forked from Archive/PX4-Autopilot
185 lines
4.9 KiB
C++
185 lines
4.9 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2015 PX4 Development Team. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file data_validator.c
|
|
*
|
|
* A data validation class to identify anomalies in data streams
|
|
*
|
|
* @author Lorenz Meier <lorenz@px4.io>
|
|
*/
|
|
|
|
#include "data_validator.h"
|
|
#include <ecl/ecl.h>
|
|
|
|
DataValidator::DataValidator(DataValidator *prev_sibling) :
|
|
_error_mask(ERROR_FLAG_NO_ERROR),
|
|
_time_last(0),
|
|
_timeout_interval(20000),
|
|
_event_count(0),
|
|
_error_count(0),
|
|
_error_density(0),
|
|
_priority(0),
|
|
_mean{0.0f},
|
|
_lp{0.0f},
|
|
_M2{0.0f},
|
|
_rms{0.0f},
|
|
_value{0.0f},
|
|
_vibe{0.0f},
|
|
_value_equal_count(0),
|
|
_sibling(prev_sibling)
|
|
{
|
|
|
|
}
|
|
|
|
DataValidator::~DataValidator()
|
|
{
|
|
|
|
}
|
|
|
|
void
|
|
DataValidator::put(uint64_t timestamp, float val, uint64_t error_count_in, int priority_in)
|
|
{
|
|
float data[3];
|
|
|
|
data[0] = val;
|
|
data[1] = 0.0f;
|
|
data[2] = 0.0f;
|
|
|
|
put(timestamp, data, error_count_in, priority_in);
|
|
}
|
|
|
|
void
|
|
DataValidator::put(uint64_t timestamp, float val[3], uint64_t error_count_in, int priority_in)
|
|
{
|
|
_event_count++;
|
|
|
|
if (error_count_in > _error_count) {
|
|
_error_density += (error_count_in - _error_count);
|
|
} else if (_error_density > 0) {
|
|
_error_density--;
|
|
}
|
|
|
|
_error_count = error_count_in;
|
|
_priority = priority_in;
|
|
|
|
for (unsigned i = 0; i < _dimensions; i++) {
|
|
if (_time_last == 0) {
|
|
_mean[i] = 0;
|
|
_lp[i] = val[i];
|
|
_M2[i] = 0;
|
|
} else {
|
|
float lp_val = val[i] - _lp[i];
|
|
|
|
float delta_val = lp_val - _mean[i];
|
|
_mean[i] += delta_val / _event_count;
|
|
_M2[i] += delta_val * (lp_val - _mean[i]);
|
|
_rms[i] = sqrtf(_M2[i] / (_event_count - 1));
|
|
|
|
if (fabsf(_value[i] - val[i]) < 0.000001f) {
|
|
_value_equal_count++;
|
|
} else {
|
|
_value_equal_count = 0;
|
|
}
|
|
}
|
|
|
|
_vibe[i] = _vibe[i] * 0.99f + 0.01f * fabsf(val[i] - _lp[i]);
|
|
|
|
// XXX replace with better filter, make it auto-tune to update rate
|
|
_lp[i] = _lp[i] * 0.99f + 0.01f * val[i];
|
|
|
|
_value[i] = val[i];
|
|
}
|
|
|
|
_time_last = timestamp;
|
|
}
|
|
|
|
float
|
|
DataValidator::confidence(uint64_t timestamp)
|
|
{
|
|
float ret = 1.0f;
|
|
|
|
/* check if we have any data */
|
|
if (_time_last == 0) {
|
|
_error_mask |= ERROR_FLAG_NO_DATA;
|
|
ret = 0.0f;
|
|
|
|
/* timed out - that's it */
|
|
} else if (timestamp - _time_last > _timeout_interval) {
|
|
_error_mask |= ERROR_FLAG_TIMEOUT;
|
|
ret = 0.0f;
|
|
|
|
/* we got the exact same sensor value N times in a row */
|
|
} else if (_value_equal_count > VALUE_EQUAL_COUNT_MAX) {
|
|
_error_mask |= ERROR_FLAG_STALE_DATA;
|
|
ret = 0.0f;
|
|
|
|
/* check error count limit */
|
|
} else if (_error_count > NORETURN_ERRCOUNT) {
|
|
_error_mask |= ERROR_FLAG_HIGH_ERRCOUNT;
|
|
ret = 0.0f;
|
|
|
|
/* cap error density counter at window size */
|
|
} else if (_error_density > ERROR_DENSITY_WINDOW) {
|
|
_error_mask |= ERROR_FLAG_HIGH_ERRDENSITY;
|
|
_error_density = ERROR_DENSITY_WINDOW;
|
|
|
|
/* no error */
|
|
} else {
|
|
_error_mask = ERROR_FLAG_NO_ERROR;
|
|
}
|
|
|
|
/* no critical errors */
|
|
if (ret > 0.0f) {
|
|
/* return local error density for last N measurements */
|
|
ret = 1.0f - (_error_density / ERROR_DENSITY_WINDOW);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
DataValidator::print()
|
|
{
|
|
if (_time_last == 0) {
|
|
ECL_INFO("\tno data");
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0; i < _dimensions; i++) {
|
|
ECL_INFO("\tval: %8.4f, lp: %8.4f mean dev: %8.4f RMS: %8.4f conf: %8.4f",
|
|
(double) _value[i], (double)_lp[i], (double)_mean[i],
|
|
(double)_rms[i], (double)confidence(hrt_absolute_time()));
|
|
}
|
|
}
|