forked from Archive/PX4-Autopilot
467 lines
17 KiB
Plaintext
467 lines
17 KiB
Plaintext
README
|
|
^^^^^^
|
|
|
|
README for NuttX port to the mbed.org LPC1768 board (http://mbed.org/)
|
|
|
|
Contents
|
|
^^^^^^^^
|
|
|
|
Development Environment
|
|
GNU Toolchain Options
|
|
IDEs
|
|
NuttX EABI "buildroot" Toolchain
|
|
NuttX OABI "buildroot" Toolchain
|
|
NXFLAT Toolchain
|
|
USB Device Controller Functions
|
|
mbed Configuration Options
|
|
USB Host Configuration
|
|
Configurations
|
|
|
|
Development Environment
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Either Linux or Cygwin on Windows can be used for the development environment.
|
|
The source has been built only using the GNU toolchain (see below). Other
|
|
toolchains will likely cause problems. Testing was performed using the Cygwin
|
|
environment.
|
|
|
|
GNU Toolchain Options
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
The NuttX make system has been modified to support the following different
|
|
toolchain options.
|
|
|
|
1. The CodeSourcery GNU toolchain,
|
|
2. The devkitARM GNU toolchain,
|
|
3. The NuttX buildroot Toolchain (see below).
|
|
|
|
All testing has been conducted using the NuttX buildroot toolchain. However,
|
|
the make system is setup to default to use the devkitARM toolchain. To use
|
|
the CodeSourcery or devkitARM toolchain, you simply need add one of the
|
|
following configuration options to your .config (or defconfig) file:
|
|
|
|
CONFIG_LPC17_CODESOURCERYW=y : CodeSourcery under Windows
|
|
CONFIG_LPC17_CODESOURCERYL=y : CodeSourcery under Linux
|
|
CONFIG_LPC17_DEVKITARM=y : devkitARM under Windows
|
|
CONFIG_LPC17_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
|
|
|
|
If you are not using CONFIG_LPC17_BUILDROOT, then you may also have to modify
|
|
the PATH in the setenv.h file if your make cannot find the tools.
|
|
|
|
NOTE: the CodeSourcery (for Windows)and devkitARM are Windows native toolchains.
|
|
The CodeSourcey (for Linux) and NuttX buildroot toolchains are Cygwin and/or
|
|
Linux native toolchains. There are several limitations to using a Windows based
|
|
toolchain in a Cygwin environment. The three biggest are:
|
|
|
|
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
|
|
performed automatically in the Cygwin makefiles using the 'cygpath' utility
|
|
but you might easily find some new path problems. If so, check out 'cygpath -w'
|
|
|
|
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
|
|
are used in Nuttx (e.g., include/arch). The make system works around these
|
|
problems for the Windows tools by copying directories instead of linking them.
|
|
But this can also cause some confusion for you: For example, you may edit
|
|
a file in a "linked" directory and find that your changes had no effect.
|
|
That is because you are building the copy of the file in the "fake" symbolic
|
|
directory. If you use a Windows toolchain, you should get in the habit of
|
|
making like this:
|
|
|
|
make clean_context all
|
|
|
|
An alias in your .bashrc file might make that less painful.
|
|
|
|
3. Dependencies are not made when using Windows versions of the GCC. This is
|
|
because the dependencies are generated using Windows pathes which do not
|
|
work with the Cygwin make.
|
|
|
|
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
|
|
|
|
NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
|
|
level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
|
|
-Os.
|
|
|
|
NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that
|
|
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
|
|
path or will get the wrong version of make.
|
|
|
|
IDEs
|
|
^^^^
|
|
|
|
NuttX is built using command-line make. It can be used with an IDE, but some
|
|
effort will be required to create the project (There is a simple RIDE project
|
|
in the RIDE subdirectory).
|
|
|
|
Makefile Build
|
|
--------------
|
|
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
|
|
simply use the NuttX makefile to build the system. That is almost for free
|
|
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
|
|
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
|
|
there is a lot of help on the internet).
|
|
|
|
Native Build
|
|
------------
|
|
Here are a few tips before you start that effort:
|
|
|
|
1) Select the toolchain that you will be using in your .config file
|
|
2) Start the NuttX build at least one time from the Cygwin command line
|
|
before trying to create your project. This is necessary to create
|
|
certain auto-generated files and directories that will be needed.
|
|
3) Set up include pathes: You will need include/, arch/arm/src/lpc17xx,
|
|
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
|
|
4) All assembly files need to have the definition option -D __ASSEMBLY__
|
|
on the command line.
|
|
|
|
Startup files will probably cause you some headaches. The NuttX startup file
|
|
is arch/arm/src/lpc17x/lpc17_vectors.S.
|
|
|
|
NuttX EABI "buildroot" Toolchain
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
|
|
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
|
|
different from the default in your PATH variable).
|
|
|
|
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
|
|
SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
|
|
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
|
|
|
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
|
|
|
cd tools
|
|
./configure.sh mbed/<sub-dir>
|
|
|
|
2. Download the latest buildroot package into <some-dir>
|
|
|
|
3. unpack the buildroot tarball. The resulting directory may
|
|
have versioning information on it like buildroot-x.y.z. If so,
|
|
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
|
|
|
4. cd <some-dir>/buildroot
|
|
|
|
5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
|
|
|
|
6. make oldconfig
|
|
|
|
7. make
|
|
|
|
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
|
the path to the newly built binaries.
|
|
|
|
See the file configs/README.txt in the buildroot source tree. That has more
|
|
details PLUS some special instructions that you will need to follow if you
|
|
are building a Cortex-M3 toolchain for Cygwin under Windows.
|
|
|
|
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
|
|
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
|
|
more information about this problem. If you plan to use NXFLAT, please do not
|
|
use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
|
|
See instructions below.
|
|
|
|
NuttX OABI "buildroot" Toolchain
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
The older, OABI buildroot toolchain is also available. To use the OABI
|
|
toolchain:
|
|
|
|
1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
|
|
configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
|
|
configuration such as cortexm3-defconfig-4.3.3
|
|
|
|
2. Modify the Make.defs file to use the OABI conventions:
|
|
|
|
+CROSSDEV = arm-nuttx-elf-
|
|
+ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
|
|
+NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
|
|
-CROSSDEV = arm-nuttx-eabi-
|
|
-ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
|
|
-NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections
|
|
|
|
NXFLAT Toolchain
|
|
^^^^^^^^^^^^^^^^
|
|
|
|
If you are *not* using the NuttX buildroot toolchain and you want to use
|
|
the NXFLAT tools, then you will still have to build a portion of the buildroot
|
|
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
|
|
be downloaded from the NuttX SourceForge download site
|
|
(https://sourceforge.net/projects/nuttx/files/).
|
|
|
|
This GNU toolchain builds and executes in the Linux or Cygwin environment.
|
|
|
|
1. You must have already configured Nuttx in <some-dir>/nuttx.
|
|
|
|
cd tools
|
|
./configure.sh lpcxpresso-lpc1768/<sub-dir>
|
|
|
|
2. Download the latest buildroot package into <some-dir>
|
|
|
|
3. unpack the buildroot tarball. The resulting directory may
|
|
have versioning information on it like buildroot-x.y.z. If so,
|
|
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
|
|
|
|
4. cd <some-dir>/buildroot
|
|
|
|
5. cp configs/cortexm3-defconfig-nxflat .config
|
|
|
|
6. make oldconfig
|
|
|
|
7. make
|
|
|
|
8. Edit setenv.h, if necessary, so that the PATH variable includes
|
|
the path to the newly builtNXFLAT binaries.
|
|
|
|
mbed Configuration Options
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
|
|
be set to:
|
|
|
|
CONFIG_ARCH=arm
|
|
|
|
CONFIG_ARCH_family - For use in C code:
|
|
|
|
CONFIG_ARCH_ARM=y
|
|
|
|
CONFIG_ARCH_architecture - For use in C code:
|
|
|
|
CONFIG_ARCH_CORTEXM3=y
|
|
|
|
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
|
|
|
|
CONFIG_ARCH_CHIP=lpc17xx
|
|
|
|
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
|
|
chip:
|
|
|
|
CONFIG_ARCH_CHIP_LPC1768=y
|
|
|
|
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
|
|
hence, the board that supports the particular chip or SoC.
|
|
|
|
CONFIG_ARCH_BOARD=mbed (for the mbed.org board)
|
|
|
|
CONFIG_ARCH_BOARD_name - For use in C code
|
|
|
|
CONFIG_ARCH_BOARD_MBED=y
|
|
|
|
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
|
|
of delay loops
|
|
|
|
CONFIG_ENDIAN_BIG - define if big endian (default is little
|
|
endian)
|
|
|
|
CONFIG_DRAM_SIZE - Describes the installed DRAM (CPU SRAM in this case):
|
|
|
|
CONFIG_DRAM_SIZE=(32*1024) (32Kb)
|
|
|
|
There is an additional 32Kb of SRAM in AHB SRAM banks 0 and 1.
|
|
|
|
CONFIG_DRAM_START - The start address of installed DRAM
|
|
|
|
CONFIG_DRAM_START=0x10000000
|
|
|
|
CONFIG_ARCH_IRQPRIO - The LPC17xx supports interrupt prioritization
|
|
|
|
CONFIG_ARCH_IRQPRIO=y
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
|
|
have LEDs
|
|
|
|
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
|
|
stack. If defined, this symbol is the size of the interrupt
|
|
stack in bytes. If not defined, the user task stacks will be
|
|
used during interrupt handling.
|
|
|
|
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
|
|
|
|
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
|
|
|
|
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
|
|
cause a 100 second delay during boot-up. This 100 second delay
|
|
serves no purpose other than it allows you to calibratre
|
|
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
|
|
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
|
|
the delay actually is 100 seconds.
|
|
|
|
Individual subsystems can be enabled:
|
|
CONFIG_LPC17_MAINOSC=y
|
|
CONFIG_LPC17_PLL0=y
|
|
CONFIG_LPC17_PLL1=n
|
|
CONFIG_LPC17_ETHERNET=n
|
|
CONFIG_LPC17_USBHOST=n
|
|
CONFIG_LPC17_USBOTG=n
|
|
CONFIG_LPC17_USBDEV=n
|
|
CONFIG_LPC17_UART0=y
|
|
CONFIG_LPC17_UART1=n
|
|
CONFIG_LPC17_UART2=n
|
|
CONFIG_LPC17_UART3=n
|
|
CONFIG_LPC17_CAN1=n
|
|
CONFIG_LPC17_CAN2=n
|
|
CONFIG_LPC17_SPI=n
|
|
CONFIG_LPC17_SSP0=n
|
|
CONFIG_LPC17_SSP1=n
|
|
CONFIG_LPC17_I2C0=n
|
|
CONFIG_LPC17_I2C1=n
|
|
CONFIG_LPC17_I2S=n
|
|
CONFIG_LPC17_TMR0=n
|
|
CONFIG_LPC17_TMR1=n
|
|
CONFIG_LPC17_TMR2=n
|
|
CONFIG_LPC17_TMR3=n
|
|
CONFIG_LPC17_RIT=n
|
|
CONFIG_LPC17_PWM=n
|
|
CONFIG_LPC17_MCPWM=n
|
|
CONFIG_LPC17_QEI=n
|
|
CONFIG_LPC17_RTC=n
|
|
CONFIG_LPC17_WDT=n
|
|
CONFIG_LPC17_ADC=n
|
|
CONFIG_LPC17_DAC=n
|
|
CONFIG_LPC17_GPDMA=n
|
|
CONFIG_LPC17_FLASH=n
|
|
|
|
LPC17xx specific device driver settings
|
|
|
|
CONFIG_UARTn_SERIAL_CONSOLE - selects the UARTn for the
|
|
console and ttys0 (default is the UART0).
|
|
CONFIG_UARTn_RXBUFSIZE - Characters are buffered as received.
|
|
This specific the size of the receive buffer
|
|
CONFIG_UARTn_TXBUFSIZE - Characters are buffered before
|
|
being sent. This specific the size of the transmit buffer
|
|
CONFIG_UARTn_BAUD - The configure BAUD of the UART. Must be
|
|
CONFIG_UARTn_BITS - The number of bits. Must be either 7 or 8.
|
|
CONFIG_UARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
|
|
CONFIG_UARTn_2STOP - Two stop bits
|
|
|
|
LPC17xx specific CAN device driver settings. These settings all
|
|
require CONFIG_CAN:
|
|
|
|
CONFIG_CAN_EXTID - Enables support for the 29-bit extended ID. Default
|
|
Standard 11-bit IDs.
|
|
CONFIG_CAN1_BAUD - CAN1 BAUD rate. Required if CONFIG_LPC17_CAN1 is defined.
|
|
CONFIG_CAN2_BAUD - CAN1 BAUD rate. Required if CONFIG_LPC17_CAN2 is defined.
|
|
CONFIG_CAN1_DIVISOR - CAN1 is clocked at CCLK divided by this number.
|
|
(the CCLK frequency is divided by this number to get the CAN clock).
|
|
Options = {1,2,4,6}. Default: 4.
|
|
CONFIG_CAN2_DIVISOR - CAN2 is clocked at CCLK divided by this number.
|
|
(the CCLK frequency is divided by this number to get the CAN clock).
|
|
Options = {1,2,4,6}. Default: 4.
|
|
CONFIG_CAN_TSEG1 - The number of CAN time quanta in segment 1. Default: 6
|
|
CONFIG_CAN_TSEG2 = the number of CAN time quanta in segment 2. Default: 7
|
|
|
|
LPC17xx specific PHY/Ethernet device driver settings. These setting
|
|
also require CONFIG_NET and CONFIG_LPC17_ETHERNET.
|
|
|
|
CONFIG_PHY_KS8721 - Selects Micrel KS8721 PHY
|
|
CONFIG_PHY_AUTONEG - Enable auto-negotion
|
|
CONFIG_PHY_SPEED100 - Select 100Mbit vs. 10Mbit speed.
|
|
CONFIG_PHY_FDUPLEX - Select full (vs. half) duplex
|
|
|
|
CONFIG_NET_EMACRAM_SIZE - Size of EMAC RAM. Default: 16Kb
|
|
CONFIG_NET_NTXDESC - Configured number of Tx descriptors. Default: 18
|
|
CONFIG_NET_NRXDESC - Configured number of Rx descriptors. Default: 18
|
|
CONFIG_NET_PRIORITY - Ethernet interrupt priority. The is default is
|
|
the higest priority.
|
|
CONFIG_NET_WOL - Enable Wake-up on Lan (not fully implemented).
|
|
CONFIG_NET_REGDEBUG - Enabled low level register debug. Also needs
|
|
CONFIG_DEBUG.
|
|
CONFIG_NET_DUMPPACKET - Dump all received and transmitted packets.
|
|
Also needs CONFIG_DEBUG.
|
|
CONFIG_NET_HASH - Enable receipt of near-perfect match frames.
|
|
CONFIG_NET_MULTICAST - Enable receipt of multicast (and unicast) frames.
|
|
Automatically set if CONFIG_NET_IGMP is selected.
|
|
|
|
LPC17xx USB Device Configuration
|
|
|
|
CONFIG_LPC17_USBDEV_FRAME_INTERRUPT
|
|
Handle USB Start-Of-Frame events.
|
|
Enable reading SOF from interrupt handler vs. simply reading on demand.
|
|
Probably a bad idea... Unless there is some issue with sampling the SOF
|
|
from hardware asynchronously.
|
|
CONFIG_LPC17_USBDEV_EPFAST_INTERRUPT
|
|
Enable high priority interrupts. I have no idea why you might want to
|
|
do that
|
|
CONFIG_LPC17_USBDEV_NDMADESCRIPTORS
|
|
Number of DMA descriptors to allocate in SRAM.
|
|
CONFIG_LPC17_USBDEV_DMA
|
|
Enable lpc17xx-specific DMA support
|
|
CONFIG_LPC17_USBDEV_NOVBUS
|
|
Define if the hardware implementation does not support the VBUS signal
|
|
CONFIG_LPC17_USBDEV_NOLED
|
|
Define if the hardware implementation does not support the LED output
|
|
|
|
LPC17xx USB Host Configuration
|
|
|
|
CONFIG_USBHOST_OHCIRAM_SIZE
|
|
Total size of OHCI RAM (in AHB SRAM Bank 1)
|
|
CONFIG_USBHOST_NEDS
|
|
Number of endpoint descriptors
|
|
CONFIG_USBHOST_NTDS
|
|
Number of transfer descriptors
|
|
CONFIG_USBHOST_TDBUFFERS
|
|
Number of transfer descriptor buffers
|
|
CONFIG_USBHOST_TDBUFSIZE
|
|
Size of one transfer descriptor buffer
|
|
CONFIG_USBHOST_IOBUFSIZE
|
|
Size of one end-user I/O buffer. This can be zero if the
|
|
application can guarantee that all end-user I/O buffers
|
|
reside in AHB SRAM.
|
|
|
|
USB Host Configuration
|
|
^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
The mbed board can be easily modified to support a USB host interface
|
|
(Remember to add 2 resistors of 15K to D+ and D- pins). The hidkbd
|
|
configuration assumes that this change has been made.
|
|
|
|
The NuttShell (NSH) mbed can also be modified in order to support USB
|
|
host operations. To make these modifications, do the following:
|
|
|
|
1. First configure to build the NSH configuration from the top-level
|
|
NuttX directory:
|
|
|
|
cd tools
|
|
./configure mbed/nsh
|
|
cd ..
|
|
|
|
2. Then edit the top-level .config file to enable USB host. Make the
|
|
following changes:
|
|
|
|
CONFIG_LPC17_USBHOST=y
|
|
CONFIG_USBHOST=y
|
|
CONFIG_SCHED_WORKQUEUE=y
|
|
|
|
When this change is made, NSH should be extended to support USB flash
|
|
devices. When a FLASH device is inserted, you should see a device
|
|
appear in the /dev (pseudo) directory. The device name should be
|
|
like /dev/sda, /dev/sdb, etc. The USB mass storage device, is present
|
|
it can be mounted from the NSH command line like:
|
|
|
|
ls /dev
|
|
mount -t vfat /dev/sda /mnt/flash
|
|
|
|
Files on the connect USB flash device should then be accessible under
|
|
the mountpoint /mnt/flash.
|
|
|
|
Configurations
|
|
^^^^^^^^^^^^^^
|
|
|
|
Each mbed configuration is maintained in a sudirectory and can be selected
|
|
as follow:
|
|
|
|
cd tools
|
|
./configure.sh mbed/<subdir>
|
|
cd -
|
|
. ./setenv.sh
|
|
|
|
Where <subdir> is one of the following:
|
|
|
|
hidkbd:
|
|
This configuration directory, performs a simple test of the USB host
|
|
HID keyboard class driver using the test logic in examples/hidkbd.
|
|
This configuration assumes that you have modified your mbed for USB
|
|
host support.
|
|
|
|
nsh:
|
|
Configures the NuttShell (nsh) located at examples/nsh. The
|
|
Configuration enables only the serial NSH interfaces. See notes
|
|
above for enabling USB host support in this configuration.
|