forked from Archive/PX4-Autopilot
313 lines
8.0 KiB
C
313 lines
8.0 KiB
C
/****************************************************************************
|
|
*
|
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file i2c.c
|
|
*
|
|
* I2C communication for the PX4IO module.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <nuttx/arch.h>
|
|
#include <arch/board/board.h>
|
|
#include <stm32_i2c.h>
|
|
#include <stm32_dma.h>
|
|
|
|
//#define DEBUG
|
|
#include "px4io.h"
|
|
|
|
/*
|
|
* I2C register definitions.
|
|
*/
|
|
#define I2C_BASE STM32_I2C1_BASE
|
|
|
|
#define REG(_reg) (*(volatile uint32_t *)(I2C_BASE + _reg))
|
|
|
|
#define rCR1 REG(STM32_I2C_CR1_OFFSET)
|
|
#define rCR2 REG(STM32_I2C_CR2_OFFSET)
|
|
#define rOAR1 REG(STM32_I2C_OAR1_OFFSET)
|
|
#define rOAR2 REG(STM32_I2C_OAR2_OFFSET)
|
|
#define rDR REG(STM32_I2C_DR_OFFSET)
|
|
#define rSR1 REG(STM32_I2C_SR1_OFFSET)
|
|
#define rSR2 REG(STM32_I2C_SR2_OFFSET)
|
|
#define rCCR REG(STM32_I2C_CCR_OFFSET)
|
|
#define rTRISE REG(STM32_I2C_TRISE_OFFSET)
|
|
|
|
static int i2c_interrupt(int irq, void *context);
|
|
#ifdef DEBUG
|
|
static void i2c_dump(void);
|
|
#endif
|
|
|
|
static void i2c_rx_setup(void);
|
|
static void i2c_tx_setup(void);
|
|
static void i2c_rx_complete(void);
|
|
static void i2c_tx_complete(void);
|
|
|
|
static DMA_HANDLE rx_dma;
|
|
static DMA_HANDLE tx_dma;
|
|
|
|
static uint8_t rx_buf[64];
|
|
static unsigned rx_len;
|
|
|
|
static const uint8_t junk_buf[] = { 0xff, 0xff, 0xff, 0xff };
|
|
|
|
static const uint8_t *tx_buf = junk_buf;
|
|
static unsigned tx_len = sizeof(junk_buf);
|
|
unsigned tx_count;
|
|
|
|
static uint8_t selected_page;
|
|
static uint8_t selected_offset;
|
|
|
|
enum {
|
|
DIR_NONE = 0,
|
|
DIR_TX = 1,
|
|
DIR_RX = 2
|
|
} direction;
|
|
|
|
void
|
|
i2c_init(void)
|
|
{
|
|
debug("i2c init");
|
|
|
|
/* allocate DMA handles and initialise DMA */
|
|
rx_dma = stm32_dmachannel(DMACHAN_I2C1_RX);
|
|
i2c_rx_setup();
|
|
tx_dma = stm32_dmachannel(DMACHAN_I2C1_TX);
|
|
i2c_tx_setup();
|
|
|
|
/* enable the i2c block clock and reset it */
|
|
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_I2C1EN);
|
|
modifyreg32(STM32_RCC_APB1RSTR, 0, RCC_APB1RSTR_I2C1RST);
|
|
modifyreg32(STM32_RCC_APB1RSTR, RCC_APB1RSTR_I2C1RST, 0);
|
|
|
|
/* configure the i2c GPIOs */
|
|
stm32_configgpio(GPIO_I2C1_SCL);
|
|
stm32_configgpio(GPIO_I2C1_SDA);
|
|
|
|
/* soft-reset the block */
|
|
rCR1 |= I2C_CR1_SWRST;
|
|
rCR1 = 0;
|
|
|
|
/* set for DMA operation */
|
|
rCR2 |= I2C_CR2_ITEVFEN |I2C_CR2_ITERREN | I2C_CR2_DMAEN;
|
|
|
|
/* set the frequency value in CR2 */
|
|
rCR2 &= ~I2C_CR2_FREQ_MASK;
|
|
rCR2 |= STM32_PCLK1_FREQUENCY / 1000000;
|
|
|
|
/* set divisor and risetime for fast mode */
|
|
uint16_t result = STM32_PCLK1_FREQUENCY / (400000 * 25);
|
|
if (result < 1)
|
|
result = 1;
|
|
result = 3;
|
|
rCCR &= ~I2C_CCR_CCR_MASK;
|
|
rCCR |= I2C_CCR_DUTY | I2C_CCR_FS | result;
|
|
rTRISE = (uint16_t)((((STM32_PCLK1_FREQUENCY / 1000000) * 300) / 1000) + 1);
|
|
|
|
/* set our device address */
|
|
rOAR1 = 0x1a << 1;
|
|
|
|
/* enable event interrupts */
|
|
irq_attach(STM32_IRQ_I2C1EV, i2c_interrupt);
|
|
irq_attach(STM32_IRQ_I2C1ER, i2c_interrupt);
|
|
up_enable_irq(STM32_IRQ_I2C1EV);
|
|
up_enable_irq(STM32_IRQ_I2C1ER);
|
|
|
|
/* and enable the I2C port */
|
|
rCR1 |= I2C_CR1_ACK | I2C_CR1_PE;
|
|
|
|
#ifdef DEBUG
|
|
i2c_dump();
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
i2c_interrupt(int irq, FAR void *context)
|
|
{
|
|
uint16_t sr1 = rSR1;
|
|
|
|
if (sr1 & (I2C_SR1_STOPF | I2C_SR1_AF)) {
|
|
|
|
if (sr1 & I2C_SR1_STOPF) {
|
|
/* write to CR1 to clear STOPF */
|
|
(void)rSR1; /* as recommended, re-read SR1 */
|
|
rCR1 |= I2C_CR1_PE;
|
|
}
|
|
|
|
/* it's likely that the DMA hasn't stopped, so we have to do it here */
|
|
switch (direction) {
|
|
case DIR_TX:
|
|
i2c_tx_complete();
|
|
break;
|
|
case DIR_RX:
|
|
i2c_rx_complete();
|
|
break;
|
|
default:
|
|
/* spurious stop, ignore */
|
|
break;
|
|
}
|
|
direction = DIR_NONE;
|
|
}
|
|
|
|
if (sr1 & I2C_SR1_ADDR) {
|
|
|
|
/* clear ADDR to ack our selection and get direction */
|
|
(void)rSR1; /* as recommended, re-read SR1 */
|
|
uint16_t sr2 = rSR2;
|
|
|
|
if (sr2 & I2C_SR2_TRA) {
|
|
/* we are the transmitter */
|
|
|
|
direction = DIR_TX;
|
|
|
|
} else {
|
|
/* we are the receiver */
|
|
|
|
direction = DIR_RX;
|
|
}
|
|
}
|
|
|
|
/* clear any errors that might need it (this handles AF as well */
|
|
if (sr1 & I2C_SR1_ERRORMASK)
|
|
rSR1 = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i2c_rx_setup(void)
|
|
{
|
|
/*
|
|
* Note that we configure DMA in circular mode; this means that a too-long
|
|
* transfer will overwrite the buffer, but that avoids us having to deal with
|
|
* bailing out of a transaction while the master is still babbling at us.
|
|
*/
|
|
rx_len = 0;
|
|
stm32_dmasetup(rx_dma, (uintptr_t)&rDR, (uintptr_t)&rx_buf[0], sizeof(rx_buf),
|
|
DMA_CCR_CIRC |
|
|
DMA_CCR_MINC |
|
|
DMA_CCR_PSIZE_32BITS |
|
|
DMA_CCR_MSIZE_8BITS |
|
|
DMA_CCR_PRIMED);
|
|
|
|
stm32_dmastart(rx_dma, NULL, NULL, false);
|
|
}
|
|
|
|
static void
|
|
i2c_rx_complete(void)
|
|
{
|
|
rx_len = sizeof(rx_buf) - stm32_dmaresidual(rx_dma);
|
|
stm32_dmastop(rx_dma);
|
|
|
|
if (rx_len >= 2) {
|
|
selected_page = rx_buf[0];
|
|
selected_offset = rx_buf[1];
|
|
|
|
/* work out how many registers are being written */
|
|
unsigned count = (rx_len - 2) / 2;
|
|
if (count > 0) {
|
|
registers_set(selected_page, selected_offset, (const uint16_t *)&rx_buf[2], count);
|
|
} else {
|
|
/* no registers written, must be an address cycle */
|
|
uint16_t *regs;
|
|
unsigned reg_count;
|
|
|
|
/* work out which registers are being addressed */
|
|
int ret = registers_get(selected_page, selected_offset, ®s, ®_count);
|
|
if (ret == 0) {
|
|
tx_buf = (uint8_t *)regs;
|
|
tx_len = reg_count * 2;
|
|
} else {
|
|
tx_buf = junk_buf;
|
|
tx_len = sizeof(junk_buf);
|
|
}
|
|
|
|
/* disable interrupts while reconfiguring DMA for the selected registers */
|
|
irqstate_t flags = irqsave();
|
|
|
|
stm32_dmastop(tx_dma);
|
|
i2c_tx_setup();
|
|
|
|
irqrestore(flags);
|
|
}
|
|
}
|
|
|
|
/* prepare for the next transaction */
|
|
i2c_rx_setup();
|
|
}
|
|
|
|
static void
|
|
i2c_tx_setup(void)
|
|
{
|
|
/*
|
|
* Note that we configure DMA in circular mode; this means that a too-long
|
|
* transfer will copy the buffer more than once, but that avoids us having
|
|
* to deal with bailing out of a transaction while the master is still
|
|
* babbling at us.
|
|
*/
|
|
stm32_dmasetup(tx_dma, (uintptr_t)&rDR, (uintptr_t)&tx_buf[0], tx_len,
|
|
DMA_CCR_DIR |
|
|
DMA_CCR_CIRC |
|
|
DMA_CCR_MINC |
|
|
DMA_CCR_PSIZE_8BITS |
|
|
DMA_CCR_MSIZE_8BITS |
|
|
DMA_CCR_PRIMED);
|
|
|
|
stm32_dmastart(tx_dma, NULL, NULL, false);
|
|
}
|
|
|
|
static void
|
|
i2c_tx_complete(void)
|
|
{
|
|
tx_count = tx_len - stm32_dmaresidual(tx_dma);
|
|
stm32_dmastop(tx_dma);
|
|
|
|
/* for debug purposes, save the length of the last transmit as seen by the DMA */
|
|
|
|
/* leave tx_buf/tx_len alone, so that a retry will see the same data */
|
|
|
|
/* prepare for the next transaction */
|
|
i2c_tx_setup();
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static void
|
|
i2c_dump(void)
|
|
{
|
|
debug("CR1 0x%08x CR2 0x%08x", rCR1, rCR2);
|
|
debug("OAR1 0x%08x OAR2 0x%08x", rOAR1, rOAR2);
|
|
debug("CCR 0x%08x TRISE 0x%08x", rCCR, rTRISE);
|
|
debug("SR1 0x%08x SR2 0x%08x", rSR1, rSR2);
|
|
}
|
|
#endif |