forked from Archive/PX4-Autopilot
431 lines
18 KiB
C++
431 lines
18 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name ECL nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file estimator_interface.h
|
|
* Definition of base class for attitude estimators
|
|
*
|
|
* @author Roman Bast <bapstroman@gmail.com>
|
|
*
|
|
*/
|
|
|
|
#include <matrix/matrix/math.hpp>
|
|
#include "RingBuffer.h"
|
|
#include "geo.h"
|
|
#include "common.h"
|
|
#include "mathlib.h"
|
|
|
|
using namespace estimator;
|
|
|
|
class EstimatorInterface
|
|
{
|
|
|
|
public:
|
|
EstimatorInterface() = default;
|
|
~EstimatorInterface() = default;
|
|
|
|
virtual bool init(uint64_t timestamp) = 0;
|
|
virtual bool update() = 0;
|
|
|
|
// gets the innovations of velocity and position measurements
|
|
// 0-2 vel, 3-5 pos
|
|
virtual void get_vel_pos_innov(float vel_pos_innov[6]) = 0;
|
|
|
|
// gets the innovations of the earth magnetic field measurements
|
|
virtual void get_mag_innov(float mag_innov[3]) = 0;
|
|
|
|
// gets the innovation of airspeed measurement
|
|
virtual void get_airspeed_innov(float *airspeed_innov) = 0;
|
|
|
|
// gets the innovation of the synthetic sideslip measurement
|
|
virtual void get_beta_innov(float *beta_innov) = 0;
|
|
|
|
// gets the innovations of the heading measurement
|
|
virtual void get_heading_innov(float *heading_innov) = 0;
|
|
|
|
// gets the innovation variances of velocity and position measurements
|
|
// 0-2 vel, 3-5 pos
|
|
virtual void get_vel_pos_innov_var(float vel_pos_innov_var[6]) = 0;
|
|
|
|
// gets the innovation variances of the earth magnetic field measurements
|
|
virtual void get_mag_innov_var(float mag_innov_var[3]) = 0;
|
|
|
|
// gets the innovation variance of the airspeed measurement
|
|
virtual void get_airspeed_innov_var(float *get_airspeed_innov_var) = 0;
|
|
|
|
// gets the innovation variance of the synthetic sideslip measurement
|
|
virtual void get_beta_innov_var(float *get_beta_innov_var) = 0;
|
|
|
|
// gets the innovation variance of the heading measurement
|
|
virtual void get_heading_innov_var(float *heading_innov_var) = 0;
|
|
|
|
virtual void get_state_delayed(float *state) = 0;
|
|
|
|
virtual void get_wind_velocity(float *wind) = 0;
|
|
|
|
virtual void get_covariances(float *covariances) = 0;
|
|
|
|
// gets the variances for the NED velocity states
|
|
virtual void get_vel_var(Vector3f &vel_var) = 0;
|
|
|
|
// gets the variances for the NED position states
|
|
virtual void get_pos_var(Vector3f &pos_var) = 0;
|
|
|
|
// gets the innovation variance of the flow measurement
|
|
virtual void get_flow_innov_var(float flow_innov_var[2]) = 0;
|
|
|
|
// gets the innovation of the flow measurement
|
|
virtual void get_flow_innov(float flow_innov[2]) = 0;
|
|
|
|
// gets the innovation variance of the drag specific force measurement
|
|
virtual void get_drag_innov_var(float drag_innov_var[2]) = 0;
|
|
|
|
// gets the innovation of the drag specific force measurement
|
|
virtual void get_drag_innov(float drag_innov[2]) = 0;
|
|
|
|
// gets the innovation variance of the HAGL measurement
|
|
virtual void get_hagl_innov_var(float *flow_innov_var) = 0;
|
|
|
|
// gets the innovation of the HAGL measurement
|
|
virtual void get_hagl_innov(float *flow_innov_var) = 0;
|
|
|
|
// return an array containing the output predictor angular, velocity and position tracking
|
|
// error magnitudes (rad), (m/s), (m)
|
|
virtual void get_output_tracking_error(float error[3]) = 0;
|
|
|
|
/*
|
|
Returns following IMU vibration metrics in the following array locations
|
|
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
|
|
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
|
|
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
|
|
*/
|
|
virtual void get_imu_vibe_metrics(float vibe[3]) = 0;
|
|
|
|
// get the ekf WGS-84 origin position and height and the system time it was last set
|
|
// return true if the origin is valid
|
|
virtual bool get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) = 0;
|
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
|
|
virtual void get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning) = 0;
|
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
|
|
virtual void get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning) = 0;
|
|
|
|
// get the 1-sigma horizontal and vertical velocity uncertainty
|
|
virtual void get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv, bool *dead_reckoning) = 0;
|
|
|
|
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined
|
|
virtual bool collect_gps(uint64_t time_usec, struct gps_message *gps) { return true; }
|
|
|
|
// accumulate and downsample IMU data to the EKF prediction rate
|
|
virtual bool collect_imu(imuSample &imu) { return true; }
|
|
|
|
// set delta angle imu data
|
|
void setIMUData(uint64_t time_usec, uint64_t delta_ang_dt, uint64_t delta_vel_dt, float (&delta_ang)[3], float (&delta_vel)[3]);
|
|
|
|
// set magnetometer data
|
|
void setMagData(uint64_t time_usec, float (&data)[3]);
|
|
|
|
// set gps data
|
|
void setGpsData(uint64_t time_usec, struct gps_message *gps);
|
|
|
|
// set baro data
|
|
void setBaroData(uint64_t time_usec, float data);
|
|
|
|
// set airspeed data
|
|
void setAirspeedData(uint64_t time_usec, float true_airspeed, float eas2tas);
|
|
|
|
// set range data
|
|
void setRangeData(uint64_t time_usec, float data);
|
|
|
|
// set optical flow data
|
|
void setOpticalFlowData(uint64_t time_usec, flow_message *flow);
|
|
|
|
// set external vision position and attitude data
|
|
void setExtVisionData(uint64_t time_usec, ext_vision_message *evdata);
|
|
|
|
// return a address to the parameters struct
|
|
// in order to give access to the application
|
|
parameters *getParamHandle() {return &_params;}
|
|
|
|
// set vehicle landed status data
|
|
void set_in_air_status(bool in_air) {_control_status.flags.in_air = in_air;}
|
|
|
|
// set vehicle is fixed wing status
|
|
void set_is_fixed_wing(bool is_fixed_wing) {_control_status.flags.fixed_wing = is_fixed_wing;}
|
|
|
|
// set flag if synthetic sideslip measurement should be fused
|
|
void set_fuse_beta_flag(bool fuse_beta) {_control_status.flags.fuse_beta = fuse_beta;}
|
|
|
|
// set flag if only only mag states should be updated by the magnetometer
|
|
void set_update_mag_states_only_flag(bool update_mag_states_only) {_control_status.flags.update_mag_states_only = update_mag_states_only;}
|
|
|
|
// set air density used by the multi-rotor specific drag force fusion
|
|
void set_air_density(float air_density) {_air_density = air_density;}
|
|
|
|
// return true if the global position estimate is valid
|
|
virtual bool global_position_is_valid() = 0;
|
|
|
|
// return true if the EKF is dead reckoning the position using inertial data only
|
|
virtual bool inertial_dead_reckoning() = 0;
|
|
|
|
// return true if the terrain estimate is valid
|
|
virtual bool get_terrain_valid() = 0;
|
|
|
|
// get the estimated terrain vertical position relative to the NED origin
|
|
virtual void get_terrain_vert_pos(float *ret) = 0;
|
|
|
|
// return true if the local position estimate is valid
|
|
bool local_position_is_valid();
|
|
|
|
void copy_quaternion(float *quat)
|
|
{
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
quat[i] = _output_new.quat_nominal(i);
|
|
}
|
|
}
|
|
|
|
// get the velocity of the body frame origin in local NED earth frame
|
|
void get_velocity(float *vel)
|
|
{
|
|
Vector3f vel_earth = _output_new.vel - _vel_imu_rel_body_ned;
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
vel[i] = vel_earth(i);
|
|
}
|
|
}
|
|
|
|
// get the derivative of the vertical position of the body frame origin in local NED earth frame
|
|
void get_pos_d_deriv(float *pos_d_deriv)
|
|
{
|
|
float var = _output_vert_new.vel_d - _vel_imu_rel_body_ned(2);
|
|
*pos_d_deriv = var;
|
|
}
|
|
|
|
// get the position of the body frame origin in local NED earth frame
|
|
void get_position(float *pos)
|
|
{
|
|
// rotate the position of the IMU relative to the boy origin into earth frame
|
|
Vector3f pos_offset_earth = _R_to_earth_now * _params.imu_pos_body;
|
|
|
|
// subtract from the EKF position (which is at the IMU) to get position at the body origin
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
pos[i] = _output_new.pos(i) - pos_offset_earth(i);
|
|
}
|
|
}
|
|
void copy_timestamp(uint64_t *time_us)
|
|
{
|
|
*time_us = _time_last_imu;
|
|
}
|
|
|
|
// Copy the magnetic declination that we wish to save to the EKF2_MAG_DECL parameter for the next startup
|
|
void copy_mag_decl_deg(float *val)
|
|
{
|
|
*val = _mag_declination_to_save_deg;
|
|
}
|
|
|
|
virtual void get_accel_bias(float bias[3]) = 0;
|
|
virtual void get_gyro_bias(float bias[3]) = 0;
|
|
|
|
// get EKF mode status
|
|
void get_control_mode(uint32_t *val)
|
|
{
|
|
*val = _control_status.value;
|
|
}
|
|
|
|
// get EKF internal fault status
|
|
void get_filter_fault_status(uint16_t *val)
|
|
{
|
|
*val = _fault_status.value;
|
|
}
|
|
|
|
// get GPS check status
|
|
virtual void get_gps_check_status(uint16_t *val) = 0;
|
|
|
|
// return the amount the local vertical position changed in the last reset and the number of reset events
|
|
virtual void get_posD_reset(float *delta, uint8_t *counter) = 0;
|
|
|
|
// return the amount the local vertical velocity changed in the last reset and the number of reset events
|
|
virtual void get_velD_reset(float *delta, uint8_t *counter) = 0;
|
|
|
|
// return the amount the local horizontal position changed in the last reset and the number of reset events
|
|
virtual void get_posNE_reset(float delta[2], uint8_t *counter) = 0;
|
|
|
|
// return the amount the local horizontal velocity changed in the last reset and the number of reset events
|
|
virtual void get_velNE_reset(float delta[2], uint8_t *counter) = 0;
|
|
|
|
// return the amount the quaternion has changed in the last reset and the number of reset events
|
|
virtual void get_quat_reset(float delta_quat[4], uint8_t *counter) = 0;
|
|
|
|
// get EKF innovation consistency check status information comprising of:
|
|
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
|
|
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
|
|
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
|
|
// Where a measurement type is a vector quantity, eg magnetoemter, GPS position, etc, the maximum value is returned.
|
|
virtual void get_innovation_test_status(uint16_t *status, float *mag, float *vel, float *pos, float *hgt, float *tas, float *hagl) = 0;
|
|
|
|
// return a bitmask integer that describes which state estimates can be used for flight control
|
|
virtual void get_ekf_soln_status(uint16_t *status) = 0;
|
|
|
|
protected:
|
|
|
|
parameters _params; // filter parameters
|
|
|
|
/*
|
|
OBS_BUFFER_LENGTH defines how many observations (non-IMU measurements) we can buffer
|
|
which sets the maximum frequency at which we can process non-IMU measurements. Measurements that
|
|
arrive too soon after the previous measurement will not be processed.
|
|
max freq (Hz) = (OBS_BUFFER_LENGTH - 1) / (IMU_BUFFER_LENGTH * FILTER_UPDATE_PERIOD_MS * 0.001)
|
|
This can be adjusted to match the max sensor data rate plus some margin for jitter.
|
|
*/
|
|
uint8_t _obs_buffer_length{0};
|
|
|
|
/*
|
|
IMU_BUFFER_LENGTH defines how many IMU samples we buffer which sets the time delay from current time to the
|
|
EKF fusion time horizon and therefore the maximum sensor time offset relative to the IMU that we can compensate for.
|
|
max sensor time offet (msec) = IMU_BUFFER_LENGTH * FILTER_UPDATE_PERIOD_MS
|
|
This can be adjusted to a value that is FILTER_UPDATE_PERIOD_MS longer than the maximum observation time delay.
|
|
*/
|
|
uint8_t _imu_buffer_length{0};
|
|
static const unsigned FILTER_UPDATE_PERIOD_MS = 12; // ekf prediction period in milliseconds - this should ideally be an integer multiple of the IMU time delta
|
|
|
|
unsigned _min_obs_interval_us{0}; // minimum time interval between observations that will guarantee data is not lost (usec)
|
|
|
|
float _dt_imu_avg{0.0f}; // average imu update period in s
|
|
|
|
imuSample _imu_sample_delayed{}; // captures the imu sample on the delayed time horizon
|
|
|
|
// measurement samples capturing measurements on the delayed time horizon
|
|
magSample _mag_sample_delayed{};
|
|
baroSample _baro_sample_delayed{};
|
|
gpsSample _gps_sample_delayed{};
|
|
rangeSample _range_sample_delayed{};
|
|
airspeedSample _airspeed_sample_delayed{};
|
|
flowSample _flow_sample_delayed{};
|
|
extVisionSample _ev_sample_delayed{};
|
|
dragSample _drag_sample_delayed{};
|
|
dragSample _drag_down_sampled{}; // down sampled drag specific force data (filter prediction rate -> observation rate)
|
|
|
|
// Used by the multi-rotor specific drag force fusion
|
|
uint8_t _drag_sample_count{0}; // number of drag specific force samples assumulated at the filter prediction rate
|
|
float _drag_sample_time_dt{0.0f}; // time integral across all samples used to form _drag_down_sampled (sec)
|
|
float _air_density{1.225f}; // air density (kg/m**3)
|
|
|
|
// Output Predictor
|
|
outputSample _output_sample_delayed{}; // filter output on the delayed time horizon
|
|
outputSample _output_new{}; // filter output on the non-delayed time horizon
|
|
outputVert _output_vert_delayed{}; // vertical filter output on the delayed time horizon
|
|
outputVert _output_vert_new{}; // vertical filter output on the non-delayed time horizon
|
|
imuSample _imu_sample_new{}; // imu sample capturing the newest imu data
|
|
Matrix3f _R_to_earth_now; // rotation matrix from body to earth frame at current time
|
|
Vector3f _vel_imu_rel_body_ned; // velocity of IMU relative to body origin in NED earth frame
|
|
|
|
uint64_t _imu_ticks{0}; // counter for imu updates
|
|
|
|
bool _imu_updated{false}; // true if the ekf should update (completed downsampling process)
|
|
bool _initialised{false}; // true if the ekf interface instance (data buffering) is initialized
|
|
|
|
bool _NED_origin_initialised{false};
|
|
bool _gps_speed_valid{false};
|
|
float _gps_origin_eph{0.0f}; // horizontal position uncertainty of the GPS origin
|
|
float _gps_origin_epv{0.0f}; // vertical position uncertainty of the GPS origin
|
|
struct map_projection_reference_s _pos_ref {}; // Contains WGS-84 position latitude and longitude (radians) of the EKF origin
|
|
struct map_projection_reference_s _gps_pos_prev {}; // Contains WGS-84 position latitude and longitude (radians) of the previous GPS message
|
|
float _gps_alt_prev{0.0f}; // height from the previous GPS message (m)
|
|
|
|
// innovation consistency check monitoring ratios
|
|
float _yaw_test_ratio{0.0f}; // yaw innovation consistency check ratio
|
|
float _mag_test_ratio[3] {}; // magnetometer XYZ innovation consistency check ratios
|
|
float _vel_pos_test_ratio[6] {}; // velocity and position innovation consistency check ratios
|
|
float _tas_test_ratio{0.0f}; // tas innovation consistency check ratio
|
|
float _terr_test_ratio{0.0f}; // height above terrain measurement innovation consistency check ratio
|
|
float _beta_test_ratio{0.0f}; // sideslip innovation consistency check ratio
|
|
float _drag_test_ratio[2] {}; // drag innovation cinsistency check ratio
|
|
innovation_fault_status_u _innov_check_fail_status{};
|
|
|
|
bool _is_dead_reckoning{false}; // true if we are no longer fusing measurements that constrain horizontal velocity drift
|
|
|
|
// IMU vibration monitoring
|
|
Vector3f _delta_ang_prev; // delta angle from the previous IMU measurement
|
|
Vector3f _delta_vel_prev; // delta velocity from the previous IMU measurement
|
|
float _vibe_metrics[3] {}; // IMU vibration metrics
|
|
// [0] Level of coning vibration in the IMU delta angles (rad^2)
|
|
// [1] high frequency vibraton level in the IMU delta angle data (rad)
|
|
// [2] high frequency vibration level in the IMU delta velocity data (m/s)
|
|
|
|
// data buffer instances
|
|
RingBuffer<imuSample> _imu_buffer;
|
|
RingBuffer<gpsSample> _gps_buffer;
|
|
RingBuffer<magSample> _mag_buffer;
|
|
RingBuffer<baroSample> _baro_buffer;
|
|
RingBuffer<rangeSample> _range_buffer;
|
|
RingBuffer<airspeedSample> _airspeed_buffer;
|
|
RingBuffer<flowSample> _flow_buffer;
|
|
RingBuffer<extVisionSample> _ext_vision_buffer;
|
|
RingBuffer<outputSample> _output_buffer;
|
|
RingBuffer<outputVert> _output_vert_buffer;
|
|
RingBuffer<dragSample> _drag_buffer;
|
|
|
|
uint64_t _time_last_imu{0}; // timestamp of last imu sample in microseconds
|
|
uint64_t _time_last_gps{0}; // timestamp of last gps measurement in microseconds
|
|
uint64_t _time_last_mag{0}; // timestamp of last magnetometer measurement in microseconds
|
|
uint64_t _time_last_baro{0}; // timestamp of last barometer measurement in microseconds
|
|
uint64_t _time_last_range{0}; // timestamp of last range measurement in microseconds
|
|
uint64_t _time_last_airspeed{0}; // timestamp of last airspeed measurement in microseconds
|
|
uint64_t _time_last_ext_vision{0}; // timestamp of last external vision measurement in microseconds
|
|
uint64_t _time_last_optflow{0};
|
|
|
|
fault_status_u _fault_status{};
|
|
|
|
// allocate data buffers and intialise interface variables
|
|
bool initialise_interface(uint64_t timestamp);
|
|
|
|
// free buffer memory
|
|
void unallocate_buffers();
|
|
|
|
float _mag_declination_gps{0.0f}; // magnetic declination returned by the geo library using the last valid GPS position (rad)
|
|
float _mag_declination_to_save_deg{0.0f}; // magnetic declination to save to EKF2_MAG_DECL (deg)
|
|
|
|
// this is the current status of the filter control modes
|
|
filter_control_status_u _control_status{};
|
|
|
|
// this is the previous status of the filter control modes - used to detect mode transitions
|
|
filter_control_status_u _control_status_prev{};
|
|
|
|
// perform a vector cross product
|
|
Vector3f cross_product(const Vector3f &vecIn1, const Vector3f &vecIn2);
|
|
|
|
// calculate the inverse rotation matrix from a quaternion rotation
|
|
Matrix3f quat_to_invrotmat(const Quatf &quat);
|
|
|
|
};
|