px4-firmware/nuttx/configs/twr-k60n512/README.txt

693 lines
27 KiB
Plaintext

README.txt
==========
This is the README file for the port of NuttX to the Freescale Kinetis
TWR-K60N512. Refer to the Freescale web site for further information
about this part:
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=TWR-K60N512-KIT
The TWR-K60N51 includes with the FreeScale Tower System which provides (among
other things) a simple UART connection.
Contents
========
o Kinetis TWR-K60N512 Features
o Kinetis TWR-K60N512 Pin Configuration
- On-Board Connections
- Connections via the General Purpose Tower Plug-in (TWRPI) Socket
- Connections via the Tower Primary Connector Side A
- Connections via the Tower Primary Connector Side B
- TWR-SER Serial Board Connection
o LEDs
o Development Environment
o GNU Toolchain Options
o IDEs
o NuttX EABI "buildroot" Toolchain
o NuttX OABI "buildroot" Toolchain
o NXFLAT Toolchain
Kinetis TWR-K60N512 Features:
=============================
o K60N512 in 144 MAPBGA, K60N512VMD100
o Capacitive Touch Pads
o Integrated, Open-Source JTAG
o SD Card Slot
o MMA7660 3-axis accelerometer
o Tower Plug-In (TWRPI) Socket for expansion (sensors, etc.)
o Touch TWRPI Socket adds support for various capacitive touch boards
(e.g. keypads, rotary dials, sliders, etc.)
o Tower connectivity for access to USB, Ethernet, RS232/RS485, CAN, SPI,
I²C, Flexbus, etc.
o Plus: Potentiometer, 4 LEDs, 2 pushbuttons, infrared port
Kinetis TWR-K60N512 Pin Configuration
=====================================
On-Board Connections
-------------------- ------------------------- -------- -------------------
FEATURE CONNECTION PORT/PIN PIN FUNCTION
-------------------- ------------------------- -------- -------------------
OSJTAG USB-to-serial OSJTAG Bridge RX Data PTE9 UART5_RX
Bridge OSJTAG Bridge TX Data PTE8 UART5_TX
SD Card Slot SD Clock PTE2 SDHC0_DCLK
SD Command PTE3 SDHC0_CMD
SD Data0 PTE1 SDHC0_D0
SD Data1 PTE0 SDHC0_D1
SD Data2 PTE5 SDHC0_D2
SD Data3 PTE4 SDHC0_D3
SD Card Detect PTE28 PTE28
SD Write Protect PTE27 PTE27
Infrared Port IR Transmit PTD7 CMT_IRO
IR Receive PTC6 CMP0_IN0
Pushbuttons SW1 (IRQ0) PTA19 PTA19
SW2 (IRQ1) PTE26 PTE26
SW3 (RESET) RESET_b RESET_b
Touch Pads E1 / Touch PTA4 TSI0_CH5
E2 / Touch PTB3 TSI0_CH8
E3 / Touch PTB2 TSI0_CH7
E4 / Touch PTB16 TSI0_CH9
LEDs E1 / Orange LED PTA11 PTA11
E2 / Yellow LED PTA28 PTA28
E3 / Green LED PTA29 PTA29
E4 / Blue LED PTA10 PTA10
Potentiometer Potentiometer (R71) ? ADC1_DM1
Accelerometer I2C SDA PTD9 I2C0_SDA
I2C SCL PTD8 I2C0_SCL
IRQ PTD10 PTD10
Touch Pad / Segment Electrode 0 (J3 Pin 3) PTB0 TSI0_CH0
LCD TWRPI Socket Electrode 1 (J3 Pin 5) PTB1 TSI0_CH6
Electrode 2 (J3 Pin 7) PTB2 TSI0_CH7
Electrode 3 (J3 Pin 8) PTB3 TSI0_CH8
Electrode 4 (J3 Pin 9) PTC0 TSI0_CH13
Electrode 5 (J3 Pin 10) PTC1 TSI0_CH14
Electrode 6 (J3 Pin 11) PTC2 TSI0_CH15
Electrode 7 (J3 Pin 12) PTA4 TSI0_CH5
Electrode 8 (J3 Pin 13) PTB16 TSI0_CH9
Electrode 9 (J3 Pin 14) PTB17 TSI0_CH10
Electrode 10 (J3 Pin 15) PTB18 TSI0_CH11
Electrode 11 (J3 Pin 16) PTB19 TSI0_CH12
TWRPI ID0 (J3 Pin 17) ? ADC1_DP1
TWRPI ID1 (J3 Pin 18) ? ADC1_SE16
Connections via the General Purpose Tower Plug-in (TWRPI) Socket
-------------------- ------------------------- -------- -------------------
FEATURE CONNECTION PORT/PIN PIN FUNCTION
-------------------- ------------------------- -------- -------------------
General Purpose TWRPI AN0 (J4 Pin 8) ? ADC0_DP0/ADC1_DP3
TWRPI Socket TWRPI AN1 (J4 Pin 9) ? ADC0_DM0/ADC1_DM3
TWRPI AN2 (J4 Pin 12) ? ADC1_DP0/ADC0_DP3
TWRPI ID0 (J4 Pin 17) ? ADC0_DP1
TWRPI ID1 (J4 Pin 18) ? ADC0_DM1
TWRPI I2C SCL (J5 Pin 3) PTD8 I2C0_SCL
TWRPI I2C SDA (J5 Pin 4) PTD9 I2C0_SDA
TWRPI SPI MISO (J5 Pin 9) PTD14 SPI2_SIN
TWRPI SPI MOSI (J5 Pin 10) PTD13 SPI2_SOUT
TWRPI SPI SS (J5 Pin 11) PTD15 SPI2_PCS0
TWRPI SPI CLK (J5 Pin 12) PTD12 SPI2_SCK
TWRPI GPIO0 (J5 Pin 15) PTD10 PTD10
TWRPI GPIO1 (J5 Pin 16) PTB8 PTB8
TWRPI GPIO2 (J5 Pin 17) PTB9 PTB9
TWRPI GPIO3 (J5 Pin 18) PTA19 PTA19
TWRPI GPIO4 (J5 Pin 19) PTE26 PTE26
The TWR-K60N512 features two expansion card-edge connectors that interface
to the Primary and Secondary Elevator boards in a Tower system. The Primary
Connector (comprised of sides A and B) is utilized by the TWR-K60N512 while
the Secondary Connector (comprised of sides C and D) only makes connections
to the GND pins.
Connections via the Tower Primary Connector Side A
--- -------------------- --------------------------------
PIN NAME USAGE
--- -------------------- --------------------------------
A7 SCL0 PTD8
A8 SDA0 PTD9
A9 GPIO9 / CTS1 PTC19
A10 GPIO8 / SDHC_D2 PTE5
A11 GPIO7 / SD_WP_DET PTE27
A13 ETH_MDC PTB1
A14 ETH_MDIO PTB0
A16 ETH_RXDV PTA14
A19 ETH_RXD1 PTA12
A20 ETH_RXD0 PTA13
A21 SSI_MCLK PTE6
A22 SSI_BCLK PTE12
A23 SSI_FS PTE11
A24 SSI_RXD PTE7
A25 SSI_TXD PTE10
A27 AN3 PGA0_DP/ADC0_DP0/ADC1_DP3
A28 AN2 PGA0_DM/ADC0_DM0/ADC1_DM3
A29 AN1 PGA1_DP/ADC1_DP0/ADC0_DP3
A30 AN0 PGA1_DM/ADC1_DM0/ADC0_DM3
A33 TMR1 PTA9
A34 TMR0 PTA8
A35 GPIO6 PTB9
A37 PWM3 PTA6
A38 PWM2 PTC3
A39 PWM1 PTC2
A40 PWM0 PTC1
A41 RXD0 PTE25
A42 TXD0 PTE24
A43 RXD1 PTC16
A44 TXD1 PTC17
A64 CLKOUT0 PTC3
A66 EBI_AD14 PTC0
A67 EBI_AD13 PTC1
A68 EBI_AD12 PTC2
A69 EBI_AD11 PTC4
A70 EBI_AD10 PTC5
A71 EBI_AD9 PTC6
A71 EBI_R/W_b PTC11
A72 EBI_AD8 PTC7
A73 EBI_AD7 PTC8
A74 EBI_AD6 PTC9
A75 EBI_AD5 PTC10
A76 EBI_AD4 PTD2
A77 EBI_AD3 PTD3
A78 EBI_AD2 PTD4
A79 EBI_AD1 PTD5
A80 EBI_AD0 PTD6
Connections via the Tower Primary Connector Side B
--- -------------------- --------------------------------
PIN NAME USAGE
--- -------------------- --------------------------------
B7 SDHC_CLK / SPI1_CLK PTE2
B9 SDHC_D3 / SPI1_CS0_b PTE4
B10 SDHC_CMD / SPI1_MOSI PTE1
B11 SDHC_D0 / SPI1_MISO PTE3
B13 ETH_RXER PTA5
B15 ETH_TXEN PTA15
B19 ETH_TXD1 PTA17
B20 ETH_TXD0 PTA16
B21 GPIO1 / RTS1 PTC18
B22 GPIO2 / SDHC_D1 PTE0
B23 GPIO3 PTE28
B24 CLKIN0 PTA18
B25 CLKOUT1 PTE26
B27 AN7 PTB7
B28 AN6 PTB6
B29 AN5 PTB5
B30 AN4 PTB4
B34 TMR2 PTD6
B35 GPIO4 PTB8
B37 PWM7 PTA2
B38 PWM6 PTA1
B39 PWM5 PTD5
B40 PWM4 PTA7
B41 CANRX0 PTE25
B42 CANTX0 PTE24
B44 SPI0_MISO PTD14
B45 SPI0_MOSI PTD13
B46 SPI0_CS0_b PTD11
B47 SPI0_CS1_b PTD15
B48 SPI0_CLK PTD12
B50 SCL1 PTD8
B51 SDA1 PTD9
B52 GPIO5 / SD_CARD_DET PTE28
B55 IRQ_H PTA24
B56 IRQ_G PTA24
B57 IRQ_F PTA25
B58 IRQ_E PTA25
B59 IRQ_D PTA26
B60 IRQ_C PTA26
B61 IRQ_B PTA27
B62 IRQ_A PTA27
B63 EBI_ALE / EBI_CS1_b PTD0
B64 EBI_CS0_b PTD1
B66 EBI_AD15 PTB18
B67 EBI_AD16 PTB17
B68 EBI_AD17 PTB16
B69 EBI_AD18 PTB11
B70 EBI_AD19 PTB10
B72 EBI_OE_b PTB19
B73 EBI_D7 PTB20
B74 EBI_D6 PTB21
B75 EBI_D5 PTB22
B76 EBI_D4 PTB23
B77 EBI_D3 PTC12
B78 EBI_D2 PTC13
B79 EBI_D1 PTC14
B80 EBI_D0 PTC15
TWR-SER Serial Board Connection
===============================
The serial board connects into the tower and then maps to the tower pins to
yet other functions (see TWR-SER.pdf).
For the serial port, the following jumpers are required:
J15: 1-2 (default)
J17: 1-2 (default)
J18: 1-2 (default)
J19: 1-2 (default)
The two connections map as follows:
A41 RXD0 - Not connected
A42 TXD0 - Not connected
A43 RXD1 - ELE_RXD (connects indirectory to DB-9 connector J8)
A44 TXD1 - ELE_TXD (connects indirectory to DB-9 connector J8)
Finally, we can conclude that:
UART4 (PTE24/25) is not connected, and
UART3 (PTC16/17) is associated with the DB9 connector
NOTE: UART5 is associated with OSJTAG bridge and may also be usable.
LEDs
====
The TWR-K60N100 board has four LEDs labeled D2..D4 on the board. Usage of
these LEDs is defined in include/board.h and src/up_leds.c. They are encoded
as follows:
SYMBOL Meaning LED1* LED2 LED3 LED4
------------------- ----------------------- ------- ------- ------- ------
LED_STARTED NuttX has been started ON OFF OFF OFF
LED_HEAPALLOCATE Heap has been allocated OFF ON OFF OFF
LED_IRQSENABLED Interrupts enabled ON ON OFF OFF
LED_STACKCREATED Idle stack created OFF OFF ON OFF
LED_INIRQ In an interrupt** ON N/C N/C OFF
LED_SIGNAL In a signal handler*** N/C ON N/C OFF
LED_ASSERTION An assertion failed ON ON N/C OFF
LED_PANIC The system has crashed N/C N/C N/C ON
LED_IDLE STM32 is is sleep mode (Optional, not used)
* If LED1, LED2, LED3 are statically on, then NuttX probably failed to boot
and these LEDs will give you some indication of where the failure was
** The normal state is LED3 ON and LED1 faintly glowing. This faint glow
is because of timer interupts that result in the LED being illuminated
on a small proportion of the time.
*** LED2 may also flicker normally if signals are processed.
Development Environment
=======================
Either Linux or Cygwin on Windows can be used for the development environment.
The source has been built only using the GNU toolchain (see below). Other
toolchains will likely cause problems. Testing was performed using the Cygwin
environment.
GNU Toolchain Options
=====================
The NuttX make system has been modified to support the following different
toolchain options.
1. The CodeSourcery GNU toolchain,
2. The devkitARM GNU toolchain,
3. The NuttX buildroot Toolchain (see below).
All testing has been conducted using the CodeSourcery Windows toolchain. To
use the devkitARM or the NuttX GNU toolchain, you simply need to change the
the following configuration options to your .config (or defconfig) file:
CONFIG_KINETIS_CODESOURCERYW=y : CodeSourcery under Windows
CONFIG_KINETIS_CODESOURCERYL=y : CodeSourcery under Linux
CONFIG_KINETIS_DEVKITARM=y : devkitARM under Windows
CONFIG_KINETIS_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
If you are not using CONFIG_KINETIS_BUILDROOT, then you may also have to modify
the PATH in the setenv.h file if your make cannot find the tools.
NOTE: the CodeSourcery (for Windows) and devkitARM toolchains are
Windows native toolchains. The CodeSourcey (for Linux) and NuttX buildroot
toolchains are Cygwin and/or Linux native toolchains. There are several limitations
to using a Windows based toolchain in a Cygwin environment. The three biggest are:
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
performed automatically in the Cygwin makefiles using the 'cygpath' utility
but you might easily find some new path problems. If so, check out 'cygpath -w'
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
are used in Nuttx (e.g., include/arch). The make system works around these
problems for the Windows tools by copying directories instead of linking them.
But this can also cause some confusion for you: For example, you may edit
a file in a "linked" directory and find that your changes had no effect.
That is because you are building the copy of the file in the "fake" symbolic
directory. If you use a Windows toolchain, you should get in the habit of
making like this:
make clean_context all
An alias in your .bashrc file might make that less painful.
3. Dependencies are not made when using Windows versions of the GCC. This is
because the dependencies are generated using Windows pathes which do not
work with the Cygwin make.
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
-Os.
NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
path or will get the wrong version of make.
IDEs
====
NuttX is built using command-line make. It can be used with an IDE, but some
effort will be required to create the project.
Makefile Build
--------------
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
simply use the NuttX makefile to build the system. That is almost for free
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
there is a lot of help on the internet).
Native Build
------------
Here are a few tips before you start that effort:
1) Select the toolchain that you will be using in your .config file
2) Start the NuttX build at least one time from the Cygwin command line
before trying to create your project. This is necessary to create
certain auto-generated files and directories that will be needed.
3) Set up include pathes: You will need include/, arch/arm/src/k40,
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
4) All assembly files need to have the definition option -D __ASSEMBLY__
on the command line.
Startup files will probably cause you some headaches. The NuttX startup file
is arch/arm/src/kinetis/k40_vectors.S.
NuttX EABI "buildroot" Toolchain
================================
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
be modified to point to the correct path to the Cortex-M4 GCC toolchain (if
different from the default in your PATH variable).
If you have no Cortex-M4 toolchain, one can be downloaded from the NuttX
SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
NOTE: The NuttX toolchain may not include optimizations for Cortex-M4 (ARMv7E-M).
1. You must have already configured Nuttx in <some-dir>/nuttx.
cd tools
./configure.sh twr-k60n512/<sub-dir>
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly built binaries.
See the file configs/README.txt in the buildroot source tree. That has more
details PLUS some special instructions that you will need to follow if you are
building a Cortex-M4 toolchain for Cygwin under Windows.
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
more information about this problem. If you plan to use NXFLAT, please do not
use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
See instructions below.
NuttX OABI "buildroot" Toolchain
================================
The older, OABI buildroot toolchain is also available. To use the OABI
toolchain:
1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
configuration such as cortexm3-defconfig-4.3.3
2. Modify the Make.defs file to use the OABI conventions:
+CROSSDEV = arm-nuttx-elf-
+ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
+NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
-CROSSDEV = arm-nuttx-eabi-
-ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
-NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections
NXFLAT Toolchain
================
If you are *not* using the NuttX buildroot toolchain and you want to use
the NXFLAT tools, then you will still have to build a portion of the buildroot
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
be downloaded from the NuttX SourceForge download site
(https://sourceforge.net/projects/nuttx/files/).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
1. You must have already configured Nuttx in <some-dir>/nuttx.
cd tools
./configure.sh lpcxpresso-lpc1768/<sub-dir>
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-defconfig-nxflat .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly builtNXFLAT binaries.
TWR-K60N512-specific Configuration Options
==========================================
CONFIG_ARCH - Identifies the arch/ subdirectory. This sould
be set to:
CONFIG_ARCH=arm
CONFIG_ARCH_family - For use in C code:
CONFIG_ARCH_ARM=y
CONFIG_ARCH_architecture - For use in C code:
CONFIG_ARCH_CORTEXM4=y
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
CONFIG_ARCH_CHIP=k40
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
chip:
CONFIG_ARCH_CHIP_MK60N512VMD100
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
hence, the board that supports the particular chip or SoC.
CONFIG_ARCH_BOARD=twr-k60n512 (for the TWR-K60N512 development board)
CONFIG_ARCH_BOARD_name - For use in C code
CONFIG_ARCH_BOARD_TWR_K60N512=y
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
of delay loops
CONFIG_ENDIAN_BIG - define if big endian (default is little
endian)
CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case):
CONFIG_DRAM_SIZE=0x00010000 (64Kb)
CONFIG_DRAM_START - The start address of installed DRAM
CONFIG_DRAM_START=0x20000000
CONFIG_ARCH_IRQPRIO - The Kinetis K60 supports interrupt prioritization
CONFIG_ARCH_IRQPRIO=y
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
have LEDs
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
stack. If defined, this symbol is the size of the interrupt
stack in bytes. If not defined, the user task stacks will be
used during interrupt handling.
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
cause a 100 second delay during boot-up. This 100 second delay
serves no purpose other than it allows you to calibratre
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
the delay actually is 100 seconds.
Individual subsystems can be enabled:
CONFIG_KINETIS_TRACE -- Enable trace clocking on power up.
CONFIG_KINETIS_FLEXBUS -- Enable flexbus clocking on power up.
CONFIG_KINETIS_UART0 -- Support UART0
CONFIG_KINETIS_UART1 -- Support UART1
CONFIG_KINETIS_UART2 -- Support UART2
CONFIG_KINETIS_UART3 -- Support UART3
CONFIG_KINETIS_UART4 -- Support UART4
CONFIG_KINETIS_UART5 -- Support UART5
CONFIG_KINETIS_ENET -- Support Ethernet (K60 only)
CONFIG_KINETIS_RNGB -- Support the random number generator(K60 only)
CONFIG_KINETIS_FLEXCAN0 -- Support FlexCAN0
CONFIG_KINETIS_FLEXCAN1 -- Support FlexCAN1
CONFIG_KINETIS_SPI0 -- Support SPI0
CONFIG_KINETIS_SPI1 -- Support SPI1
CONFIG_KINETIS_SPI2 -- Support SPI2
CONFIG_KINETIS_I2C0 -- Support I2C0
CONFIG_KINETIS_I2C1 -- Support I2C1
CONFIG_KINETIS_I2S -- Support I2S
CONFIG_KINETIS_DAC0 -- Support DAC0
CONFIG_KINETIS_DAC1 -- Support DAC1
CONFIG_KINETIS_ADC0 -- Support ADC0
CONFIG_KINETIS_ADC1 -- Support ADC1
CONFIG_KINETIS_CMP -- Support CMP
CONFIG_KINETIS_VREF -- Support VREF
CONFIG_KINETIS_SDHC -- Support SD host controller
CONFIG_KINETIS_FTM0 -- Support FlexTimer 0
CONFIG_KINETIS_FTM1 -- Support FlexTimer 1
CONFIG_KINETIS_FTM2 -- Support FlexTimer 2
CONFIG_KINETIS_LPTIMER -- Support the low power timer
CONFIG_KINETIS_RTC -- Support RTC
CONFIG_KINETIS_SLCD -- Support the segment LCD (K60 only)
CONFIG_KINETIS_EWM -- Support the external watchdog
CONFIG_KINETIS_CMT -- Support Carrier Modulator Transmitter
CONFIG_KINETIS_USBOTG -- Support USB OTG (see also CONFIG_USBHOST and CONFIG_USBDEV)
CONFIG_KINETIS_USBDCD -- Support the USB Device Charger Detection module
CONFIG_KINETIS_LLWU -- Support the Low Leakage Wake-Up Unit
CONFIG_KINETIS_TSI -- Support the touch screeen interface
CONFIG_KINETIS_FTFL -- Support FLASH
CONFIG_KINETIS_DMA -- Support DMA
CONFIG_KINETIS_CRC -- Support CRC
CONFIG_KINETIS_PDB -- Support the Programmable Delay Block
CONFIG_KINETIS_PIT -- Support Programmable Interval Timers
CONFIG_ARMV7M_MPU -- Support the MPU
Kinetis interrupt priorities (Default is the mid priority)
CONFIG_KINETIS_UART0PRIO
CONFIG_KINETIS_UART1PRIO
CONFIG_KINETIS_UART2PRIO
CONFIG_KINETIS_UART3PRIO
CONFIG_KINETIS_UART4PRIO
CONFIG_KINETIS_UART5PRIO
CONFIG_KINETIS_EMACTMR_PRIO
CONFIG_KINETIS_EMACTX_PRIO
CONFIG_KINETIS_EMACRX_PRIO
CONFIG_KINETIS_EMACMISC_PRIO
CONFIG_KINETIS_SDHC_PRIO
PIN Interrupt Support
CONFIG_GPIO_IRQ -- Enable pin interrtup support. Also needs
one or more of the following:
CONFIG_KINETIS_PORTAINTS -- Support 32 Port A interrupts
CONFIG_KINETIS_PORTBINTS -- Support 32 Port B interrupts
CONFIG_KINETIS_PORTCINTS -- Support 32 Port C interrupts
CONFIG_KINETIS_PORTDINTS -- Support 32 Port D interrupts
CONFIG_KINETIS_PORTEINTS -- Support 32 Port E interrupts
Kinetis K60 specific device driver settings
CONFIG_UARTn_SERIAL_CONSOLE - selects the UARTn (n=0..5) for the
console and ttys0 (default is the UART0).
CONFIG_UARTn_RXBUFSIZE - Characters are buffered as received.
This specific the size of the receive buffer
CONFIG_UARTn_TXBUFSIZE - Characters are buffered before
being sent. This specific the size of the transmit buffer
CONFIG_UARTn_BAUD - The configure BAUD of the UART.
CONFIG_UARTn_BITS - The number of bits. Must be either 8 or 8.
CONFIG_UARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
Kenetis ethernet controller settings
CONFIG_ENET_NRXBUFFERS - Number of RX buffers. The size of one
buffer is determined by CONFIG_NET_BUFSIZE. Default: 6
CONFIG_ENET_NTXBUFFERS - Number of TX buffers. The size of one
buffer is determined by CONFIG_NET_BUFSIZE. Default: 2
CONFIG_ENET_USEMII - Usee MII mode. Default: RMII mode.
CONFIG_ENET_PHYADDR - PHY address
Configurations
==============
Each TWR-K60N512 configuration is maintained in a sudirectory and
can be selected as follow:
cd tools
./configure.sh twr-k60n512/<subdir>
cd -
. ./setenv.sh
Where <subdir> is one of the following:
ostest:
------
This configuration directory, performs a simple OS test using
examples/ostest. By default, this project assumes that you are
using the DFU bootloader.
CONFIG_KINETIS_BUILDROOT=y : NuttX buildroot under Linux or Cygwin
nsh:
---
Configures the NuttShell (nsh) located at apps/examples/nsh. The
Configuration enables both the serial and telnet NSH interfaces.
Support for the board's SPI-based MicroSD card is included
(but not passing tests as of this writing).
NOTE: An SDHC driver is underwork and can be enabled in the NSH
configuration for further testing be setting the following
configuration faluesas follows:
-CONFIG_KINETIS_SDHC=n
+CONFIG_KINETIS_SDHC=y # Enable the SDHC driver
-CONFIG_GPIO_IRQ=n
+CONFIG_GPIO_IRQ=y # Enable GPIO interrupts
-CONFIG_KINETIS_PORTEINTS=n
+CONFIG_KINETIS_PORTEINTS=y # Enable PortE GPIO interrupts
-CONFIG_SCHED_WORKQUEUE=n
+CONFIG_SCHED_WORKQUEUE=y # Enable the NuttX workqueue
-CONFIG_NSH_ARCHINIT=n
+CONFIG_NSH_ARCHINIT=y # Provide NSH intialization logic