px4-firmware/attitude_fw/ecl_yaw_controller.cpp

224 lines
7.6 KiB
C++

/****************************************************************************
*
* Copyright (c) 2013-2016 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ecl_yaw_controller.cpp
* Implementation of a simple orthogonal coordinated turn yaw PID controller.
*
* Authors and acknowledgements in header.
*/
#include "ecl_yaw_controller.h"
#include <stdint.h>
#include <float.h>
#include <geo/geo.h>
#include <ecl/ecl.h>
#include <mathlib/mathlib.h>
#include <systemlib/err.h>
#include <ecl/ecl.h>
ECL_YawController::ECL_YawController() :
ECL_Controller("yaw"),
_coordinated_min_speed(1.0f),
_max_rate(0.0f), /* disable by default */
_coordinated_method(0)
{
}
float ECL_YawController::control_attitude(const struct ECL_ControlData &ctl_data)
{
switch (_coordinated_method) {
case COORD_METHOD_OPEN:
return control_attitude_impl_openloop(ctl_data);
case COORD_METHOD_CLOSEACC:
return control_attitude_impl_accclosedloop(ctl_data);
default:
static hrt_abstime last_print = 0;
if (ecl_elapsed_time(&last_print) > 5e6) {
warnx("invalid param setting FW_YCO_METHOD");
last_print = ecl_absolute_time();
}
}
return _rate_setpoint;
}
float ECL_YawController::control_attitude_impl_openloop(const struct ECL_ControlData &ctl_data)
{
/* Do not calculate control signal with bad inputs */
if (!(PX4_ISFINITE(ctl_data.roll) &&
PX4_ISFINITE(ctl_data.pitch) &&
PX4_ISFINITE(ctl_data.roll_rate_setpoint) &&
PX4_ISFINITE(ctl_data.pitch_rate_setpoint))) {
return _rate_setpoint;
}
float constrained_roll;
bool inverted = false;
/* roll is used as feedforward term and inverted flight needs to be considered */
if (fabsf(ctl_data.roll) < math::radians(90.0f)) {
/* not inverted, but numerically still potentially close to infinity */
constrained_roll = math::constrain(ctl_data.roll, math::radians(-80.0f), math::radians(80.0f));
} else {
inverted = true;
// inverted flight, constrain on the two extremes of -pi..+pi to avoid infinity
//note: the ranges are extended by 10 deg here to avoid numeric resolution effects
if (ctl_data.roll > 0.0f) {
/* right hemisphere */
constrained_roll = math::constrain(ctl_data.roll, math::radians(100.0f), math::radians(180.0f));
} else {
/* left hemisphere */
constrained_roll = math::constrain(ctl_data.roll, math::radians(-180.0f), math::radians(-100.0f));
}
}
constrained_roll = math::constrain(constrained_roll, -fabsf(ctl_data.roll_setpoint), fabsf(ctl_data.roll_setpoint));
if (!inverted) {
/* Calculate desired yaw rate from coordinated turn constraint / (no side forces) */
_rate_setpoint = tanf(constrained_roll) * cosf(ctl_data.pitch) * 9.81f / (ctl_data.airspeed < ctl_data.airspeed_min ?
ctl_data.airspeed_min : ctl_data.airspeed);
}
/* limit the rate */ //XXX: move to body angluar rates
if (_max_rate > 0.01f) {
_rate_setpoint = (_rate_setpoint > _max_rate) ? _max_rate : _rate_setpoint;
_rate_setpoint = (_rate_setpoint < -_max_rate) ? -_max_rate : _rate_setpoint;
}
if (!PX4_ISFINITE(_rate_setpoint)) {
warnx("yaw rate sepoint not finite");
_rate_setpoint = 0.0f;
}
return _rate_setpoint;
}
float ECL_YawController::control_bodyrate(const struct ECL_ControlData &ctl_data)
{
/* Do not calculate control signal with bad inputs */
if (!(PX4_ISFINITE(ctl_data.roll) && PX4_ISFINITE(ctl_data.pitch) && PX4_ISFINITE(ctl_data.body_y_rate) &&
PX4_ISFINITE(ctl_data.body_z_rate) && PX4_ISFINITE(ctl_data.pitch_rate_setpoint) &&
PX4_ISFINITE(ctl_data.airspeed_min) && PX4_ISFINITE(ctl_data.airspeed_max) &&
PX4_ISFINITE(ctl_data.scaler))) {
return math::constrain(_last_output, -1.0f, 1.0f);
}
/* get the usual dt estimate */
uint64_t dt_micros = ecl_elapsed_time(&_last_run);
_last_run = ecl_absolute_time();
float dt = (float)dt_micros * 1e-6f;
/* lock integral for long intervals */
bool lock_integrator = ctl_data.lock_integrator;
if (dt_micros > 500000) {
lock_integrator = true;
}
/* input conditioning */
float airspeed = ctl_data.airspeed;
if (!PX4_ISFINITE(airspeed)) {
/* airspeed is NaN, +- INF or not available, pick center of band */
airspeed = 0.5f * (ctl_data.airspeed_min + ctl_data.airspeed_max);
} else if (airspeed < ctl_data.airspeed_min) {
airspeed = ctl_data.airspeed_min;
}
/* Close the acceleration loop if _coordinated_method wants this: change body_rate setpoint */
if (_coordinated_method == COORD_METHOD_CLOSEACC) {
// XXX lateral acceleration needs to go into integrator with a gain
//_bodyrate_setpoint -= (ctl_data.acc_body_y / (airspeed * cosf(ctl_data.pitch)));
}
/* Calculate body angular rate error */
_rate_error = _bodyrate_setpoint - ctl_data.body_z_rate; // body angular rate error
if (!lock_integrator && _k_i > 0.0f && airspeed > 0.5f * ctl_data.airspeed_min) {
float id = _rate_error * dt;
/*
* anti-windup: do not allow integrator to increase if actuator is at limit
*/
if (_last_output < -1.0f) {
/* only allow motion to center: increase value */
id = math::max(id, 0.0f);
} else if (_last_output > 1.0f) {
/* only allow motion to center: decrease value */
id = math::min(id, 0.0f);
}
_integrator += id * _k_i;
}
/* integrator limit */
//xxx: until start detection is available: integral part in control signal is limited here
float integrator_constrained = math::constrain(_integrator, -_integrator_max, _integrator_max);
/* Apply PI rate controller and store non-limited output */
_last_output = (_bodyrate_setpoint * _k_ff + _rate_error * _k_p + integrator_constrained) * ctl_data.scaler *
ctl_data.scaler; //scaler is proportional to 1/airspeed
return math::constrain(_last_output, -1.0f, 1.0f);
}
float ECL_YawController::control_attitude_impl_accclosedloop(const struct ECL_ControlData &ctl_data)
{
/* dont set a rate setpoint */
return 0.0f;
}
float ECL_YawController::control_euler_rate(const struct ECL_ControlData &ctl_data)
{
/* Transform setpoint to body angular rates (jacobian) */
_bodyrate_setpoint = -sinf(ctl_data.roll) * ctl_data.pitch_rate_setpoint +
cosf(ctl_data.roll) * cosf(ctl_data.pitch) * _rate_setpoint;
return control_bodyrate(ctl_data);
}