px4-firmware/validation/data_validator.cpp

185 lines
4.9 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file data_validator.c
*
* A data validation class to identify anomalies in data streams
*
* @author Lorenz Meier <lorenz@px4.io>
*/
#include "data_validator.h"
#include <ecl/ecl.h>
DataValidator::DataValidator(DataValidator *prev_sibling) :
_error_mask(ERROR_FLAG_NO_ERROR),
_time_last(0),
_timeout_interval(20000),
_event_count(0),
_error_count(0),
_error_density(0),
_priority(0),
_mean{0.0f},
_lp{0.0f},
_M2{0.0f},
_rms{0.0f},
_value{0.0f},
_vibe{0.0f},
_value_equal_count(0),
_sibling(prev_sibling)
{
}
DataValidator::~DataValidator()
{
}
void
DataValidator::put(uint64_t timestamp, float val, uint64_t error_count_in, int priority_in)
{
float data[3];
data[0] = val;
data[1] = 0.0f;
data[2] = 0.0f;
put(timestamp, data, error_count_in, priority_in);
}
void
DataValidator::put(uint64_t timestamp, float val[3], uint64_t error_count_in, int priority_in)
{
_event_count++;
if (error_count_in > _error_count) {
_error_density += (error_count_in - _error_count);
} else if (_error_density > 0) {
_error_density--;
}
_error_count = error_count_in;
_priority = priority_in;
for (unsigned i = 0; i < _dimensions; i++) {
if (_time_last == 0) {
_mean[i] = 0;
_lp[i] = val[i];
_M2[i] = 0;
} else {
float lp_val = val[i] - _lp[i];
float delta_val = lp_val - _mean[i];
_mean[i] += delta_val / _event_count;
_M2[i] += delta_val * (lp_val - _mean[i]);
_rms[i] = sqrtf(_M2[i] / (_event_count - 1));
if (fabsf(_value[i] - val[i]) < 0.000001f) {
_value_equal_count++;
} else {
_value_equal_count = 0;
}
}
_vibe[i] = _vibe[i] * 0.99f + 0.01f * fabsf(val[i] - _lp[i]);
// XXX replace with better filter, make it auto-tune to update rate
_lp[i] = _lp[i] * 0.99f + 0.01f * val[i];
_value[i] = val[i];
}
_time_last = timestamp;
}
float
DataValidator::confidence(uint64_t timestamp)
{
float ret = 1.0f;
/* check if we have any data */
if (_time_last == 0) {
_error_mask |= ERROR_FLAG_NO_DATA;
ret = 0.0f;
/* timed out - that's it */
} else if (timestamp - _time_last > _timeout_interval) {
_error_mask |= ERROR_FLAG_TIMEOUT;
ret = 0.0f;
/* we got the exact same sensor value N times in a row */
} else if (_value_equal_count > VALUE_EQUAL_COUNT_MAX) {
_error_mask |= ERROR_FLAG_STALE_DATA;
ret = 0.0f;
/* check error count limit */
} else if (_error_count > NORETURN_ERRCOUNT) {
_error_mask |= ERROR_FLAG_HIGH_ERRCOUNT;
ret = 0.0f;
/* cap error density counter at window size */
} else if (_error_density > ERROR_DENSITY_WINDOW) {
_error_mask |= ERROR_FLAG_HIGH_ERRDENSITY;
_error_density = ERROR_DENSITY_WINDOW;
/* no error */
} else {
_error_mask = ERROR_FLAG_NO_ERROR;
}
/* no critical errors */
if (ret > 0.0f) {
/* return local error density for last N measurements */
ret = 1.0f - (_error_density / ERROR_DENSITY_WINDOW);
}
return ret;
}
void
DataValidator::print()
{
if (_time_last == 0) {
ECL_INFO("\tno data");
return;
}
for (unsigned i = 0; i < _dimensions; i++) {
ECL_INFO("\tval: %8.4f, lp: %8.4f mean dev: %8.4f RMS: %8.4f conf: %8.4f",
(double) _value[i], (double)_lp[i], (double)_mean[i],
(double)_rms[i], (double)confidence(hrt_absolute_time()));
}
}