px4-firmware/EKF/ekf.cpp

670 lines
24 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf.cpp
* Core functions for ekf attitude and position estimator.
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#ifndef __PX4_QURT
#if defined(__cplusplus) && !defined(__PX4_NUTTX)
#include <cmath>
#define ISFINITE(x) std::isfinite(x)
#else
#define ISFINITE(x) isfinite(x)
#endif
#endif
#if defined(__PX4_QURT)
// Missing math.h defines
#define ISFINITE(x) __builtin_isfinite(x)
#endif
const float Ekf::_k_earth_rate = 0.000072921f;
const float Ekf::_gravity_mss = 9.80665f;
Ekf::Ekf():
_dt_update(0.01f),
_filter_initialised(false),
_earth_rate_initialised(false),
_fuse_height(false),
_fuse_pos(false),
_fuse_hor_vel(false),
_fuse_vert_vel(false),
_gps_data_ready(false),
_mag_data_ready(false),
_baro_data_ready(false),
_range_data_ready(false),
_flow_data_ready(false),
_ev_data_ready(false),
_tas_data_ready(false),
_time_last_fake_gps(0),
_time_last_pos_fuse(0),
_time_last_vel_fuse(0),
_time_last_hgt_fuse(0),
_time_last_of_fuse(0),
_time_last_arsp_fuse(0),
_time_last_beta_fuse(0),
_last_disarmed_posD(0.0f),
_last_dt_overrun(0.0f),
_time_acc_bias_check(0.0f),
_airspeed_innov(0.0f),
_airspeed_innov_var(0.0f),
_beta_innov(0.0f),
_beta_innov_var(0.0f),
_heading_innov(0.0f),
_heading_innov_var(0.0f),
_delta_time_of(0.0f),
_mag_declination(0.0f),
_gpsDriftVelN(0.0f),
_gpsDriftVelE(0.0f),
_gps_drift_velD(0.0f),
_gps_velD_diff_filt(0.0f),
_gps_velN_filt(0.0f),
_gps_velE_filt(0.0f),
_last_gps_fail_us(0),
_last_gps_origin_time_us(0),
_gps_alt_ref(0.0f),
_hgt_counter(0),
_rng_filt_state(0.0f),
_mag_counter(0),
_ev_counter(0),
_time_last_mag(0),
_hgt_sensor_offset(0.0f),
_baro_hgt_offset(0.0f),
_last_on_ground_posD(0.0f),
_terrain_vpos(0.0f),
_terrain_var(1.e4f),
_hagl_innov(0.0f),
_hagl_innov_var(0.0f),
_time_last_hagl_fuse(0),
_terrain_initialised(false),
_range_data_continuous(false),
_dt_last_range_update_filt_us(0.0f),
_baro_hgt_faulty(false),
_gps_hgt_faulty(false),
_rng_hgt_faulty(false),
_primary_hgt_source(VDIST_SENSOR_BARO),
_time_bad_vert_accel(0)
{
_state = {};
_last_known_posNE.setZero();
_earth_rate_NED.setZero();
_R_to_earth = matrix::Dcm<float>();
memset(_vel_pos_innov, 0, sizeof(_vel_pos_innov));
memset(_mag_innov, 0, sizeof(_mag_innov));
memset(_flow_innov, 0, sizeof(_flow_innov));
memset(_vel_pos_innov_var, 0, sizeof(_vel_pos_innov_var));
memset(_mag_innov_var, 0, sizeof(_mag_innov_var));
memset(_flow_innov_var, 0, sizeof(_flow_innov_var));
_delta_angle_corr.setZero();
_last_known_posNE.setZero();
_imu_down_sampled = {};
_q_down_sampled.setZero();
_vel_err_integ.setZero();
_pos_err_integ.setZero();
_mag_filt_state = {};
_delVel_sum = {};
_flow_gyro_bias = {};
_imu_del_ang_of = {};
_gps_check_fail_status.value = 0;
_state_reset_status = {};
_dt_ekf_avg = 0.001f * (float)(FILTER_UPDATE_PERIOD_MS);
}
bool Ekf::init(uint64_t timestamp)
{
bool ret = initialise_interface(timestamp);
_state.vel.setZero();
_state.pos.setZero();
_state.gyro_bias.setZero();
_state.accel_bias.setZero();
_state.mag_I.setZero();
_state.mag_B.setZero();
_state.wind_vel.setZero();
_state.quat_nominal.setZero();
_state.quat_nominal(0) = 1.0f;
_output_new.vel.setZero();
_output_new.pos.setZero();
_output_new.quat_nominal = matrix::Quaternion<float>();
_delta_angle_corr.setZero();
_imu_down_sampled.delta_ang.setZero();
_imu_down_sampled.delta_vel.setZero();
_imu_down_sampled.delta_ang_dt = 0.0f;
_imu_down_sampled.delta_vel_dt = 0.0f;
_imu_down_sampled.time_us = timestamp;
_q_down_sampled(0) = 1.0f;
_q_down_sampled(1) = 0.0f;
_q_down_sampled(2) = 0.0f;
_q_down_sampled(3) = 0.0f;
_imu_updated = false;
_NED_origin_initialised = false;
_gps_speed_valid = false;
_filter_initialised = false;
_terrain_initialised = false;
_sin_tilt_rng = sinf(_params.rng_sens_pitch);
_cos_tilt_rng = cosf(_params.rng_sens_pitch);
_control_status.value = 0;
_control_status_prev.value = 0;
_dt_ekf_avg = 0.001f * (float)(FILTER_UPDATE_PERIOD_MS);
_fault_status.value = 0;
_innov_check_fail_status.value = 0;
return ret;
}
bool Ekf::update()
{
if (!_filter_initialised) {
_filter_initialised = initialiseFilter();
if (!_filter_initialised) {
return false;
}
}
// Only run the filter if IMU data in the buffer has been updated
if (_imu_updated) {
// perform state and covariance prediction for the main filter
predictState();
predictCovariance();
// run a separate filter for terrain estimation
runTerrainEstimator();
// control fusion of observation data
controlFusionModes();
}
// the output observer always runs
calculateOutputStates();
// check for NaN or inf on attitude states
if (!ISFINITE(_state.quat_nominal(0)) || !ISFINITE(_output_new.quat_nominal(0))) {
return false;
}
// We don't have valid data to output until tilt and yaw alignment is complete
return _control_status.flags.tilt_align && _control_status.flags.yaw_align;
}
bool Ekf::initialiseFilter()
{
// Keep accumulating measurements until we have a minimum of 10 samples for the required sensors
// Sum the IMU delta angle measurements
imuSample imu_init = _imu_buffer.get_newest();
_delVel_sum += imu_init.delta_vel;
// Sum the magnetometer measurements
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) {
if ((_mag_counter == 0) && (_mag_sample_delayed.time_us != 0)) {
// initialise the counter when we start getting data from the buffer
_mag_counter = 1;
} else if ((_mag_counter != 0) && (_mag_sample_delayed.time_us != 0)) {
// increment the sample count and apply a LPF to the measurement
_mag_counter ++;
// don't start using data until we can be certain all bad initial data has been flushed
if (_mag_counter == (uint8_t)(_obs_buffer_length + 1)) {
// initialise filter states
_mag_filt_state = _mag_sample_delayed.mag;
} else if (_mag_counter > (uint8_t)(_obs_buffer_length + 1)) {
// noise filter the data
_mag_filt_state = _mag_filt_state * 0.9f + _mag_sample_delayed.mag * 0.1f;
}
}
}
// Count the number of external vision measurements received
if (_ext_vision_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_ev_sample_delayed)) {
if ((_ev_counter == 0) && (_ev_sample_delayed.time_us != 0)) {
// initialise the counter
_ev_counter = 1;
// set the height fusion mode to use external vision data when we start getting valid data from the buffer
if (_primary_hgt_source == VDIST_SENSOR_EV) {
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = true;
}
} else if ((_ev_counter != 0) && (_ev_sample_delayed.time_us != 0)) {
// increment the sample count
_ev_counter ++;
}
}
// set the default height source from the adjustable parameter
if (_hgt_counter == 0) {
_primary_hgt_source = _params.vdist_sensor_type;
}
// accumulate enough height measurements to be confident in the qulaity of the data
if (_primary_hgt_source == VDIST_SENSOR_RANGE) {
if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)) {
if ((_hgt_counter == 0) && (_range_sample_delayed.time_us != 0)) {
// initialise the counter height fusion method when we start getting data from the buffer
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = true;
_control_status.flags.ev_hgt = false;
_hgt_counter = 1;
} else if ((_hgt_counter != 0) && (_range_sample_delayed.time_us != 0)) {
// increment the sample count and apply a LPF to the measurement
_hgt_counter ++;
// don't start using data until we can be certain all bad initial data has been flushed
if (_hgt_counter == (uint8_t)(_obs_buffer_length + 1)) {
// initialise filter states
_rng_filt_state = _range_sample_delayed.rng;
} else if (_hgt_counter > (uint8_t)(_obs_buffer_length + 1)) {
// noise filter the data
_rng_filt_state = 0.9f * _rng_filt_state + 0.1f * _range_sample_delayed.rng;
}
}
}
} else if (_primary_hgt_source == VDIST_SENSOR_BARO || _primary_hgt_source == VDIST_SENSOR_GPS) {
// if the user parameter specifies use of GPS for height we use baro height initially and switch to GPS
// later when it passes checks.
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) {
if ((_hgt_counter == 0) && (_baro_sample_delayed.time_us != 0)) {
// initialise the counter and height fusion method when we start getting data from the buffer
_control_status.flags.baro_hgt = true;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
_hgt_counter = 1;
} else if ((_hgt_counter != 0) && (_baro_sample_delayed.time_us != 0)) {
// increment the sample count and apply a LPF to the measurement
_hgt_counter ++;
// don't start using data until we can be certain all bad initial data has been flushed
if (_hgt_counter == (uint8_t)(_obs_buffer_length + 1)) {
// initialise filter states
_baro_hgt_offset = _baro_sample_delayed.hgt;
} else if (_hgt_counter > (uint8_t)(_obs_buffer_length + 1)) {
// noise filter the data
_baro_hgt_offset = 0.9f * _baro_hgt_offset + 0.1f * _baro_sample_delayed.hgt;
}
}
}
} else if (_primary_hgt_source == VDIST_SENSOR_EV) {
_hgt_counter = _ev_counter;
} else {
return false;
}
// check to see if we have enough measurements and return false if not
bool hgt_count_fail = _hgt_counter <= 2*_obs_buffer_length;
bool mag_count_fail = _mag_counter <= 2*_obs_buffer_length;
bool ev_count_fail = ((_params.fusion_mode & MASK_USE_EVPOS) || (_params.fusion_mode & MASK_USE_EVYAW)) && (_ev_counter <= 2*_obs_buffer_length);
if (hgt_count_fail || mag_count_fail || ev_count_fail) {
return false;
} else {
// reset variables that are shared with post alignment GPS checks
_gps_drift_velD = 0.0f;
_gps_alt_ref = 0.0f;
// Zero all of the states
_state.vel.setZero();
_state.pos.setZero();
_state.gyro_bias.setZero();
_state.accel_bias.setZero();
_state.mag_I.setZero();
_state.mag_B.setZero();
_state.wind_vel.setZero();
// get initial roll and pitch estimate from delta velocity vector, assuming vehicle is static
float pitch = 0.0f;
float roll = 0.0f;
if (_delVel_sum.norm() > 0.001f) {
_delVel_sum.normalize();
pitch = asinf(_delVel_sum(0));
roll = atan2f(-_delVel_sum(1), -_delVel_sum(2));
} else {
return false;
}
// calculate initial tilt alignment
matrix::Euler<float> euler_init(roll, pitch, 0.0f);
_state.quat_nominal = Quaternion(euler_init);
_output_new.quat_nominal = _state.quat_nominal;
// update transformation matrix from body to world frame
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// calculate the averaged magnetometer reading
Vector3f mag_init = _mag_filt_state;
// calculate the initial magnetic field and yaw alignment
_control_status.flags.yaw_align = resetMagHeading(mag_init);
if (_control_status.flags.rng_hgt) {
// if we are using the range finder as the primary source, then calculate the baro height at origin so we can use baro as a backup
// so it can be used as a backup ad set the initial height using the range finder
baroSample baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt;
_state.pos(2) = -math::max(_rng_filt_state * _R_rng_to_earth_2_2,_params.rng_gnd_clearance);
ECL_INFO("EKF using range finder height - commencing alignment");
} else if (_control_status.flags.ev_hgt) {
// if we are using external vision data for height, then the vertical position state needs to be reset
// because the initialisation position is not the zero datum
resetHeight();
}
// initialise the state covariance matrix
initialiseCovariance();
// try to initialise the terrain estimator
_terrain_initialised = initHagl();
// reset the essential fusion timeout counters
_time_last_hgt_fuse = _time_last_imu;
_time_last_pos_fuse = _time_last_imu;
_time_last_vel_fuse = _time_last_imu;
_time_last_hagl_fuse = _time_last_imu;
_time_last_of_fuse = _time_last_imu;
// reset the output predictor state history to match the EKF initial values
alignOutputFilter();
return true;
}
}
void Ekf::predictState()
{
if (!_earth_rate_initialised) {
if (_NED_origin_initialised) {
calcEarthRateNED(_earth_rate_NED, _pos_ref.lat_rad);
_earth_rate_initialised = true;
}
}
// apply imu bias corrections
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _state.gyro_bias;
Vector3f corrected_delta_vel = _imu_sample_delayed.delta_vel - _state.accel_bias;
// correct delta angles for earth rotation rate
corrected_delta_ang -= -_R_to_earth.transpose() * _earth_rate_NED * _imu_sample_delayed.delta_ang_dt;
// convert the delta angle to a delta quaternion
Quaternion dq;
dq.from_axis_angle(corrected_delta_ang);
// rotate the previous quaternion by the delta quaternion using a quaternion multiplication
_state.quat_nominal = dq * _state.quat_nominal;
// quaternions must be normalised whenever they are modified
_state.quat_nominal.normalize();
// save the previous value of velocity so we can use trapzoidal integration
Vector3f vel_last = _state.vel;
// update transformation matrix from body to world frame
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// calculate the increment in velocity using the current orientation
_state.vel += _R_to_earth * corrected_delta_vel;
// compensate for acceleration due to gravity
_state.vel(2) += _gravity_mss * _imu_sample_delayed.delta_vel_dt;
// predict position states via trapezoidal integration of velocity
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f;
constrainStates();
// calculate an average filter update time
float input = 0.5f*(_imu_sample_delayed.delta_vel_dt + _imu_sample_delayed.delta_ang_dt);
// filter and limit input between -50% and +100% of nominal value
input = math::constrain(input,0.0005f * (float)(FILTER_UPDATE_PERIOD_MS),0.002f * (float)(FILTER_UPDATE_PERIOD_MS));
_dt_ekf_avg = 0.99f * _dt_ekf_avg + 0.01f * input;
}
bool Ekf::collect_imu(imuSample &imu)
{
// accumulate and downsample IMU data across a period FILTER_UPDATE_PERIOD_MS long
// copy imu data to local variables
_imu_sample_new.delta_ang = imu.delta_ang;
_imu_sample_new.delta_vel = imu.delta_vel;
_imu_sample_new.delta_ang_dt = imu.delta_ang_dt;
_imu_sample_new.delta_vel_dt = imu.delta_vel_dt;
_imu_sample_new.time_us = imu.time_us;
// accumulate the time deltas
_imu_down_sampled.delta_ang_dt += imu.delta_ang_dt;
_imu_down_sampled.delta_vel_dt += imu.delta_vel_dt;
// use a quaternion to accumulate delta angle data
// this quaternion represents the rotation from the start to end of the accumulation period
Quaternion delta_q;
delta_q.rotate(imu.delta_ang);
_q_down_sampled = _q_down_sampled * delta_q;
_q_down_sampled.normalize();
// rotate the accumulated delta velocity data forward each time so it is always in the updated rotation frame
matrix::Dcm<float> delta_R(delta_q.inversed());
_imu_down_sampled.delta_vel = delta_R * _imu_down_sampled.delta_vel;
// accumulate the most recent delta velocity data at the updated rotation frame
// assume effective sample time is halfway between the previous and current rotation frame
_imu_down_sampled.delta_vel += (_imu_sample_new.delta_vel + delta_R * _imu_sample_new.delta_vel) * 0.5f;
// if the target time delta between filter prediction steps has been exceeded
// write the accumulated IMU data to the ring buffer
float target_dt = (float)(FILTER_UPDATE_PERIOD_MS) / 1000;
if (_imu_down_sampled.delta_ang_dt >= target_dt - _last_dt_overrun) {
// store the amount we have over-run the target update rate by
_last_dt_overrun = _imu_down_sampled.delta_ang_dt - target_dt;
imu.delta_ang = _q_down_sampled.to_axis_angle();
imu.delta_vel = _imu_down_sampled.delta_vel;
imu.delta_ang_dt = _imu_down_sampled.delta_ang_dt;
imu.delta_vel_dt = _imu_down_sampled.delta_vel_dt;
_imu_down_sampled.delta_ang.setZero();
_imu_down_sampled.delta_vel.setZero();
_imu_down_sampled.delta_ang_dt = 0.0f;
_imu_down_sampled.delta_vel_dt = 0.0f;
_q_down_sampled(0) = 1.0f;
_q_down_sampled(1) = _q_down_sampled(2) = _q_down_sampled(3) = 0.0f;
return true;
}
return false;
}
/*
* Implement a strapdown INS algorithm using the latest IMU data at the current time horizon.
* Buffer the INS states and calculate the difference with the EKF states at the delayed fusion time horizon.
* Calculate delta angle, delta velocity and velocity corrections from the differences and apply them at the
* current time horizon so that the INS states track the EKF states at the delayed fusion time horizon.
* The inspiration for using a complementary filter to correct for time delays in the EKF
* is based on the work by A Khosravian:
* “Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements”
* A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
*/
void Ekf::calculateOutputStates()
{
// use latest IMU data
imuSample imu_new = _imu_sample_new;
// correct delta angles for bias offsets and scale factors
Vector3f delta_angle;
float dt_scale_correction = _dt_imu_avg/_dt_ekf_avg;
delta_angle(0) = _imu_sample_new.delta_ang(0) - _state.gyro_bias(0)*dt_scale_correction;
delta_angle(1) = _imu_sample_new.delta_ang(1) - _state.gyro_bias(1)*dt_scale_correction;
delta_angle(2) = _imu_sample_new.delta_ang(2) - _state.gyro_bias(2)*dt_scale_correction;
// correct delta velocity for bias offsets
Vector3f delta_vel = _imu_sample_new.delta_vel - _state.accel_bias*dt_scale_correction;
// Apply corrections to the delta angle required to track the quaternion states at the EKF fusion time horizon
delta_angle += _delta_angle_corr;
// convert the delta angle to an equivalent delta quaternions
Quaternion dq;
dq.from_axis_angle(delta_angle);
// rotate the previous INS quaternion by the delta quaternions
_output_new.time_us = imu_new.time_us;
_output_new.quat_nominal = dq * _output_new.quat_nominal;
// the quaternions must always be normalised afer modification
_output_new.quat_nominal.normalize();
// calculate the rotation matrix from body to earth frame
_R_to_earth_now = quat_to_invrotmat(_output_new.quat_nominal);
// rotate the delta velocity to earth frame
Vector3f delta_vel_NED = _R_to_earth_now * delta_vel;
// corrrect for measured accceleration due to gravity
delta_vel_NED(2) += _gravity_mss * imu_new.delta_vel_dt;
// save the previous velocity so we can use trapezidal integration
Vector3f vel_last = _output_new.vel;
// increment the INS velocity states by the measurement plus corrections
_output_new.vel += delta_vel_NED;
// use trapezoidal integration to calculate the INS position states
_output_new.pos += (_output_new.vel + vel_last) * (imu_new.delta_vel_dt * 0.5f);
// store INS states in a ring buffer that with the same length and time coordinates as the IMU data buffer
if (_imu_updated) {
_output_buffer.push(_output_new);
_imu_updated = false;
// get the oldest INS state data from the ring buffer
// this data will be at the EKF fusion time horizon
_output_sample_delayed = _output_buffer.get_oldest();
// calculate the quaternion delta between the INS and EKF quaternions at the EKF fusion time horizon
Quaternion quat_inv = _state.quat_nominal.inversed();
Quaternion q_error = _output_sample_delayed.quat_nominal * quat_inv;
q_error.normalize();
// convert the quaternion delta to a delta angle
Vector3f delta_ang_error;
float scalar;
if (q_error(0) >= 0.0f) {
scalar = -2.0f;
} else {
scalar = 2.0f;
}
delta_ang_error(0) = scalar * q_error(1);
delta_ang_error(1) = scalar * q_error(2);
delta_ang_error(2) = scalar * q_error(3);
// calculate a gain that provides tight tracking of the estimator attitude states and
// adjust for changes in time delay to maintain consistent damping ratio of ~0.7
float time_delay = 1e-6f * (float)(_imu_sample_new.time_us - _imu_sample_delayed.time_us);
time_delay = fmaxf(time_delay, _dt_imu_avg);
float att_gain = 0.5f * _dt_imu_avg / time_delay;
// calculate a corrrection to the delta angle
// that will cause the INS to track the EKF quaternions
_delta_angle_corr = delta_ang_error * att_gain;
// calculate velocity and position tracking errors
Vector3f vel_err = (_state.vel - _output_sample_delayed.vel);
Vector3f pos_err = (_state.pos - _output_sample_delayed.pos);
// collect magnitude tracking error for diagnostics
_output_tracking_error[0] = delta_ang_error.norm();
_output_tracking_error[1] = vel_err.norm();
_output_tracking_error[2] = pos_err.norm();
// calculate a velocity correction that will be applied to the output state history
float vel_gain = _dt_ekf_avg / math::constrain(_params.vel_Tau, _dt_ekf_avg, 10.0f);
_vel_err_integ += vel_err;
Vector3f vel_correction = vel_err * vel_gain + _vel_err_integ * sq(vel_gain) * 0.1f;
// calculate a position correction that will be applied to the output state history
float pos_gain = _dt_ekf_avg / math::constrain(_params.pos_Tau, _dt_ekf_avg, 10.0f);
_pos_err_integ += pos_err;
Vector3f pos_correction = pos_err * pos_gain + _pos_err_integ * sq(pos_gain) * 0.1f;
// loop through the output filter state history and apply the corrections to the velocity and position states
// this method is too expensive to use for the attitude states due to the quaternion operations required
// but does not introduce a time delay in the 'correction loop' and allows smaller tracking time constants
// to be used
outputSample output_states;
unsigned max_index = _output_buffer.get_length() - 1;
for (unsigned index=0; index <= max_index; index++) {
output_states = _output_buffer.get_from_index(index);
// a constant velocity correction is applied
output_states.vel += vel_correction;
// a constant position correction is applied
output_states.pos += pos_correction;
// push the updated data to the buffer
_output_buffer.push_to_index(index,output_states);
}
// update output state to corrected values
_output_new = _output_buffer.get_newest();
}
}