px4-firmware/apps/px4io/i2c.c

313 lines
8.0 KiB
C

/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file i2c.c
*
* I2C communication for the PX4IO module.
*/
#include <stdint.h>
#include <nuttx/arch.h>
#include <arch/board/board.h>
#include <stm32_i2c.h>
#include <stm32_dma.h>
//#define DEBUG
#include "px4io.h"
/*
* I2C register definitions.
*/
#define I2C_BASE STM32_I2C1_BASE
#define REG(_reg) (*(volatile uint32_t *)(I2C_BASE + _reg))
#define rCR1 REG(STM32_I2C_CR1_OFFSET)
#define rCR2 REG(STM32_I2C_CR2_OFFSET)
#define rOAR1 REG(STM32_I2C_OAR1_OFFSET)
#define rOAR2 REG(STM32_I2C_OAR2_OFFSET)
#define rDR REG(STM32_I2C_DR_OFFSET)
#define rSR1 REG(STM32_I2C_SR1_OFFSET)
#define rSR2 REG(STM32_I2C_SR2_OFFSET)
#define rCCR REG(STM32_I2C_CCR_OFFSET)
#define rTRISE REG(STM32_I2C_TRISE_OFFSET)
static int i2c_interrupt(int irq, void *context);
#ifdef DEBUG
static void i2c_dump(void);
#endif
static void i2c_rx_setup(void);
static void i2c_tx_setup(void);
static void i2c_rx_complete(void);
static void i2c_tx_complete(void);
static DMA_HANDLE rx_dma;
static DMA_HANDLE tx_dma;
static uint8_t rx_buf[64];
static unsigned rx_len;
static const uint8_t junk_buf[] = { 0xff, 0xff, 0xff, 0xff };
static const uint8_t *tx_buf = junk_buf;
static unsigned tx_len = sizeof(junk_buf);
unsigned tx_count;
static uint8_t selected_page;
static uint8_t selected_offset;
enum {
DIR_NONE = 0,
DIR_TX = 1,
DIR_RX = 2
} direction;
void
i2c_init(void)
{
debug("i2c init");
/* allocate DMA handles and initialise DMA */
rx_dma = stm32_dmachannel(DMACHAN_I2C1_RX);
i2c_rx_setup();
tx_dma = stm32_dmachannel(DMACHAN_I2C1_TX);
i2c_tx_setup();
/* enable the i2c block clock and reset it */
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_I2C1EN);
modifyreg32(STM32_RCC_APB1RSTR, 0, RCC_APB1RSTR_I2C1RST);
modifyreg32(STM32_RCC_APB1RSTR, RCC_APB1RSTR_I2C1RST, 0);
/* configure the i2c GPIOs */
stm32_configgpio(GPIO_I2C1_SCL);
stm32_configgpio(GPIO_I2C1_SDA);
/* soft-reset the block */
rCR1 |= I2C_CR1_SWRST;
rCR1 = 0;
/* set for DMA operation */
rCR2 |= I2C_CR2_ITEVFEN |I2C_CR2_ITERREN | I2C_CR2_DMAEN;
/* set the frequency value in CR2 */
rCR2 &= ~I2C_CR2_FREQ_MASK;
rCR2 |= STM32_PCLK1_FREQUENCY / 1000000;
/* set divisor and risetime for fast mode */
uint16_t result = STM32_PCLK1_FREQUENCY / (400000 * 25);
if (result < 1)
result = 1;
result = 3;
rCCR &= ~I2C_CCR_CCR_MASK;
rCCR |= I2C_CCR_DUTY | I2C_CCR_FS | result;
rTRISE = (uint16_t)((((STM32_PCLK1_FREQUENCY / 1000000) * 300) / 1000) + 1);
/* set our device address */
rOAR1 = 0x1a << 1;
/* enable event interrupts */
irq_attach(STM32_IRQ_I2C1EV, i2c_interrupt);
irq_attach(STM32_IRQ_I2C1ER, i2c_interrupt);
up_enable_irq(STM32_IRQ_I2C1EV);
up_enable_irq(STM32_IRQ_I2C1ER);
/* and enable the I2C port */
rCR1 |= I2C_CR1_ACK | I2C_CR1_PE;
#ifdef DEBUG
i2c_dump();
#endif
}
static int
i2c_interrupt(int irq, FAR void *context)
{
uint16_t sr1 = rSR1;
if (sr1 & (I2C_SR1_STOPF | I2C_SR1_AF)) {
if (sr1 & I2C_SR1_STOPF) {
/* write to CR1 to clear STOPF */
(void)rSR1; /* as recommended, re-read SR1 */
rCR1 |= I2C_CR1_PE;
}
/* it's likely that the DMA hasn't stopped, so we have to do it here */
switch (direction) {
case DIR_TX:
i2c_tx_complete();
break;
case DIR_RX:
i2c_rx_complete();
break;
default:
/* spurious stop, ignore */
break;
}
direction = DIR_NONE;
}
if (sr1 & I2C_SR1_ADDR) {
/* clear ADDR to ack our selection and get direction */
(void)rSR1; /* as recommended, re-read SR1 */
uint16_t sr2 = rSR2;
if (sr2 & I2C_SR2_TRA) {
/* we are the transmitter */
direction = DIR_TX;
} else {
/* we are the receiver */
direction = DIR_RX;
}
}
/* clear any errors that might need it (this handles AF as well */
if (sr1 & I2C_SR1_ERRORMASK)
rSR1 = 0;
return 0;
}
static void
i2c_rx_setup(void)
{
/*
* Note that we configure DMA in circular mode; this means that a too-long
* transfer will overwrite the buffer, but that avoids us having to deal with
* bailing out of a transaction while the master is still babbling at us.
*/
rx_len = 0;
stm32_dmasetup(rx_dma, (uintptr_t)&rDR, (uintptr_t)&rx_buf[0], sizeof(rx_buf),
DMA_CCR_CIRC |
DMA_CCR_MINC |
DMA_CCR_PSIZE_32BITS |
DMA_CCR_MSIZE_8BITS |
DMA_CCR_PRIMED);
stm32_dmastart(rx_dma, NULL, NULL, false);
}
static void
i2c_rx_complete(void)
{
rx_len = sizeof(rx_buf) - stm32_dmaresidual(rx_dma);
stm32_dmastop(rx_dma);
if (rx_len >= 2) {
selected_page = rx_buf[0];
selected_offset = rx_buf[1];
/* work out how many registers are being written */
unsigned count = (rx_len - 2) / 2;
if (count > 0) {
registers_set(selected_page, selected_offset, (const uint16_t *)&rx_buf[2], count);
} else {
/* no registers written, must be an address cycle */
uint16_t *regs;
unsigned reg_count;
/* work out which registers are being addressed */
int ret = registers_get(selected_page, selected_offset, &regs, &reg_count);
if (ret == 0) {
tx_buf = (uint8_t *)regs;
tx_len = reg_count * 2;
} else {
tx_buf = junk_buf;
tx_len = sizeof(junk_buf);
}
/* disable interrupts while reconfiguring DMA for the selected registers */
irqstate_t flags = irqsave();
stm32_dmastop(tx_dma);
i2c_tx_setup();
irqrestore(flags);
}
}
/* prepare for the next transaction */
i2c_rx_setup();
}
static void
i2c_tx_setup(void)
{
/*
* Note that we configure DMA in circular mode; this means that a too-long
* transfer will copy the buffer more than once, but that avoids us having
* to deal with bailing out of a transaction while the master is still
* babbling at us.
*/
stm32_dmasetup(tx_dma, (uintptr_t)&rDR, (uintptr_t)&tx_buf[0], tx_len,
DMA_CCR_DIR |
DMA_CCR_CIRC |
DMA_CCR_MINC |
DMA_CCR_PSIZE_8BITS |
DMA_CCR_MSIZE_8BITS |
DMA_CCR_PRIMED);
stm32_dmastart(tx_dma, NULL, NULL, false);
}
static void
i2c_tx_complete(void)
{
tx_count = tx_len - stm32_dmaresidual(tx_dma);
stm32_dmastop(tx_dma);
/* for debug purposes, save the length of the last transmit as seen by the DMA */
/* leave tx_buf/tx_len alone, so that a retry will see the same data */
/* prepare for the next transaction */
i2c_tx_setup();
}
#ifdef DEBUG
static void
i2c_dump(void)
{
debug("CR1 0x%08x CR2 0x%08x", rCR1, rCR2);
debug("OAR1 0x%08x OAR2 0x%08x", rOAR1, rOAR2);
debug("CCR 0x%08x TRISE 0x%08x", rCCR, rTRISE);
debug("SR1 0x%08x SR2 0x%08x", rSR1, rSR2);
}
#endif