forked from Archive/PX4-Autopilot
199 lines
7.1 KiB
C++
199 lines
7.1 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name ECL nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file ecl_pitch_controller.cpp
|
|
* Implementation of a simple orthogonal pitch PID controller.
|
|
*
|
|
* Authors and acknowledgements in header.
|
|
*/
|
|
|
|
#include "ecl_pitch_controller.h"
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <float.h>
|
|
#include <geo/geo.h>
|
|
#include <ecl/ecl.h>
|
|
#include <mathlib/mathlib.h>
|
|
#include <systemlib/err.h>
|
|
|
|
ECL_PitchController::ECL_PitchController() :
|
|
ECL_Controller("pitch"),
|
|
_max_rate_neg(0.0f),
|
|
_roll_ff(0.0f)
|
|
{
|
|
}
|
|
|
|
ECL_PitchController::~ECL_PitchController()
|
|
{
|
|
}
|
|
|
|
float ECL_PitchController::control_attitude(const struct ECL_ControlData &ctl_data)
|
|
{
|
|
|
|
/* Do not calculate control signal with bad inputs */
|
|
if (!(PX4_ISFINITE(ctl_data.pitch_setpoint) &&
|
|
PX4_ISFINITE(ctl_data.roll) &&
|
|
PX4_ISFINITE(ctl_data.pitch) &&
|
|
PX4_ISFINITE(ctl_data.airspeed))) {
|
|
perf_count(_nonfinite_input_perf);
|
|
warnx("not controlling pitch");
|
|
return _rate_setpoint;
|
|
}
|
|
|
|
/* Calculate the error */
|
|
float pitch_error = ctl_data.pitch_setpoint - ctl_data.pitch;
|
|
|
|
/* Apply P controller: rate setpoint from current error and time constant */
|
|
_rate_setpoint = pitch_error / _tc;
|
|
|
|
/* limit the rate */
|
|
if (_max_rate > 0.01f && _max_rate_neg > 0.01f) {
|
|
if (_rate_setpoint > 0.0f) {
|
|
_rate_setpoint = (_rate_setpoint > _max_rate) ? _max_rate : _rate_setpoint;
|
|
|
|
} else {
|
|
_rate_setpoint = (_rate_setpoint < -_max_rate_neg) ? -_max_rate_neg : _rate_setpoint;
|
|
}
|
|
|
|
}
|
|
|
|
return _rate_setpoint;
|
|
}
|
|
|
|
float ECL_PitchController::control_bodyrate(const struct ECL_ControlData &ctl_data)
|
|
{
|
|
/* Do not calculate control signal with bad inputs */
|
|
if (!(PX4_ISFINITE(ctl_data.roll) &&
|
|
PX4_ISFINITE(ctl_data.pitch) &&
|
|
PX4_ISFINITE(ctl_data.pitch_rate) &&
|
|
PX4_ISFINITE(ctl_data.yaw_rate) &&
|
|
PX4_ISFINITE(ctl_data.yaw_rate_setpoint) &&
|
|
PX4_ISFINITE(ctl_data.airspeed_min) &&
|
|
PX4_ISFINITE(ctl_data.airspeed_max) &&
|
|
PX4_ISFINITE(ctl_data.scaler))) {
|
|
perf_count(_nonfinite_input_perf);
|
|
return math::constrain(_last_output, -1.0f, 1.0f);
|
|
}
|
|
|
|
/* get the usual dt estimate */
|
|
uint64_t dt_micros = ecl_elapsed_time(&_last_run);
|
|
_last_run = ecl_absolute_time();
|
|
float dt = (float)dt_micros * 1e-6f;
|
|
|
|
/* lock integral for long intervals */
|
|
bool lock_integrator = ctl_data.lock_integrator;
|
|
|
|
if (dt_micros > 500000) {
|
|
lock_integrator = true;
|
|
}
|
|
|
|
/* Transform setpoint to body angular rates (jacobian) */
|
|
_bodyrate_setpoint = cosf(ctl_data.roll) * _rate_setpoint +
|
|
cosf(ctl_data.pitch) * sinf(ctl_data.roll) * ctl_data.yaw_rate_setpoint;
|
|
|
|
/* apply turning offset to desired bodyrate setpoint*/
|
|
/* flying inverted (wings upside down)*/
|
|
bool inverted = false;
|
|
float constrained_roll;
|
|
/* roll is used as feedforward term and inverted flight needs to be considered */
|
|
if (fabsf(ctl_data.roll) < math::radians(90.0f)) {
|
|
/* not inverted, but numerically still potentially close to infinity */
|
|
constrained_roll = math::constrain(ctl_data.roll, math::radians(-80.0f), math::radians(80.0f));
|
|
|
|
} else {
|
|
/* inverted flight, constrain on the two extremes of -pi..+pi to avoid infinity */
|
|
inverted = true;
|
|
/* note: the ranges are extended by 10 deg here to avoid numeric resolution effects */
|
|
if (ctl_data.roll > 0.0f) {
|
|
/* right hemisphere */
|
|
constrained_roll = math::constrain(ctl_data.roll, math::radians(100.0f), math::radians(180.0f));
|
|
|
|
} else {
|
|
/* left hemisphere */
|
|
constrained_roll = math::constrain(ctl_data.roll, math::radians(-100.0f), math::radians(-180.0f));
|
|
}
|
|
}
|
|
|
|
/* input conditioning */
|
|
float airspeed = constrain_airspeed(ctl_data.airspeed, ctl_data.airspeed_min, ctl_data.airspeed_max);
|
|
|
|
/* Calculate desired body fixed y-axis angular rate needed to compensate for roll angle.
|
|
For reference see Automatic Control of Aircraft and Missiles by John H. Blakelock, pg. 175
|
|
Availible on google books 8/11/2015:
|
|
https://books.google.com/books?id=ubcczZUDCsMC&pg=PA175#v=onepage&q&f=false*/
|
|
float body_fixed_turn_offset = (fabsf((CONSTANTS_ONE_G / airspeed) *
|
|
tanf(constrained_roll) * sinf(constrained_roll)));
|
|
|
|
if (inverted) {
|
|
body_fixed_turn_offset = -body_fixed_turn_offset;
|
|
}
|
|
|
|
/* Finally add the turn offset to your bodyrate setpoint*/
|
|
_bodyrate_setpoint += body_fixed_turn_offset;
|
|
|
|
|
|
_rate_error = _bodyrate_setpoint - ctl_data.pitch_rate;
|
|
|
|
if (!lock_integrator && _k_i > 0.0f) {
|
|
|
|
float id = _rate_error * dt * ctl_data.scaler;
|
|
|
|
/*
|
|
* anti-windup: do not allow integrator to increase if actuator is at limit
|
|
*/
|
|
if (_last_output < -1.0f) {
|
|
/* only allow motion to center: increase value */
|
|
id = math::max(id, 0.0f);
|
|
|
|
} else if (_last_output > 1.0f) {
|
|
/* only allow motion to center: decrease value */
|
|
id = math::min(id, 0.0f);
|
|
}
|
|
|
|
_integrator += id;
|
|
}
|
|
|
|
/* integrator limit */
|
|
//xxx: until start detection is available: integral part in control signal is limited here
|
|
float integrator_constrained = math::constrain(_integrator * _k_i, -_integrator_max, _integrator_max);
|
|
|
|
/* Apply PI rate controller and store non-limited output */
|
|
_last_output = _bodyrate_setpoint * _k_ff * ctl_data.scaler +
|
|
_rate_error * _k_p * ctl_data.scaler * ctl_data.scaler
|
|
+ integrator_constrained; //scaler is proportional to 1/airspeed
|
|
// warnx("pitch: _integrator: %.4f, _integrator_max: %.4f, airspeed %.4f, _k_i %.4f, _k_p: %.4f", (double)_integrator, (double)_integrator_max, (double)airspeed, (double)_k_i, (double)_k_p);
|
|
// warnx("roll: _last_output %.4f", (double)_last_output);
|
|
return math::constrain(_last_output, -1.0f, 1.0f);
|
|
}
|