_hil_global_pos = -1;
static int ardrone_motors_pub = -1;
static int cmd_pub = -1;
static int global_pos_sub = -1;
static int local_pos_sub = -1;
static int flow_pub = -1;
static int global_position_setpoint_pub = -1;
static int local_position_setpoint_pub = -1;
static bool mavlink_hil_enabled = false;
static char mavlink_message_string[51] = {0};
/* interface mode */
static enum {
MAVLINK_INTERFACE_MODE_OFFBOARD,
MAVLINK_INTERFACE_MODE_ONBOARD
} mavlink_link_mode = MAVLINK_INTERFACE_MODE_OFFBOARD;
/* 3: Define waypoint helper functions */
void mavlink_wpm_send_message(mavlink_message_t *msg);
void mavlink_wpm_send_gcs_string(const char *string);
uint64_t mavlink_wpm_get_system_timestamp(void);
void mavlink_missionlib_send_message(mavlink_message_t *msg);
void mavlink_missionlib_send_gcs_string(const char *string);
uint64_t mavlink_missionlib_get_system_timestamp(void);
void handleMessage(mavlink_message_t *msg);
/**
* Enable / disable Hardware in the Loop simulation mode.
*/
int set_hil_on_off(uint8_t vehicle_mode);
/**
* Translate the custom state into standard mavlink modes and state.
*/
void get_mavlink_mode_and_state(const struct vehicle_status_s *c_status, uint8_t *mavlink_state, uint8_t *mavlink_mode);
int mavlink_open_uart(int baudrate, const char *uart_name, struct termios *uart_config_original, bool *is_usb);
/* 4: Include waypoint protocol */
#include "waypoints.h"
mavlink_wpm_storage *wpm;
#include "mavlink_parameters.h"
static uint8_t missionlib_msg_buf[MAVLINK_MAX_PACKET_LEN];
void mavlink_missionlib_send_message(mavlink_message_t *msg)
{
uint16_t len = mavlink_msg_to_send_buffer(missionlib_msg_buf, msg);
write(uart, missionlib_msg_buf, len);
}
void mavlink_missionlib_send_gcs_string(const char *string)
{
const int len = MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN;
mavlink_statustext_t statustext;
int i = 0;
while (i < len - 1) {
statustext.text[i] = string[i];
if (string[i] == '\0')
break;
i++;
}
if (i > 1) {
/* Enforce null termination */
statustext.text[i] = '\0';
mavlink_message_t msg;
mavlink_msg_statustext_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &statustext);
mavlink_missionlib_send_message(&msg);
}
}
/**
* Get system time since boot in microseconds
*
* @return the system time since boot in microseconds
*/
uint64_t mavlink_missionlib_get_system_timestamp()
{
return hrt_absolute_time();
}
/**
* This callback is executed each time a waypoint changes.
*
* It publishes the vehicle_global_position_setpoint_s or the
* vehicle_local_position_setpoint_s topic, depending on the type of waypoint
*/
extern void mavlink_missionlib_current_waypoint_changed(uint16_t index, float param1,
float param2, float param3, float param4, float param5_lat_x,
float param6_lon_y, float param7_alt_z, uint8_t frame, uint16_t command)
{
char buf[50] = {0};
/* Update controller setpoints */
if (frame == (int)MAV_FRAME_GLOBAL) {
/* global, absolute waypoint */
struct vehicle_global_position_setpoint_s sp;
sp.lat = param5_lat_x * 1e7f;
sp.lon = param6_lon_y * 1e7f;
sp.altitude = param7_alt_z;
sp.altitude_is_relative = false;
sp.yaw = (param4 / 180.0f) * M_PI_F - M_PI_F;
/* Initialize publication if necessary */
if (global_position_setpoint_pub < 0) {
global_position_setpoint_pub = orb_advertise(ORB_ID(vehicle_global_position_setpoint), &sp);
} else {
orb_publish(ORB_ID(vehicle_global_position_setpoint), global_position_setpoint_pub, &sp);
}
sprintf(buf, "[mp] WP#%i lat: % 3.6f/lon % 3.6f/alt % 4.6f/hdg %3.4f\n", (int)index, (double)param5_lat_x, (double)param6_lon_y, (double)param7_alt_z, (double)param4);
} else if (frame == (int)MAV_FRAME_GLOBAL_RELATIVE_ALT) {
/* global, relative alt (in relation to HOME) waypoint */
struct vehicle_global_position_setpoint_s sp;
sp.lat = param5_lat_x * 1e7f;
sp.lon = param6_lon_y * 1e7f;
sp.altitude = param7_alt_z;
sp.altitude_is_relative = true;
sp.yaw = (param4 / 180.0f) * M_PI_F - M_PI_F;
/* Initialize publication if necessary */
if (global_position_setpoint_pub < 0) {
global_position_setpoint_pub = orb_advertise(ORB_ID(vehicle_global_position_setpoint), &sp);
} else {
orb_publish(ORB_ID(vehicle_global_position_setpoint), global_position_setpoint_pub, &sp);
}
sprintf(buf, "[mp] WP#%i (lat: %f/lon %f/rel alt %f/hdg %f\n", (int)index, (double)param5_lat_x, (double)param6_lon_y, (double)param7_alt_z, (double)param4);
} else if (frame == (int)MAV_FRAME_LOCAL_ENU || frame == (int)MAV_FRAME_LOCAL_NED) {
/* local, absolute waypoint */
struct vehicle_local_position_setpoint_s sp;
sp.x = param5_lat_x;
sp.y = param6_lon_y;
sp.z = param7_alt_z;
sp.yaw = (param4 / 180.0f) * M_PI_F - M_PI_F;
/* Initialize publication if necessary */
if (local_position_setpoint_pub < 0) {
local_position_setpoint_pub = orb_advertise(ORB_ID(vehicle_local_position_setpoint), &sp);
} else {
orb_publish(ORB_ID(vehicle_local_position_setpoint), local_position_setpoint_pub, &sp);
}
sprintf(buf, "[mp] WP#%i (x: %f/y %f/z %f/hdg %f\n", (int)index, (double)param5_lat_x, (double)param6_lon_y, (double)param7_alt_z, (double)param4);
}
mavlink_missionlib_send_gcs_string(buf);
printf("%s\n", buf);
//printf("[mavlink mp] new setpoint\n");//: frame: %d, lat: %d, lon: %d, alt: %d, yaw: %d\n", frame, param5_lat_x*1000, param6_lon_y*1000, param7_alt_z*1000, param4*1000);
}
int set_hil_on_off(uint8_t vehicle_mode)
{
int ret = OK;
/* Enable HIL */
if ((vehicle_mode & MAV_MODE_FLAG_HIL_ENABLED) && !mavlink_hil_enabled) {
//printf("\n HIL ON \n");
(void)close(pub_hil_attitude);
(void)close(pub_hil_global_pos);
/* Advertise topics */
pub_hil_attitude = orb_advertise(ORB_ID(vehicle_attitude), &hil_attitude);
pub_hil_global_pos = orb_advertise(ORB_ID(vehicle_global_position), &hil_global_pos);
printf("\n pub_hil_attitude :%i\n", pub_hil_attitude);
printf("\n pub_hil_global_pos :%i\n", pub_hil_global_pos);
if (pub_hil_attitude > 0 && pub_hil_global_pos > 0) {
mavlink_hil_enabled = true;
} else {
ret = ERROR;
}
}
if (!(vehicle_mode & MAV_MODE_FLAG_HIL_ENABLED) && mavlink_hil_enabled) {
mavlink_hil_enabled = false;
(void)close(pub_hil_attitude);
(void)close(pub_hil_global_pos);
} else {
ret = ERROR;
}
return ret;
}
void get_mavlink_mode_and_state(const struct vehicle_status_s *c_status, uint8_t *mavlink_state, uint8_t *mavlink_mode)
{
/* reset MAVLink mode bitfield */
*mavlink_mode = 0;
/* set mode flags independent of system state */
if (c_status->control_manual_enabled) {
*mavlink_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
switch (c_status->state_machine) {
case SYSTEM_STATE_PREFLIGHT:
if (c_status->preflight_gyro_calibration || c_status->preflight_mag_calibration) {
*mavlink_state = MAV_STATE_CALIBRATING;
*mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED;
} else {
*mavlink_state = MAV_STATE_UNINIT;
*mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED;
}
break;
case SYSTEM_STATE_STANDBY:
*mavlink_state = MAV_STATE_STANDBY;
*mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED;
break;
case SYSTEM_STATE_GROUND_READY:
*mavlink_state = MAV_STATE_ACTIVE;
*mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
break;
case SYSTEM_STATE_MANUAL:
*mavlink_state = MAV_STATE_ACTIVE;
*mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
*mavlink_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case SYSTEM_STATE_STABILIZED:
*mavlink_state = MAV_STATE_ACTIVE;
*mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
*mavlink_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case SYSTEM_STATE_AUTO:
*mavlink_state = MAV_STATE_ACTIVE;
*mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
*mavlink_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
break;
case SYSTEM_STATE_MISSION_ABORT:
*mavlink_state = MAV_STATE_EMERGENCY;
*mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
break;
case SYSTEM_STATE_EMCY_LANDING:
*mavlink_state = MAV_STATE_EMERGENCY;
*mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
break;
case SYSTEM_STATE_EMCY_CUTOFF:
*mavlink_state = MAV_STATE_EMERGENCY;
*mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
break;
case SYSTEM_STATE_GROUND_ERROR:
*mavlink_state = MAV_STATE_EMERGENCY;
*mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED;
break;
case SYSTEM_STATE_REBOOT:
*mavlink_state = MAV_STATE_POWEROFF;
*mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED;
break;
}
}
/**
* Receive data from UART.
*/
static void *receiveloop(void *arg)
{
uint8_t ch;
mavlink_message_t msg;
prctl(PR_SET_NAME, "mavlink uart rcv", getpid());
while (1) {
if (mavlink_exit_requested) break;
/* blocking read on next byte */
int nread = read(uart, &ch, 1);
if (nread > 0 && mavlink_parse_char(chan, ch, &msg, &status)) { //parse the char
/* handle generic messages and commands */
handleMessage(&msg);
/* Handle packet with waypoint component */
mavlink_wpm_message_handler(&msg, &global_pos, &local_pos);
/* Handle packet with parameter component */
mavlink_pm_message_handler(MAVLINK_COMM_0, &msg);
msg.msgid = -1;
}
}
return NULL;
}
/**
* Listen for uORB topics and send via MAVLink.
*
* This pthread performs a blocking wait on selected
* uORB topics and sends them via MAVLink to other
* vehicles or a ground control station.
*/
static void *uorb_receiveloop(void *arg)
{
/* Set thread name */
prctl(PR_SET_NAME, "mavlink uORB", getpid());
/* --- IMPORTANT: DEFINE NUMBER OF ORB STRUCTS TO WAIT FOR HERE --- */
/* number of messages */
const ssize_t fdsc = 15;
/* Sanity check variable and index */
ssize_t fdsc_count = 0;
/* file descriptors to wait for */
struct pollfd fds[fdsc];
union {
struct sensor_combined_s raw;
struct vehicle_attitude_s att;
struct vehicle_gps_position_s gps;
struct ardrone_control_s ar_control;
struct vehicle_local_position_setpoint_s local_sp;
struct vehicle_global_position_setpoint_s global_sp;
struct vehicle_attitude_setpoint_s att_sp;
} buf;
/* --- SENSORS RAW VALUE --- */
/* subscribe to ORB for sensors raw */
int sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
orb_set_interval(sensor_sub, 100); /* 10Hz updates */
fds[fdsc_count].fd = sensor_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- ATTITUDE VALUE --- */
/* subscribe to ORB for attitude */
int att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
orb_set_interval(att_sub, 100); /* 10Hz updates */
fds[fdsc_count].fd = att_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- GPS VALUE --- */
/* subscribe to ORB for attitude */
int gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
orb_set_interval(gps_sub, 1000); /* 1Hz updates */
fds[fdsc_count].fd = gps_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
// /* --- ARDRONE CONTROL --- */
// /* subscribe to ORB for AR.Drone controller outputs */
// int ar_sub = orb_subscribe(ORB_ID(ardrone_control));
// orb_set_interval(ar_sub, 200); /* 5Hz updates */
// fds[fdsc_count].fd = ar_sub;
// fds[fdsc_count].events = POLLIN;
// fdsc_count++;
/* --- SYSTEM STATE --- */
/* struct already globally allocated */
/* subscribe to topic */
int status_sub = orb_subscribe(ORB_ID(vehicle_status));
orb_set_interval(status_sub, 300); /* max 3.33 Hz updates */
fds[fdsc_count].fd = status_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- RC CHANNELS VALUE --- */
/* struct already globally allocated */
/* subscribe to ORB for global position */
int rc_sub = orb_subscribe(ORB_ID(rc_channels));
orb_set_interval(rc_sub, 100); /* 10Hz updates */
fds[fdsc_count].fd = rc_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- FIXED WING CONTROL VALUE --- */
/* struct already globally allocated */
/* subscribe to ORB for fixed wing control */
int fw_sub = orb_subscribe(ORB_ID(fixedwing_control));
orb_set_interval(fw_sub, 50); /* 20 Hz updates */
fds[fdsc_count].fd = fw_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- GLOBAL POS VALUE --- */
/* struct already globally allocated and topic already subscribed */
fds[fdsc_count].fd = global_pos_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- LOCAL POS VALUE --- */
/* struct and topic already globally subscribed */
fds[fdsc_count].fd = local_pos_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- GLOBAL SETPOINT VALUE --- */
/* subscribe to ORB for local setpoint */
/* struct already allocated */
int spg_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint));
orb_set_interval(spg_sub, 2000); /* 0.5 Hz updates */
fds[fdsc_count].fd = spg_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- LOCAL SETPOINT VALUE --- */
/* subscribe to ORB for local setpoint */
/* struct already allocated */
int spl_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint));
orb_set_interval(spl_sub, 2000); /* 0.5 Hz updates */
fds[fdsc_count].fd = spl_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- ATTITUDE SETPOINT VALUE --- */
/* subscribe to ORB for attitude setpoint */
/* struct already allocated */
int spa_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint));
orb_set_interval(spa_sub, 2000); /* 0.5 Hz updates */
fds[fdsc_count].fd = spa_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
unsigned int sensors_raw_counter = 0;
unsigned int attitude_counter = 0;
unsigned int gps_counter = 0;
/* WARNING: If you get the error message below,
* then the number of registered messages (fdsc)
* differs from the number of messages in the above list.
*/
if (fdsc_count > fdsc) {
fprintf(stderr, "[mavlink] WARNING: Not enough space for poll fds allocated. Check %s:%d.\n", __FILE__, __LINE__);
fdsc_count = fdsc;
}
/*
* set up poll to block for new data,
* wait for a maximum of 1000 ms (1 second)
*/
const int timeout = 5000;
while (1) {
if (mavlink_exit_requested) break;
int poll_ret = poll(fds, fdsc_count, timeout);
/* handle the poll result */
if (poll_ret == 0) {
/* XXX this means none of our providers is giving us data - might be an error? */
} else if (poll_ret < 0) {
/* XXX this is seriously bad - should be an emergency */
} else {
int ifds = 0;
/* --- SENSORS RAW VALUE --- */
if (fds[ifds++].revents & POLLIN) {
/* copy sensors raw data into local buffer */
orb_copy(ORB_ID(sensor_combined), sensor_sub, &buf.raw);
/* send raw imu data */
mavlink_msg_raw_imu_send(MAVLINK_COMM_0, buf.raw.timestamp, buf.raw.accelerometer_raw[0], buf.raw.accelerometer_raw[1], buf.raw.accelerometer_raw[2], buf.raw.gyro_raw[0], buf.raw.gyro_raw[1], buf.raw.gyro_raw[2], buf.raw.magnetometer_raw[0], buf.raw.magnetometer_raw[1], buf.raw.magnetometer_raw[2]);
/* send scaled imu data */
mavlink_msg_scaled_imu_send(MAVLINK_COMM_0, buf.raw.timestamp, buf.raw.accelerometer_m_s2[0] * 9810, buf.raw.accelerometer_m_s2[1] * 9810, buf.raw.accelerometer_m_s2[2] * 9810, buf.raw.gyro_rad_s[0] * 1000, buf.raw.gyro_rad_s[1] * 1000, buf.raw.gyro_rad_s[2] * 1000, buf.raw.magnetometer_ga[0] * 1000, buf.raw.magnetometer_ga[1] * 1000, buf.raw.magnetometer_ga[2] * 1000);
/* send pressure */
mavlink_msg_scaled_pressure_send(MAVLINK_COMM_0, buf.raw.timestamp / 1000, buf.raw.baro_pres_mbar, buf.raw.baro_alt_meter, buf.raw.baro_temp_celcius * 100);
sensors_raw_counter++;
}
/* --- ATTITUDE VALUE --- */
if (fds[ifds++].revents & POLLIN) {
/* copy attitude data into local buffer */
orb_copy(ORB_ID(vehicle_attitude), att_sub, &buf.att);
/* send sensor values */
mavlink_msg_attitude_send(MAVLINK_COMM_0, buf.att.timestamp / 1000, buf.att.roll, buf.att.pitch, buf.att.yaw, buf.att.rollspeed, buf.att.pitchspeed, buf.att.yawspeed);
attitude_counter++;
}
/* --- GPS VALUE --- */
if (fds[ifds++].revents & POLLIN) {
/* copy gps data into local buffer */
orb_copy(ORB_ID(vehicle_gps_position), gps_sub, &buf.gps);
/* GPS position */
mavlink_msg_gps_raw_int_send(MAVLINK_COMM_0, buf.gps.timestamp, buf.gps.fix_type, buf.gps.lat, buf.gps.lon, buf.gps.alt, buf.gps.eph, buf.gps.epv, buf.gps.vel, buf.gps.cog, buf.gps.satellites_visible);
if (buf.gps.satellite_info_available && (gps_counter % 4 == 0)) {
mavlink_msg_gps_status_send(MAVLINK_COMM_0, buf.gps.satellites_visible, buf.gps.satellite_prn, buf.gps.satellite_used, buf.gps.satellite_elevation, buf.gps.satellite_azimuth, buf.gps.satellite_snr);
}
gps_counter++;
}
// /* --- ARDRONE CONTROL OUTPUTS --- */
// if (fds[ifds++].revents & POLLIN) {
// /* copy ardrone control data into local buffer */
// orb_copy(ORB_ID(ardrone_control), ar_sub, &buf.ar_control);
// uint64_t timestamp = buf.ar_control.timestamp;
// float setpoint_roll = buf.ar_control.setpoint_attitude[0];
// float setpoint_pitch = buf.ar_control.setpoint_attitude[1];
// float setpoint_yaw = buf.ar_control.setpoint_attitude[2];
// float setpoint_thrust = buf.ar_control.setpoint_thrust_cast;
// float control_roll = buf.ar_control.attitude_control_output[0];
// float control_pitch = buf.ar_control.attitude_control_output[1];
// float control_yaw = buf.ar_control.attitude_control_output[2];
// mavlink_msg_roll_pitch_yaw_thrust_setpoint_send(MAVLINK_COMM_0, timestamp / 1000, setpoint_roll, setpoint_pitch, setpoint_yaw, setpoint_thrust);
// mavlink_msg_named_value_float_send(MAVLINK_COMM_0, timestamp / 1000, "cl.roll", control_roll);
// mavlink_msg_named_value_float_send(MAVLINK_COMM_0, timestamp / 1000, "cl.pitch", control_pitch);
// mavlink_msg_named_value_float_send(MAVLINK_COMM_0, timestamp / 1000, "cl.yaw", control_yaw);
// }
/* --- SYSTEM STATUS --- */
if (fds[ifds++].revents & POLLIN) {
/* immediately communicate state changes back to user */
orb_copy(ORB_ID(vehicle_status), status_sub, &v_status);
/* enable or disable HIL */
set_hil_on_off(v_status.mode);
/* translate the current syste state to mavlink state and mode */
uint8_t mavlink_state = 0;
uint8_t mavlink_mode = v_status.mode;
get_mavlink_mode_and_state(&v_status, &mavlink_state, &mavlink_mode);
/* send heartbeat */
mavlink_msg_heartbeat_send(chan, system_type, MAV_AUTOPILOT_GENERIC, mavlink_mode, v_status.state_machine, mavlink_state);
}
/* --- RC CHANNELS --- */
if (fds[ifds++].revents & POLLIN) {
/* copy rc channels into local buffer */
orb_copy(ORB_ID(rc_channels), rc_sub, &rc);
/* Channels are sent in MAVLink main loop at a fixed interval */
// TODO decide where to send channels
}
/* --- FIXED WING CONTROL CHANNELS --- */
if (fds[ifds++].revents & POLLIN) {
/* copy fixed wing control into local buffer */
orb_copy(ORB_ID(fixedwing_control), fw_sub, &fw_control);
/* send control output via MAVLink */
mavlink_msg_roll_pitch_yaw_thrust_setpoint_send(MAVLINK_COMM_0, fw_control.timestamp / 1000, fw_control.attitude_control_output[0],
fw_control.attitude_control_output[1], fw_control.attitude_control_output[2],
fw_control.attitude_control_output[3]);
/* Only send in HIL mode */
if (v_status.mode & MAV_MODE_FLAG_HIL_ENABLED) {
/* Send the desired attitude from RC or from the autonomous controller */
// XXX it should not depend on a RC setting, but on a system_state value
float roll_ail, pitch_elev, throttle, yaw_rudd;
if (rc.chan[rc.function[OVERRIDE]].scale < 2000) {
//orb_copy(ORB_ID(fixedwing_control), fixed_wing_control_sub, &fixed_wing_control);
roll_ail = fw_control.attitude_control_output[ROLL];
pitch_elev = fw_control.attitude_control_output[PITCH];
throttle = fw_control.attitude_control_output[THROTTLE];
yaw_rudd = fw_control.attitude_control_output[YAW];
} else {
roll_ail = rc.chan[rc.function[ROLL]].scale;
pitch_elev = rc.chan[rc.function[PITCH]].scale;
throttle = rc.chan[rc.function[THROTTLE]].scale;
yaw_rudd = rc.chan[rc.function[YAW]].scale;
}
/* hacked HIL implementation in order for the APM Planner to work
* (correct cmd: mavlink_msg_hil_controls_send())
*/
mavlink_msg_rc_channels_scaled_send(chan,
hrt_absolute_time(),
0, // port 0
roll_ail,
pitch_elev,
throttle,
yaw_rudd,
0,
0,
0,
0,
1 /*rssi=1*/);
/* correct command duplicate */
mavlink_msg_hil_controls_send(chan,
hrt_absolute_time(),
roll_ail,
pitch_elev,
yaw_rudd,
throttle,
0,
0,
0,
0,
32, /* HIL_MODE */
0);
}
}
/* --- VEHICLE GLOBAL POSITION --- */
if (fds[ifds++].revents & POLLIN) {
/* copy global position data into local buffer */
orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos);
uint64_t timestamp = global_pos.timestamp;
int32_t lat = global_pos.lat;
int32_t lon = global_pos.lon;
int32_t alt = (int32_t)(global_pos.alt*1000);
int32_t relative_alt = (int32_t)(global_pos.relative_alt * 1000.0f);
int16_t vx = (int16_t)(global_pos.vx * 100.0f);
int16_t vy = (int16_t)(global_pos.vy * 100.0f);
int16_t vz = (int16_t)(global_pos.vz * 100.0f);
/* heading in degrees * 10, from 0 to 36.000) */
uint16_t hdg = (global_pos.hdg / M_PI_F) * (180.0f * 10.0f) + (180.0f * 10.0f);
mavlink_msg_global_position_int_send(MAVLINK_COMM_0, timestamp / 1000, lat, lon, alt, relative_alt, vx, vy, vz, hdg);
}
/* --- VEHICLE LOCAL POSITION --- */
if (fds[ifds++].revents & POLLIN) {
/* copy local position data into local buffer */
orb_copy(ORB_ID(vehicle_local_position), local_pos_sub, &local_pos);
mavlink_msg_local_position_ned_send(MAVLINK_COMM_0, local_pos.timestamp / 1000, local_pos.x, local_pos.y, local_pos.z, local_pos.vx, local_pos.vy, local_pos.vz);
}
/* --- VEHICLE GLOBAL SETPOINT --- */
if (fds[ifds++].revents & POLLIN) {
/* copy local position data into local buffer */
orb_copy(ORB_ID(vehicle_global_position_setpoint), spg_sub, &buf.global_sp);
uint8_t coordinate_frame = MAV_FRAME_GLOBAL;
if (buf.global_sp.altitude_is_relative) coordinate_frame = MAV_FRAME_GLOBAL_RELATIVE_ALT;
mavlink_msg_global_position_setpoint_int_send(MAVLINK_COMM_0, coordinate_frame, buf.global_sp.lat, buf.global_sp.lon, buf.global_sp.altitude, buf.global_sp.yaw);
}
/* --- VEHICLE LOCAL SETPOINT --- */
if (fds[ifds++].revents & POLLIN) {
/* copy local position data into local buffer */
orb_copy(ORB_ID(vehicle_local_position_setpoint), spl_sub, &buf.local_sp);
mavlink_msg_local_position_setpoint_send(MAVLINK_COMM_0, MAV_FRAME_LOCAL_NED, buf.local_sp.x, buf.local_sp.y, buf.local_sp.z, buf.local_sp.yaw);
}
/* --- VEHICLE ATTITUDE SETPOINT --- */
if (fds[ifds++].revents & POLLIN) {
/* copy local position data into local buffer */
orb_copy(ORB_ID(vehicle_attitude_setpoint), spa_sub, &buf.att_sp);
mavlink_msg_roll_pitch_yaw_thrust_setpoint_send(MAVLINK_COMM_0, buf.att_sp.timestamp/1000, buf.att_sp.roll_tait_bryan, buf.att_sp.pitch_tait_bryan, buf.att_sp.yaw_tait_bryan, buf.att_sp.thrust);
}
}
}
return NULL;
}
/****************************************************************************
* MAVLink text message logger
****************************************************************************/
static int mavlink_dev_ioctl(struct file *filep, int cmd, unsigned long arg);
static const struct file_operations mavlink_fops = {
.ioctl = mavlink_dev_ioctl
};
static int
mavlink_dev_ioctl(struct file *filep, int cmd, unsigned long arg)
{
static unsigned int total_counter = 0;
switch (cmd) {
case (int)MAVLINK_IOC_SEND_TEXT_INFO:
case (int)MAVLINK_IOC_SEND_TEXT_CRITICAL:
case (int)MAVLINK_IOC_SEND_TEXT_EMERGENCY: {
const char *txt = (const char *)arg;
strncpy(mavlink_message_string, txt, 51);
total_counter++;
return OK;
}
default:
return ENOTTY;
}
}
/****************************************************************************
* Public Functions
****************************************************************************/
void handleMessage(mavlink_message_t *msg)
{
if (msg->msgid == MAVLINK_MSG_ID_COMMAND_LONG) {
mavlink_command_long_t cmd_mavlink;
mavlink_msg_command_long_decode(msg, &cmd_mavlink);
if (cmd_mavlink.target_system == mavlink_system.sysid && ((cmd_mavlink.target_component == mavlink_system.compid) || (cmd_mavlink.target_component == MAV_COMP_ID_ALL))) {
//check for MAVLINK terminate command
if (cmd_mavlink.command == MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN && ((int)cmd_mavlink.param1) == 3) {
/* This is the link shutdown command, terminate mavlink */ //TODO: check what happens with global_data buffers that are read by the mavlink app
printf("[mavlink] Terminating .. \n");
fflush(stdout);
usleep(50000);
/* terminate other threads */
mavlink_exit_requested = true;
pthread_cancel(receive_thread);
pthread_cancel(uorb_receive_thread);
pthread_exit(NULL);
} else {
/* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */
vcmd.param1 = cmd_mavlink.param1;
vcmd.param2 = cmd_mavlink.param2;
vcmd.param3 = cmd_mavlink.param3;
vcmd.param4 = cmd_mavlink.param4;
vcmd.param5 = cmd_mavlink.param5;
vcmd.param6 = cmd_mavlink.param6;
vcmd.param7 = cmd_mavlink.param7;
vcmd.command = cmd_mavlink.command;
vcmd.target_system = cmd_mavlink.target_system;
vcmd.target_component = cmd_mavlink.target_component;
vcmd.source_system = msg->sysid;
vcmd.source_component = msg->compid;
vcmd.confirmation = cmd_mavlink.confirmation;
/* check if topic is advertised */
if (cmd_pub <= 0) {
cmd_pub = orb_advertise(ORB_ID(vehicle_command), &vcmd);
}
/* publish */
orb_publish(ORB_ID(vehicle_command), cmd_pub, &vcmd);
}
}
}
if (msg->msgid == MAVLINK_MSG_ID_OPTICAL_FLOW) {
mavlink_optical_flow_t flow;
mavlink_msg_optical_flow_decode(msg, &flow);
struct optical_flow_s f;
f.timestamp = flow.time_usec;
f.flow_raw_x = flow.flow_x;
f.flow_raw_y = flow.flow_y;
f.flow_comp_x_m = flow.flow_comp_m_x;
f.flow_comp_y_m = flow.flow_comp_m_y;
f.ground_distance_m = flow.ground_distance;
f.quality = flow.quality;
f.sensor_id = flow.sensor_id;
/* check if topic is advertised */
if (flow_pub <= 0) {
flow_pub = orb_advertise(ORB_ID(optical_flow), &flow);
}
/* publish */
orb_publish(ORB_ID(optical_flow), flow_pub, &flow);
}
if (msg->msgid == MAVLINK_MSG_ID_SET_MODE) {
/* Set mode on request */
mavlink_set_mode_t new_mode;
mavlink_msg_set_mode_decode(msg, &new_mode);
/* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */
vcmd.param1 = new_mode.base_mode;
vcmd.param2 = new_mode.custom_mode;
vcmd.param3 = 0;
vcmd.param4 = 0;
vcmd.param5 = 0;
vcmd.param6 = 0;
vcmd.param7 = 0;
vcmd.command = MAV_CMD_DO_SET_MODE;
vcmd.target_system = new_mode.target_system;
vcmd.target_component = MAV_COMP_ID_ALL;
vcmd.source_system = msg->sysid;
vcmd.source_component = msg->compid;
vcmd.confirmation = 1;
/* create command */
orb_publish(ORB_ID(vehicle_command), cmd_pub, &vcmd);
}
/* Handle quadrotor motor setpoints */
if (msg->msgid == MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT) {
mavlink_set_quad_motors_setpoint_t quad_motors_setpoint;
mavlink_msg_set_quad_motors_setpoint_decode(msg, &quad_motors_setpoint);
// printf("got MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT target_system=%u, sysid = %u\n", quad_motors_setpoint.target_system, mavlink_system.sysid);
if (quad_motors_setpoint.target_system == mavlink_system.sysid) {
ardrone_motors.motor_front_nw = quad_motors_setpoint.motor_front_nw;
ardrone_motors.motor_right_ne = quad_motors_setpoint.motor_right_ne;
ardrone_motors.motor_back_se = quad_motors_setpoint.motor_back_se;
ardrone_motors.motor_left_sw = quad_motors_setpoint.motor_left_sw;
ardrone_motors.counter++;
ardrone_motors.timestamp = hrt_absolute_time();
/* check if topic has to be advertised */
if (ardrone_motors_pub <= 0) {
ardrone_motors_pub = orb_advertise(ORB_ID(ardrone_motors_setpoint), &ardrone_motors);
}
/* Publish */
orb_publish(ORB_ID(ardrone_motors_setpoint), ardrone_motors_pub, &ardrone_motors);
}
}
/*
* Only decode hil messages in HIL mode.
*
* The HIL mode is enabled by the HIL bit flag
* in the system mode. Either send a set mode
* COMMAND_LONG message or a SET_MODE message
*/
// printf("\n HIL ENABLED?: %s \n",(mavlink_hil_enabled)?"true":"false");
#define DEG2RAD ((1.0/180.0)*M_PI)
if (mavlink_hil_enabled) {
if (msg->msgid == MAVLINK_MSG_ID_HIL_STATE) {
mavlink_hil_state_t hil_state;
mavlink_msg_hil_state_decode(msg, &hil_state);
// printf("\n HILSTATE : \n LAT: %i \n LON: %i \n ALT: %i \n "
// "ROLL %i \n PITCH %i \n YAW %i \n"
// "ROLLSPEED: %i \n PITCHSPEED: %i \n, YAWSPEED: %i \n",
// hil_state.lat/1000000, // 1e7
// hil_state.lon/1000000, // 1e7
// hil_state.alt/1000, // mm
// hil_state.roll, // float rad
// hil_state.pitch, // float rad
// hil_state.yaw, // float rad
// hil_state.rollspeed, // float rad/s
// hil_state.pitchspeed, // float rad/s
// hil_state.yawspeed); // float rad/s
hil_global_pos.lat = hil_state.lat;
hil_global_pos.lon = hil_state.lon;
hil_global_pos.alt = hil_state.alt/1000;
hil_global_pos.vx = hil_state.vx;
hil_global_pos.vy = hil_state.vy;
hil_global_pos.vz = hil_state.vz;
/* set timestamp and notify processes (broadcast) */
hil_global_pos.timestamp = hrt_absolute_time();
orb_publish(ORB_ID(vehicle_global_position), pub_hil_global_pos, &hil_global_pos);
hil_attitude.roll = hil_state.roll;
hil_attitude.pitch = hil_state.pitch;
hil_attitude.yaw = hil_state.yaw;
hil_attitude.rollspeed = hil_state.rollspeed;
hil_attitude.pitchspeed = hil_state.pitchspeed;
hil_attitude.yawspeed = hil_state.yawspeed;
/* set timestamp and notify processes (broadcast) */
hil_attitude.counter++;
hil_attitude.timestamp = hrt_absolute_time();
orb_publish(ORB_ID(vehicle_attitude), pub_hil_attitude, &hil_attitude);
}
// if (msg->msgid == MAVLINK_MSG_ID_ATTITUDE) {
// mavlink_attitude_t att;
// mavlink_msg_attitude_decode(msg, &att);
// float RAD2DEG = 57.3f;
// // printf("\n\n\n ATTITUDE \n\n\n %i \n", (int)(1000*att.rollspeed));
// global_data_lock(&global_data_attitude->access_conf);
// global_data_attitude->roll = RAD2DEG * att.roll;
// global_data_attitude->pitch = RAD2DEG * att.pitch;
// global_data_attitude->yaw = RAD2DEG * att.yaw;
// global_data_attitude->rollspeed = att.rollspeed;
// global_data_attitude->pitchspeed = att.pitchspeed;
// global_data_attitude->yawspeed = att.yawspeed;
// global_data_attitude->counter++;
// global_data_attitude->timestamp = hrt_absolute_time();
// global_data_unlock(&global_data_attitude->access_conf);
// global_data_broadcast(&global_data_attitude->access_conf);
// }
// if (msg->msgid == MAVLINK_MSG_ID_RAW_IMU) {
// mavlink_raw_imu_t imu;
// mavlink_msg_raw_imu_decode(msg, &imu);
// // printf("\n\n\n RAW_IMU : %i \n %i \n %i \n %i \n %i \n %i \n\n\n", (int)(1000*imu.xgyro),
// // (int)(1000*imu.ygyro), (int)(1000*imu.zgyro));
// global_data_lock(&global_data_attitude->access_conf);
// global_data_attitude->rollspeed = 1000 * imu.xgyro;
// global_data_attitude->pitchspeed = 1000 * imu.ygyro;
// global_data_attitude->yawspeed = 1000 * imu.zgyro;
// global_data_attitude->counter++;
// global_data_attitude->timestamp = hrt_absolute_time();
// global_data_unlock(&global_data_attitude->access_conf);
// global_data_broadcast(&global_data_attitude->access_conf);
// }
// if (msg->msgid == MAVLINK_MSG_ID_SCALED_IMU) {
// mavlink_raw_imu_t imu;
// mavlink_msg_raw_imu_decode(msg, &imu);
// // printf("\n\n\n SCALED_IMU : %i \n %i \n %i \n %i \n %i \n %i \n\n\n", (int)(1000*imu.xgyro),
// // (int)(1000*imu.ygyro), (int)(1000*imu.zgyro));
// global_data_lock(&global_data_attitude->access_conf);
// global_data_attitude->rollspeed = 1000 * imu.xgyro;
// global_data_attitude->pitchspeed = 1000 * imu.ygyro;
// global_data_attitude->yawspeed = 1000 * imu.zgyro;
// global_data_attitude->counter++;
// global_data_attitude->timestamp = hrt_absolute_time();
// global_data_unlock(&global_data_attitude->access_conf);
// global_data_broadcast(&global_data_attitude->access_conf);
// }
}
}
int mavlink_open_uart(int baudrate, const char *uart_name, struct termios *uart_config_original, bool *is_usb)
{
/* process baud rate */
int speed;
switch (baudrate) {
case 0: speed = B0; break;
case 50: speed = B50; break;
case 75: speed = B75; break;
case 110: speed = B110; break;
case 134: speed = B134; break;
case 150: speed = B150; break;
case 200: speed = B200; break;
case 300: speed = B300; break;
case 600: speed = B600; break;
case 1200: speed = B1200; break;
case 1800: speed = B1800; break;
case 2400: speed = B2400; break;
case 4800: speed = B4800; break;
case 9600: speed = B9600; break;
case 19200: speed = B19200; break;
case 38400: speed = B38400; break;
case 57600: speed = B57600; break;
case 115200: speed = B115200; break;
case 230400: speed = B230400; break;
case 460800: speed = B460800; break;
case 921600: speed = B921600; break;
default:
fprintf(stderr, "[mavlink] ERROR: Unsupported baudrate: %d\n\tsupported examples:\n\n\t9600\n19200\n38400\n57600\n115200\n230400\n460800\n921600\n\n", baudrate);
return -EINVAL;
}
/* open uart */
printf("[mavlink] UART is %s, baudrate is %d\n", uart_name, baudrate);
uart = open(uart_name, O_RDWR | O_NOCTTY);
/* Try to set baud rate */
struct termios uart_config;
int termios_state;
*is_usb = false;
if (strcmp(uart_name, "/dev/ttyACM0") != OK) {
/* Back up the original uart configuration to restore it after exit */
if ((termios_state = tcgetattr(uart, uart_config_original)) < 0) {
fprintf(stderr, "[mavlink] ERROR getting baudrate / termios config for %s: %d\n", uart_name, termios_state);
close(uart);
return -1;
}
/* Fill the struct for the new configuration */
tcgetattr(uart, &uart_config);
/* Clear ONLCR flag (which appends a CR for every LF) */
uart_config.c_oflag &= ~ONLCR;
/* Set baud rate */
if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) {
fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s: %d (cfsetispeed, cfsetospeed)\n", uart_name, termios_state);
close(uart);
return -1;
}
if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config)) < 0) {
fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s (tcsetattr)\n", uart_name);
close(uart);
return -1;
}
} else {
*is_usb = true;
}
return uart;
}
/**
* MAVLink Protocol main function.
*/
int mavlink_main(int argc, char *argv[])
{
wpm = &wpm_s;
/* initialize global data structs */
memset(&global_pos, 0, sizeof(global_pos));
memset(&local_pos, 0, sizeof(local_pos));
memset(&v_status, 0, sizeof(v_status));
memset(&rc, 0, sizeof(rc));
memset(&hil_attitude, 0, sizeof(hil_attitude));
memset(&hil_global_pos, 0, sizeof(hil_global_pos));
memset(&fw_control, 0, sizeof(fw_control));
memset(&ardrone_motors, 0, sizeof(ardrone_motors));
memset(&vcmd, 0, sizeof(vcmd));
/* print welcome text */
printf("[mavlink] MAVLink v1.0 serial interface starting..\n");
/* reate the device node that's used for sending text log messages, etc. */
register_driver(MAVLINK_LOG_DEVICE, &mavlink_fops, 0666, NULL);
/* Send attitude at 10 Hz / every 100 ms */
mavlink_message_intervals[MAVLINK_MSG_ID_ATTITUDE] = 100;
/* Send raw sensor values at 10 Hz / every 100 ms */
mavlink_message_intervals[MAVLINK_MSG_ID_RAW_IMU] = 100;
/* default values for arguments */
char *uart_name = "/dev/ttyS0";
int baudrate = 57600;
const char *commandline_usage = "\tusage: %s -d <devicename> -b <baudrate> [-e/--exit-allowed]\n\t\tdefault: -d %s -b %i\n";
/* read program arguments */
int i;
for (i = 1; i < argc; i++) { /* argv[0] is "mavlink" */
if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
printf(commandline_usage, argv[0], uart_name, baudrate);
return 0;
}
/* UART device ID */
if (strcmp(argv[i], "-d") == 0 || strcmp(argv[i], "--device") == 0) {
if (argc > i + 1) {
uart_name = argv[i + 1];
} else {
printf(commandline_usage, argv[0], uart_name, baudrate);
return 0;
}
}
/* baud rate */
if (strcmp(argv[i], "-b") == 0 || strcmp(argv[i], "--baud") == 0) {
if (argc > i + 1) {
baudrate = atoi(argv[i + 1]);
} else {
printf(commandline_usage, argv[0], uart_name, baudrate);
return 0;
}
}
/* terminating MAVLink is allowed - yes/no */
if (strcmp(argv[i], "-e") == 0 || strcmp(argv[i], "--exit-allowed") == 0) {
mavlink_link_termination_allowed = true;
}
if (strcmp(argv[i], "-o") == 0 || strcmp(argv[i], "--onboard") == 0) {
mavlink_link_mode = MAVLINK_INTERFACE_MODE_ONBOARD;
}
}
struct termios uart_config_original;
bool usb_uart;
uart = mavlink_open_uart(baudrate, uart_name, &uart_config_original, &usb_uart);
if (uart < 0) {
printf("[mavlink] FAILED to open %s, terminating.\n", uart_name);
return -1;
}
/* Flush UART */
fflush(stdout);
/* topics to subscribe globally */
/* subscribe to ORB for global position */
global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
orb_set_interval(global_pos_sub, 1000); /* 1Hz active updates */
/* subscribe to ORB for local position */
local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
orb_set_interval(local_pos_sub, 1000); /* 1Hz active updates */
pthread_attr_t receiveloop_attr;
pthread_attr_init(&receiveloop_attr);
pthread_attr_setstacksize(&receiveloop_attr, 2048);
pthread_create(&receive_thread, &receiveloop_attr, receiveloop, NULL);
pthread_attr_t uorb_attr;
pthread_attr_init(&uorb_attr);
/* Set stack size, needs more than 2048 bytes */
pthread_attr_setstacksize(&uorb_attr, 5096);
pthread_create(&uorb_receive_thread, &uorb_attr, uorb_receiveloop, NULL);
/* initialize waypoint manager */
mavlink_wpm_init(wpm);
uint16_t counter = 0;
int lowspeed_counter = 0;
/**< Subscribe to system state and RC channels */
// int status_sub = orb_subscribe(ORB_ID(vehicle_status));
// int rc_sub = orb_subscribe(ORB_ID(rc_channels));
while (1) {
if (mavlink_exit_requested) break;
/* get local and global position */
orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos);
orb_copy(ORB_ID(vehicle_local_position), local_pos_sub, &local_pos);
/* check if waypoint has been reached against the last positions */
mavlink_waypoint_eventloop(mavlink_missionlib_get_system_timestamp(), &global_pos, &local_pos);
// sleep
usleep(50000);
// 1 Hz
if (lowspeed_counter == 10) {
/* translate the current syste state to mavlink state and mode */
uint8_t mavlink_state = 0;
uint8_t mavlink_mode = v_status.mode;
get_mavlink_mode_and_state(&v_status, &mavlink_state, &mavlink_mode);
/* send heartbeat */
mavlink_msg_heartbeat_send(chan, system_type, MAV_AUTOPILOT_GENERIC, mavlink_mode, v_status.state_machine, mavlink_state);
/* send status (values already copied in the section above) */
mavlink_msg_sys_status_send(chan, v_status.onboard_control_sensors_present, v_status.onboard_control_sensors_enabled,
v_status.onboard_control_sensors_health, v_status.load, v_status.voltage_battery * 1000.f, v_status.current_battery * 1000.f,
v_status.battery_remaining, v_status.drop_rate_comm, v_status.errors_comm,
v_status.errors_count1, v_status.errors_count2, v_status.errors_count3, v_status.errors_count4);
/* send over MAVLink */
mavlink_msg_rc_channels_raw_send(chan, rc.timestamp / 1000, 0, rc.chan[0].raw, rc.chan[1].raw, rc.chan[2].raw, rc.chan[3].raw,
rc.chan[4].raw, rc.chan[5].raw, rc.chan[6].raw, rc.chan[7].raw, rc.rssi);
lowspeed_counter = 0;
}
lowspeed_counter++;
/* send parameters at 20 Hz (if queued for sending) */
mavlink_pm_queued_send();
usleep(50000);
mavlink_pm_queued_send();
/* send one string at 10 Hz */
mavlink_missionlib_send_gcs_string(mavlink_message_string);
mavlink_message_string[0] = '\0';
counter++;
}
/* wait for threads to complete */
pthread_join(receive_thread, NULL);
pthread_join(uorb_receive_thread, NULL);
/* Reset the UART flags to original state */
if (!usb_uart) {
int termios_state;
if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config_original)) < 0) {
fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s (tcsetattr)\r\n", uart_name);
}
printf("[mavlink] Restored original UART config, exiting..\n");
}
/* close uart */
close(uart);
fflush(stdout);
fflush(stderr);
return 0;
}