px4-firmware/geo/geo.cpp

560 lines
18 KiB
C++

/****************************************************************************
*
* Copyright (c) 2012-2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file geo.c
*
* Geo / math functions to perform geodesic calculations
*
* @author Thomas Gubler <thomasgubler@student.ethz.ch>
* @author Julian Oes <joes@student.ethz.ch>
* @author Lorenz Meier <lm@inf.ethz.ch>
* @author Anton Babushkin <anton.babushkin@me.com>
*/
#include "geo.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
#include <matrix/math.hpp>
#include <float.h>
using matrix::wrap_pi;
using matrix::wrap_2pi;
/*
* Azimuthal Equidistant Projection
* formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
*/
static struct map_projection_reference_s mp_ref;
static struct globallocal_converter_reference_s gl_ref = {0.0f, false};
bool map_projection_global_initialized()
{
return map_projection_initialized(&mp_ref);
}
bool map_projection_initialized(const struct map_projection_reference_s *ref)
{
return ref->init_done;
}
uint64_t map_projection_global_timestamp()
{
return map_projection_timestamp(&mp_ref);
}
uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref)
{
return ref->timestamp;
}
// lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
int map_projection_global_init(double lat_0, double lon_0, uint64_t timestamp)
{
return map_projection_init_timestamped(&mp_ref, lat_0, lon_0, timestamp);
}
// lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, uint64_t timestamp)
{
ref->lat_rad = math::radians(lat_0);
ref->lon_rad = math::radians(lon_0);
ref->sin_lat = sin(ref->lat_rad);
ref->cos_lat = cos(ref->lat_rad);
ref->timestamp = timestamp;
ref->init_done = true;
return 0;
}
//lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
int map_projection_init(struct map_projection_reference_s *ref, double lat_0, double lon_0)
{
return map_projection_init_timestamped(ref, lat_0, lon_0, ecl_absolute_time());
}
int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad)
{
return map_projection_reference(&mp_ref, ref_lat_rad, ref_lon_rad);
}
int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, double *ref_lon_rad)
{
if (!map_projection_initialized(ref)) {
return -1;
}
*ref_lat_rad = ref->lat_rad;
*ref_lon_rad = ref->lon_rad;
return 0;
}
int map_projection_global_project(double lat, double lon, float *x, float *y)
{
return map_projection_project(&mp_ref, lat, lon, x, y);
}
int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, float *y)
{
if (!map_projection_initialized(ref)) {
return -1;
}
const double lat_rad = math::radians(lat);
const double lon_rad = math::radians(lon);
const double sin_lat = sin(lat_rad);
const double cos_lat = cos(lat_rad);
const double cos_d_lon = cos(lon_rad - ref->lon_rad);
const double arg = math::constrain(ref->sin_lat * sin_lat + ref->cos_lat * cos_lat * cos_d_lon, -1.0, 1.0);
const double c = acos(arg);
double k = 1.0;
if (fabs(c) > 0) {
k = (c / sin(c));
}
*x = static_cast<float>(k * (ref->cos_lat * sin_lat - ref->sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH);
*y = static_cast<float>(k * cos_lat * sin(lon_rad - ref->lon_rad) * CONSTANTS_RADIUS_OF_EARTH);
return 0;
}
int map_projection_global_reproject(float x, float y, double *lat, double *lon)
{
return map_projection_reproject(&mp_ref, x, y, lat, lon);
}
int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, double *lon)
{
if (!map_projection_initialized(ref)) {
return -1;
}
const double x_rad = (double)x / CONSTANTS_RADIUS_OF_EARTH;
const double y_rad = (double)y / CONSTANTS_RADIUS_OF_EARTH;
const double c = sqrt(x_rad * x_rad + y_rad * y_rad);
if (fabs(c) > 0) {
const double sin_c = sin(c);
const double cos_c = cos(c);
const double lat_rad = asin(cos_c * ref->sin_lat + (x_rad * sin_c * ref->cos_lat) / c);
const double lon_rad = (ref->lon_rad + atan2(y_rad * sin_c, c * ref->cos_lat * cos_c - x_rad * ref->sin_lat * sin_c));
*lat = math::degrees(lat_rad);
*lon = math::degrees(lon_rad);
} else {
*lat = math::degrees(ref->lat_rad);
*lon = math::degrees(ref->lon_rad);
}
return 0;
}
int map_projection_global_getref(double *lat_0, double *lon_0)
{
if (!map_projection_global_initialized()) {
return -1;
}
if (lat_0 != nullptr) {
*lat_0 = math::degrees(mp_ref.lat_rad);
}
if (lon_0 != nullptr) {
*lon_0 = math::degrees(mp_ref.lon_rad);
}
return 0;
}
int globallocalconverter_init(double lat_0, double lon_0, float alt_0, uint64_t timestamp)
{
gl_ref.alt = alt_0;
if (!map_projection_global_init(lat_0, lon_0, timestamp)) {
gl_ref.init_done = true;
return 0;
}
gl_ref.init_done = false;
return -1;
}
bool globallocalconverter_initialized()
{
return gl_ref.init_done && map_projection_global_initialized();
}
int globallocalconverter_tolocal(double lat, double lon, float alt, float *x, float *y, float *z)
{
if (!map_projection_global_initialized()) {
return -1;
}
map_projection_global_project(lat, lon, x, y);
*z = gl_ref.alt - alt;
return 0;
}
int globallocalconverter_toglobal(float x, float y, float z, double *lat, double *lon, float *alt)
{
if (!map_projection_global_initialized()) {
return -1;
}
map_projection_global_reproject(x, y, lat, lon);
*alt = gl_ref.alt - z;
return 0;
}
int globallocalconverter_getref(double *lat_0, double *lon_0, float *alt_0)
{
if (map_projection_global_initialized() != 0) {
return -1;
}
if (map_projection_global_getref(lat_0, lon_0)) {
return -1;
}
if (alt_0 != nullptr) {
*alt_0 = gl_ref.alt;
}
return 0;
}
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{
const double lat_now_rad = math::radians(lat_now);
const double lat_next_rad = math::radians(lat_next);
const double d_lat = lat_next_rad - lat_now_rad;
const double d_lon = math::radians(lon_next) - math::radians(lon_now);
const double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(lat_now_rad) * cos(lat_next_rad);
const double c = atan2(sqrt(a), sqrt(1.0 - a));
return static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * 2.0 * c);
}
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,
double *lat_target, double *lon_target)
{
if (fabsf(dist) < FLT_EPSILON) {
*lat_target = lat_A;
*lon_target = lon_A;
} else if (dist >= FLT_EPSILON) {
float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B);
waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target);
} else {
float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B);
heading = wrap_2pi(heading + M_PI_F);
waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target);
}
}
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,
double *lat_target, double *lon_target)
{
bearing = wrap_2pi(bearing);
double radius_ratio = (double)fabs((double)dist) / CONSTANTS_RADIUS_OF_EARTH;
double lat_start_rad = math::radians(lat_start);
double lon_start_rad = math::radians(lon_start);
*lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos((double)bearing));
*lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad),
cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target));
*lat_target = math::degrees(*lat_target);
*lon_target = math::degrees(*lon_target);
}
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{
const double lat_now_rad = math::radians(lat_now);
const double lat_next_rad = math::radians(lat_next);
const double cos_lat_next = cos(lat_next_rad);
const double d_lon = math::radians(lon_next - lon_now);
/* conscious mix of double and float trig function to maximize speed and efficiency */
const float y = static_cast<float>(sin(d_lon) * cos_lat_next);
const float x = static_cast<float>(cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos_lat_next * cos(d_lon));
return wrap_pi(atan2f(y, x));
}
void
get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
{
const double lat_now_rad = math::radians(lat_now);
const double lat_next_rad = math::radians(lat_next);
const double d_lon = math::radians(lon_next) - math::radians(lon_now);
/* conscious mix of double and float trig function to maximize speed and efficiency */
*v_n = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)));
*v_e = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad));
}
void
get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
{
double lat_now_rad = math::radians(lat_now);
double lon_now_rad = math::radians(lon_now);
double lat_next_rad = math::radians(lat_next);
double lon_next_rad = math::radians(lon_next);
double d_lat = lat_next_rad - lat_now_rad;
double d_lon = lon_next_rad - lon_now_rad;
/* conscious mix of double and float trig function to maximize speed and efficiency */
*v_n = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * d_lat);
*v_e = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad));
}
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res)
{
double lat_now_rad = math::radians(lat_now);
double lon_now_rad = math::radians(lon_now);
*lat_res = math::degrees(lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH);
*lon_res = math::degrees(lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad)));
}
// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>
int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_start, double lon_start, double lat_end, double lon_end)
{
// This function returns the distance to the nearest point on the track line. Distance is positive if current
// position is right of the track and negative if left of the track as seen from a point on the track line
// headed towards the end point.
int return_value = -1; // Set error flag, cleared when valid result calculated.
crosstrack_error->past_end = false;
crosstrack_error->distance = 0.0f;
crosstrack_error->bearing = 0.0f;
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
// Return error if arguments are bad
if (dist_to_end < 0.1f) {
return -1;
}
float bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
float bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);
float bearing_diff = wrap_pi(bearing_track - bearing_end);
// Return past_end = true if past end point of line
if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) {
crosstrack_error->past_end = true;
return_value = 0;
return return_value;
}
crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff);
if (sinf(bearing_diff) >= 0) {
crosstrack_error->bearing = wrap_pi(bearing_track - M_PI_2_F);
} else {
crosstrack_error->bearing = wrap_pi(bearing_track + M_PI_2_F);
}
return_value = 0;
return return_value;
}
int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_center, double lon_center,
float radius, float arc_start_bearing, float arc_sweep)
{
// This function returns the distance to the nearest point on the track arc. Distance is positive if current
// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and
// headed towards the end point.
// Determine if the current position is inside or outside the sector between the line from the center
// to the arc start and the line from the center to the arc end
float bearing_sector_start = 0.0f;
float bearing_sector_end = 0.0f;
float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
int return_value = -1; // Set error flag, cleared when valid result calculated.
crosstrack_error->past_end = false;
crosstrack_error->distance = 0.0f;
crosstrack_error->bearing = 0.0f;
// Return error if arguments are bad
if (radius < 0.1f) {
return return_value;
}
if (arc_sweep >= 0.0f) {
bearing_sector_start = arc_start_bearing;
bearing_sector_end = arc_start_bearing + arc_sweep;
if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= (2 * M_PI_F); }
} else {
bearing_sector_end = arc_start_bearing;
bearing_sector_start = arc_start_bearing - arc_sweep;
if (bearing_sector_start < 0.0f) { bearing_sector_start += (2 * M_PI_F); }
}
bool in_sector = false;
// Case where sector does not span zero
if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start
&& bearing_now <= bearing_sector_end) {
in_sector = true;
}
// Case where sector does span zero
if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start
|| bearing_now < bearing_sector_end)) {
in_sector = true;
}
// If in the sector then calculate distance and bearing to closest point
if (in_sector) {
crosstrack_error->past_end = false;
float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
if (dist_to_center <= radius) {
crosstrack_error->distance = radius - dist_to_center;
crosstrack_error->bearing = bearing_now + M_PI_F;
} else {
crosstrack_error->distance = dist_to_center - radius;
crosstrack_error->bearing = bearing_now;
}
// If out of the sector then calculate dist and bearing to start or end point
} else {
// Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude)
// and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to
// calculate the position of the start and end points. We should not be doing this often
// as this function generally will not be called repeatedly when we are out of the sector.
double start_disp_x = (double)radius * sin((double)arc_start_bearing);
double start_disp_y = (double)radius * cos((double)arc_start_bearing);
double end_disp_x = (double)radius * sin((double)wrap_pi(arc_start_bearing + arc_sweep));
double end_disp_y = (double)radius * cos((double)wrap_pi(arc_start_bearing + arc_sweep));
double lon_start = lon_now + start_disp_x / 111111.0;
double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0;
double lon_end = lon_now + end_disp_x / 111111.0;
double lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0;
float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
if (dist_to_start < dist_to_end) {
crosstrack_error->distance = dist_to_start;
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
} else {
crosstrack_error->past_end = true;
crosstrack_error->distance = dist_to_end;
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
}
}
crosstrack_error->bearing = wrap_pi(crosstrack_error->bearing);
return_value = 0;
return return_value;
}
float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now,
double lat_next, double lon_next, float alt_next,
float *dist_xy, float *dist_z)
{
double current_x_rad = lat_next / 180.0 * M_PI;
double current_y_rad = lon_next / 180.0 * M_PI;
double x_rad = lat_now / 180.0 * M_PI;
double y_rad = lon_now / 180.0 * M_PI;
double d_lat = x_rad - current_x_rad;
double d_lon = y_rad - current_y_rad;
double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(current_x_rad) * cos(x_rad);
double c = 2 * atan2(sqrt(a), sqrt(1 - a));
const float dxy = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * c);
const float dz = static_cast<float>(alt_now - alt_next);
*dist_xy = fabsf(dxy);
*dist_z = fabsf(dz);
return sqrtf(dxy * dxy + dz * dz);
}
float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now,
float x_next, float y_next, float z_next,
float *dist_xy, float *dist_z)
{
float dx = x_now - x_next;
float dy = y_now - y_next;
float dz = z_now - z_next;
*dist_xy = sqrtf(dx * dx + dy * dy);
*dist_z = fabsf(dz);
return sqrtf(dx * dx + dy * dy + dz * dz);
}