forked from Archive/PX4-Autopilot
560 lines
18 KiB
C++
560 lines
18 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2012-2014 PX4 Development Team. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file geo.c
|
|
*
|
|
* Geo / math functions to perform geodesic calculations
|
|
*
|
|
* @author Thomas Gubler <thomasgubler@student.ethz.ch>
|
|
* @author Julian Oes <joes@student.ethz.ch>
|
|
* @author Lorenz Meier <lm@inf.ethz.ch>
|
|
* @author Anton Babushkin <anton.babushkin@me.com>
|
|
*/
|
|
|
|
#include "geo.h"
|
|
#include <ecl.h>
|
|
|
|
#include <mathlib/mathlib.h>
|
|
#include <matrix/math.hpp>
|
|
#include <float.h>
|
|
|
|
using matrix::wrap_pi;
|
|
using matrix::wrap_2pi;
|
|
|
|
/*
|
|
* Azimuthal Equidistant Projection
|
|
* formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
|
|
*/
|
|
|
|
static struct map_projection_reference_s mp_ref;
|
|
static struct globallocal_converter_reference_s gl_ref = {0.0f, false};
|
|
|
|
bool map_projection_global_initialized()
|
|
{
|
|
return map_projection_initialized(&mp_ref);
|
|
}
|
|
|
|
bool map_projection_initialized(const struct map_projection_reference_s *ref)
|
|
{
|
|
return ref->init_done;
|
|
}
|
|
|
|
uint64_t map_projection_global_timestamp()
|
|
{
|
|
return map_projection_timestamp(&mp_ref);
|
|
}
|
|
|
|
uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref)
|
|
{
|
|
return ref->timestamp;
|
|
}
|
|
|
|
// lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
|
|
int map_projection_global_init(double lat_0, double lon_0, uint64_t timestamp)
|
|
{
|
|
return map_projection_init_timestamped(&mp_ref, lat_0, lon_0, timestamp);
|
|
}
|
|
|
|
// lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
|
|
int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, uint64_t timestamp)
|
|
{
|
|
|
|
ref->lat_rad = math::radians(lat_0);
|
|
ref->lon_rad = math::radians(lon_0);
|
|
ref->sin_lat = sin(ref->lat_rad);
|
|
ref->cos_lat = cos(ref->lat_rad);
|
|
|
|
ref->timestamp = timestamp;
|
|
ref->init_done = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
//lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
|
|
int map_projection_init(struct map_projection_reference_s *ref, double lat_0, double lon_0)
|
|
{
|
|
return map_projection_init_timestamped(ref, lat_0, lon_0, ecl_absolute_time());
|
|
}
|
|
|
|
int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad)
|
|
{
|
|
return map_projection_reference(&mp_ref, ref_lat_rad, ref_lon_rad);
|
|
}
|
|
|
|
int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, double *ref_lon_rad)
|
|
{
|
|
if (!map_projection_initialized(ref)) {
|
|
return -1;
|
|
}
|
|
|
|
*ref_lat_rad = ref->lat_rad;
|
|
*ref_lon_rad = ref->lon_rad;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int map_projection_global_project(double lat, double lon, float *x, float *y)
|
|
{
|
|
return map_projection_project(&mp_ref, lat, lon, x, y);
|
|
}
|
|
|
|
int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, float *y)
|
|
{
|
|
if (!map_projection_initialized(ref)) {
|
|
return -1;
|
|
}
|
|
|
|
const double lat_rad = math::radians(lat);
|
|
const double lon_rad = math::radians(lon);
|
|
|
|
const double sin_lat = sin(lat_rad);
|
|
const double cos_lat = cos(lat_rad);
|
|
|
|
const double cos_d_lon = cos(lon_rad - ref->lon_rad);
|
|
|
|
const double arg = math::constrain(ref->sin_lat * sin_lat + ref->cos_lat * cos_lat * cos_d_lon, -1.0, 1.0);
|
|
const double c = acos(arg);
|
|
|
|
double k = 1.0;
|
|
|
|
if (fabs(c) > 0) {
|
|
k = (c / sin(c));
|
|
}
|
|
|
|
*x = static_cast<float>(k * (ref->cos_lat * sin_lat - ref->sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH);
|
|
*y = static_cast<float>(k * cos_lat * sin(lon_rad - ref->lon_rad) * CONSTANTS_RADIUS_OF_EARTH);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int map_projection_global_reproject(float x, float y, double *lat, double *lon)
|
|
{
|
|
return map_projection_reproject(&mp_ref, x, y, lat, lon);
|
|
}
|
|
|
|
int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, double *lon)
|
|
{
|
|
if (!map_projection_initialized(ref)) {
|
|
return -1;
|
|
}
|
|
|
|
const double x_rad = (double)x / CONSTANTS_RADIUS_OF_EARTH;
|
|
const double y_rad = (double)y / CONSTANTS_RADIUS_OF_EARTH;
|
|
const double c = sqrt(x_rad * x_rad + y_rad * y_rad);
|
|
|
|
if (fabs(c) > 0) {
|
|
const double sin_c = sin(c);
|
|
const double cos_c = cos(c);
|
|
|
|
const double lat_rad = asin(cos_c * ref->sin_lat + (x_rad * sin_c * ref->cos_lat) / c);
|
|
const double lon_rad = (ref->lon_rad + atan2(y_rad * sin_c, c * ref->cos_lat * cos_c - x_rad * ref->sin_lat * sin_c));
|
|
|
|
*lat = math::degrees(lat_rad);
|
|
*lon = math::degrees(lon_rad);
|
|
|
|
} else {
|
|
*lat = math::degrees(ref->lat_rad);
|
|
*lon = math::degrees(ref->lon_rad);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int map_projection_global_getref(double *lat_0, double *lon_0)
|
|
{
|
|
if (!map_projection_global_initialized()) {
|
|
return -1;
|
|
}
|
|
|
|
if (lat_0 != nullptr) {
|
|
*lat_0 = math::degrees(mp_ref.lat_rad);
|
|
}
|
|
|
|
if (lon_0 != nullptr) {
|
|
*lon_0 = math::degrees(mp_ref.lon_rad);
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
int globallocalconverter_init(double lat_0, double lon_0, float alt_0, uint64_t timestamp)
|
|
{
|
|
gl_ref.alt = alt_0;
|
|
|
|
if (!map_projection_global_init(lat_0, lon_0, timestamp)) {
|
|
gl_ref.init_done = true;
|
|
return 0;
|
|
}
|
|
|
|
gl_ref.init_done = false;
|
|
return -1;
|
|
}
|
|
|
|
bool globallocalconverter_initialized()
|
|
{
|
|
return gl_ref.init_done && map_projection_global_initialized();
|
|
}
|
|
|
|
int globallocalconverter_tolocal(double lat, double lon, float alt, float *x, float *y, float *z)
|
|
{
|
|
if (!map_projection_global_initialized()) {
|
|
return -1;
|
|
}
|
|
|
|
map_projection_global_project(lat, lon, x, y);
|
|
*z = gl_ref.alt - alt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int globallocalconverter_toglobal(float x, float y, float z, double *lat, double *lon, float *alt)
|
|
{
|
|
if (!map_projection_global_initialized()) {
|
|
return -1;
|
|
}
|
|
|
|
map_projection_global_reproject(x, y, lat, lon);
|
|
*alt = gl_ref.alt - z;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int globallocalconverter_getref(double *lat_0, double *lon_0, float *alt_0)
|
|
{
|
|
if (map_projection_global_initialized() != 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (map_projection_global_getref(lat_0, lon_0)) {
|
|
return -1;
|
|
}
|
|
|
|
if (alt_0 != nullptr) {
|
|
*alt_0 = gl_ref.alt;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
|
|
{
|
|
const double lat_now_rad = math::radians(lat_now);
|
|
const double lat_next_rad = math::radians(lat_next);
|
|
|
|
const double d_lat = lat_next_rad - lat_now_rad;
|
|
const double d_lon = math::radians(lon_next) - math::radians(lon_now);
|
|
|
|
const double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(lat_now_rad) * cos(lat_next_rad);
|
|
|
|
const double c = atan2(sqrt(a), sqrt(1.0 - a));
|
|
|
|
return static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * 2.0 * c);
|
|
}
|
|
|
|
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,
|
|
double *lat_target, double *lon_target)
|
|
{
|
|
if (fabsf(dist) < FLT_EPSILON) {
|
|
*lat_target = lat_A;
|
|
*lon_target = lon_A;
|
|
|
|
} else if (dist >= FLT_EPSILON) {
|
|
float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B);
|
|
waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target);
|
|
|
|
} else {
|
|
float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B);
|
|
heading = wrap_2pi(heading + M_PI_F);
|
|
waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target);
|
|
}
|
|
}
|
|
|
|
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,
|
|
double *lat_target, double *lon_target)
|
|
{
|
|
bearing = wrap_2pi(bearing);
|
|
double radius_ratio = (double)fabs((double)dist) / CONSTANTS_RADIUS_OF_EARTH;
|
|
|
|
double lat_start_rad = math::radians(lat_start);
|
|
double lon_start_rad = math::radians(lon_start);
|
|
|
|
*lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos((double)bearing));
|
|
*lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad),
|
|
cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target));
|
|
|
|
*lat_target = math::degrees(*lat_target);
|
|
*lon_target = math::degrees(*lon_target);
|
|
}
|
|
|
|
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
|
|
{
|
|
const double lat_now_rad = math::radians(lat_now);
|
|
const double lat_next_rad = math::radians(lat_next);
|
|
|
|
const double cos_lat_next = cos(lat_next_rad);
|
|
const double d_lon = math::radians(lon_next - lon_now);
|
|
|
|
/* conscious mix of double and float trig function to maximize speed and efficiency */
|
|
|
|
const float y = static_cast<float>(sin(d_lon) * cos_lat_next);
|
|
const float x = static_cast<float>(cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos_lat_next * cos(d_lon));
|
|
|
|
return wrap_pi(atan2f(y, x));
|
|
}
|
|
|
|
void
|
|
get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
|
|
{
|
|
const double lat_now_rad = math::radians(lat_now);
|
|
const double lat_next_rad = math::radians(lat_next);
|
|
const double d_lon = math::radians(lon_next) - math::radians(lon_now);
|
|
|
|
/* conscious mix of double and float trig function to maximize speed and efficiency */
|
|
*v_n = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)));
|
|
*v_e = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad));
|
|
}
|
|
|
|
void
|
|
get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
|
|
{
|
|
double lat_now_rad = math::radians(lat_now);
|
|
double lon_now_rad = math::radians(lon_now);
|
|
double lat_next_rad = math::radians(lat_next);
|
|
double lon_next_rad = math::radians(lon_next);
|
|
|
|
double d_lat = lat_next_rad - lat_now_rad;
|
|
double d_lon = lon_next_rad - lon_now_rad;
|
|
|
|
/* conscious mix of double and float trig function to maximize speed and efficiency */
|
|
*v_n = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * d_lat);
|
|
*v_e = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad));
|
|
}
|
|
|
|
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res)
|
|
{
|
|
double lat_now_rad = math::radians(lat_now);
|
|
double lon_now_rad = math::radians(lon_now);
|
|
|
|
*lat_res = math::degrees(lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH);
|
|
*lon_res = math::degrees(lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad)));
|
|
}
|
|
|
|
// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>
|
|
|
|
int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
|
|
double lat_start, double lon_start, double lat_end, double lon_end)
|
|
{
|
|
// This function returns the distance to the nearest point on the track line. Distance is positive if current
|
|
// position is right of the track and negative if left of the track as seen from a point on the track line
|
|
// headed towards the end point.
|
|
|
|
int return_value = -1; // Set error flag, cleared when valid result calculated.
|
|
crosstrack_error->past_end = false;
|
|
crosstrack_error->distance = 0.0f;
|
|
crosstrack_error->bearing = 0.0f;
|
|
|
|
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
|
|
|
|
// Return error if arguments are bad
|
|
if (dist_to_end < 0.1f) {
|
|
return -1;
|
|
}
|
|
|
|
float bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
|
|
float bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);
|
|
float bearing_diff = wrap_pi(bearing_track - bearing_end);
|
|
|
|
// Return past_end = true if past end point of line
|
|
if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) {
|
|
crosstrack_error->past_end = true;
|
|
return_value = 0;
|
|
return return_value;
|
|
}
|
|
|
|
crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff);
|
|
|
|
if (sinf(bearing_diff) >= 0) {
|
|
crosstrack_error->bearing = wrap_pi(bearing_track - M_PI_2_F);
|
|
|
|
} else {
|
|
crosstrack_error->bearing = wrap_pi(bearing_track + M_PI_2_F);
|
|
}
|
|
|
|
return_value = 0;
|
|
|
|
return return_value;
|
|
}
|
|
|
|
int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
|
|
double lat_center, double lon_center,
|
|
float radius, float arc_start_bearing, float arc_sweep)
|
|
{
|
|
// This function returns the distance to the nearest point on the track arc. Distance is positive if current
|
|
// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and
|
|
// headed towards the end point.
|
|
|
|
// Determine if the current position is inside or outside the sector between the line from the center
|
|
// to the arc start and the line from the center to the arc end
|
|
float bearing_sector_start = 0.0f;
|
|
float bearing_sector_end = 0.0f;
|
|
float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
|
|
|
|
int return_value = -1; // Set error flag, cleared when valid result calculated.
|
|
crosstrack_error->past_end = false;
|
|
crosstrack_error->distance = 0.0f;
|
|
crosstrack_error->bearing = 0.0f;
|
|
|
|
// Return error if arguments are bad
|
|
if (radius < 0.1f) {
|
|
return return_value;
|
|
}
|
|
|
|
if (arc_sweep >= 0.0f) {
|
|
bearing_sector_start = arc_start_bearing;
|
|
bearing_sector_end = arc_start_bearing + arc_sweep;
|
|
|
|
if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= (2 * M_PI_F); }
|
|
|
|
} else {
|
|
bearing_sector_end = arc_start_bearing;
|
|
bearing_sector_start = arc_start_bearing - arc_sweep;
|
|
|
|
if (bearing_sector_start < 0.0f) { bearing_sector_start += (2 * M_PI_F); }
|
|
}
|
|
|
|
bool in_sector = false;
|
|
|
|
// Case where sector does not span zero
|
|
if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start
|
|
&& bearing_now <= bearing_sector_end) {
|
|
|
|
in_sector = true;
|
|
}
|
|
|
|
// Case where sector does span zero
|
|
if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start
|
|
|| bearing_now < bearing_sector_end)) {
|
|
|
|
in_sector = true;
|
|
}
|
|
|
|
// If in the sector then calculate distance and bearing to closest point
|
|
if (in_sector) {
|
|
crosstrack_error->past_end = false;
|
|
float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
|
|
|
|
if (dist_to_center <= radius) {
|
|
crosstrack_error->distance = radius - dist_to_center;
|
|
crosstrack_error->bearing = bearing_now + M_PI_F;
|
|
|
|
} else {
|
|
crosstrack_error->distance = dist_to_center - radius;
|
|
crosstrack_error->bearing = bearing_now;
|
|
}
|
|
|
|
// If out of the sector then calculate dist and bearing to start or end point
|
|
|
|
} else {
|
|
|
|
// Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude)
|
|
// and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to
|
|
// calculate the position of the start and end points. We should not be doing this often
|
|
// as this function generally will not be called repeatedly when we are out of the sector.
|
|
|
|
double start_disp_x = (double)radius * sin((double)arc_start_bearing);
|
|
double start_disp_y = (double)radius * cos((double)arc_start_bearing);
|
|
double end_disp_x = (double)radius * sin((double)wrap_pi(arc_start_bearing + arc_sweep));
|
|
double end_disp_y = (double)radius * cos((double)wrap_pi(arc_start_bearing + arc_sweep));
|
|
double lon_start = lon_now + start_disp_x / 111111.0;
|
|
double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0;
|
|
double lon_end = lon_now + end_disp_x / 111111.0;
|
|
double lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0;
|
|
float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
|
|
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
|
|
|
|
if (dist_to_start < dist_to_end) {
|
|
crosstrack_error->distance = dist_to_start;
|
|
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
|
|
|
|
} else {
|
|
crosstrack_error->past_end = true;
|
|
crosstrack_error->distance = dist_to_end;
|
|
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
|
|
}
|
|
}
|
|
|
|
crosstrack_error->bearing = wrap_pi(crosstrack_error->bearing);
|
|
return_value = 0;
|
|
|
|
return return_value;
|
|
}
|
|
|
|
float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now,
|
|
double lat_next, double lon_next, float alt_next,
|
|
float *dist_xy, float *dist_z)
|
|
{
|
|
double current_x_rad = lat_next / 180.0 * M_PI;
|
|
double current_y_rad = lon_next / 180.0 * M_PI;
|
|
double x_rad = lat_now / 180.0 * M_PI;
|
|
double y_rad = lon_now / 180.0 * M_PI;
|
|
|
|
double d_lat = x_rad - current_x_rad;
|
|
double d_lon = y_rad - current_y_rad;
|
|
|
|
double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(current_x_rad) * cos(x_rad);
|
|
double c = 2 * atan2(sqrt(a), sqrt(1 - a));
|
|
|
|
const float dxy = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * c);
|
|
const float dz = static_cast<float>(alt_now - alt_next);
|
|
|
|
*dist_xy = fabsf(dxy);
|
|
*dist_z = fabsf(dz);
|
|
|
|
return sqrtf(dxy * dxy + dz * dz);
|
|
}
|
|
|
|
float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now,
|
|
float x_next, float y_next, float z_next,
|
|
float *dist_xy, float *dist_z)
|
|
{
|
|
float dx = x_now - x_next;
|
|
float dy = y_now - y_next;
|
|
float dz = z_now - z_next;
|
|
|
|
*dist_xy = sqrtf(dx * dx + dy * dy);
|
|
*dist_z = fabsf(dz);
|
|
|
|
return sqrtf(dx * dx + dy * dy + dz * dz);
|
|
}
|