px4-firmware/EKF/ekf_helper.cpp

1629 lines
57 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf_helper.cpp
* Definition of ekf helper functions.
*
* @author Roman Bast <bapstroman@gmail.com>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
#include <cstdlib>
// Reset the velocity states. If we have a recent and valid
// gps measurement then use for velocity initialisation
bool Ekf::resetVelocity()
{
// used to calculate the velocity change due to the reset
Vector3f vel_before_reset = _state.vel;
// reset EKF states
if (_control_status.flags.gps) {
// this reset is only called if we have new gps data at the fusion time horizon
_state.vel = _gps_sample_delayed.vel;
// use GPS accuracy to reset variances
setDiag(P, 4, 6, sq(_gps_sample_delayed.sacc));
} else if (_control_status.flags.opt_flow) {
// constrain height above ground to be above minimum possible
float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance);
// calculate absolute distance from focal point to centre of frame assuming a flat earth
float range = heightAboveGndEst / _R_rng_to_earth_2_2;
if ((range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) {
// we should have reliable OF measurements so
// calculate X and Y body relative velocities from OF measurements
Vector3f vel_optflow_body;
vel_optflow_body(0) = - range * _flowRadXYcomp(1) / _flow_sample_delayed.dt;
vel_optflow_body(1) = range * _flowRadXYcomp(0) / _flow_sample_delayed.dt;
vel_optflow_body(2) = 0.0f;
// rotate from body to earth frame
Vector3f vel_optflow_earth;
vel_optflow_earth = _R_to_earth * vel_optflow_body;
// take x and Y components
_state.vel(0) = vel_optflow_earth(0);
_state.vel(1) = vel_optflow_earth(1);
} else {
_state.vel(0) = 0.0f;
_state.vel(1) = 0.0f;
}
// reset the velocity covariance terms
zeroRows(P, 4, 5);
zeroCols(P, 4, 5);
// reset the horizontal velocity variance using the optical flow noise variance
P[5][5] = P[4][4] = sq(range) * calcOptFlowMeasVar();
} else if (_control_status.flags.ev_pos) {
_state.vel.setZero();
zeroOffDiag(P, 4, 6);
} else {
// Used when falling back to non-aiding mode of operation
_state.vel(0) = 0.0f;
_state.vel(1) = 0.0f;
setDiag(P, 4, 5, 25.0f);
}
// calculate the change in velocity and apply to the output predictor state history
const Vector3f velocity_change = _state.vel - vel_before_reset;
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].vel += velocity_change;
}
// apply the change in velocity to our newest velocity estimate
// which was already taken out from the output buffer
_output_new.vel += velocity_change;
// capture the reset event
_state_reset_status.velNE_change(0) = velocity_change(0);
_state_reset_status.velNE_change(1) = velocity_change(1);
_state_reset_status.velD_change = velocity_change(2);
_state_reset_status.velNE_counter++;
_state_reset_status.velD_counter++;
return true;
}
// Reset position states. If we have a recent and valid
// gps measurement then use for position initialisation
bool Ekf::resetPosition()
{
// used to calculate the position change due to the reset
Vector2f posNE_before_reset;
posNE_before_reset(0) = _state.pos(0);
posNE_before_reset(1) = _state.pos(1);
// let the next odometry update know that the previous value of states cannot be used to calculate the change in position
_hpos_prev_available = false;
if (_control_status.flags.gps) {
// this reset is only called if we have new gps data at the fusion time horizon
_state.pos(0) = _gps_sample_delayed.pos(0);
_state.pos(1) = _gps_sample_delayed.pos(1);
// use GPS accuracy to reset variances
setDiag(P, 7, 8, sq(_gps_sample_delayed.hacc));
} else if (_control_status.flags.ev_pos) {
// this reset is only called if we have new ev data at the fusion time horizon
_state.pos(0) = _ev_sample_delayed.posNED(0);
_state.pos(1) = _ev_sample_delayed.posNED(1);
// use EV accuracy to reset variances
setDiag(P, 7, 8, sq(_ev_sample_delayed.posErr));
} else if (_control_status.flags.opt_flow) {
if (!_control_status.flags.in_air) {
// we are likely starting OF for the first time so reset the horizontal position
_state.pos(0) = 0.0f;
_state.pos(1) = 0.0f;
} else {
// set to the last known position
_state.pos(0) = _last_known_posNE(0);
_state.pos(1) = _last_known_posNE(1);
}
// estimate is relative to initial positon in this mode, so we start with zero error.
zeroCols(P,7,8);
zeroRows(P,7,8);
} else {
// Used when falling back to non-aiding mode of operation
_state.pos(0) = _last_known_posNE(0);
_state.pos(1) = _last_known_posNE(1);
setDiag(P, 7, 8, sq(_params.pos_noaid_noise));
}
// calculate the change in position and apply to the output predictor state history
const Vector2f posNE_change{_state.pos(0) - posNE_before_reset(0), _state.pos(1) - posNE_before_reset(1)};
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].pos(0) += posNE_change(0);
_output_buffer[index].pos(1) += posNE_change(1);
}
// apply the change in position to our newest position estimate
// which was already taken out from the output buffer
_output_new.pos(0) += posNE_change(0);
_output_new.pos(1) += posNE_change(1);
// capture the reset event
_state_reset_status.posNE_change = posNE_change;
_state_reset_status.posNE_counter++;
return true;
}
// Reset height state using the last height measurement
void Ekf::resetHeight()
{
// Get the most recent GPS data
const gpsSample &gps_newest = _gps_buffer.get_newest();
// store the current vertical position and velocity for reference so we can calculate and publish the reset amount
float old_vert_pos = _state.pos(2);
bool vert_pos_reset = false;
float old_vert_vel = _state.vel(2);
bool vert_vel_reset = false;
// reset the vertical position
if (_control_status.flags.rng_hgt) {
rangeSample range_newest = _range_buffer.get_newest();
if (_time_last_imu - range_newest.time_us < 2 * RNG_MAX_INTERVAL) {
// correct the range data for position offset relative to the IMU
Vector3f pos_offset_body = _params.rng_pos_body - _params.imu_pos_body;
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
range_newest.rng += pos_offset_earth(2) / _R_rng_to_earth_2_2;
// calculate the new vertical position using range sensor
float new_pos_down = _hgt_sensor_offset - range_newest.rng * _R_rng_to_earth_2_2;
// update the state and assoicated variance
_state.pos(2) = new_pos_down;
// reset the associated covariance values
zeroRows(P, 9, 9);
zeroCols(P, 9, 9);
// the state variance is the same as the observation
P[9][9] = sq(_params.range_noise);
vert_pos_reset = true;
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup
const baroSample &baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt + _state.pos(2);
} else {
// TODO: reset to last known range based estimate
}
} else if (_control_status.flags.baro_hgt) {
// initialize vertical position with newest baro measurement
const baroSample &baro_newest = _baro_buffer.get_newest();
if (_time_last_imu - baro_newest.time_us < 2 * BARO_MAX_INTERVAL) {
_state.pos(2) = _hgt_sensor_offset - baro_newest.hgt + _baro_hgt_offset;
// reset the associated covariance values
zeroRows(P, 9, 9);
zeroCols(P, 9, 9);
// the state variance is the same as the observation
P[9][9] = sq(_params.baro_noise);
vert_pos_reset = true;
} else {
// TODO: reset to last known baro based estimate
}
} else if (_control_status.flags.gps_hgt) {
// initialize vertical position and velocity with newest gps measurement
if (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL) {
_state.pos(2) = _hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref;
// reset the associated covarince values
zeroRows(P, 9, 9);
zeroCols(P, 9, 9);
// the state variance is the same as the observation
P[9][9] = sq(gps_newest.hacc);
vert_pos_reset = true;
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup
const baroSample &baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt + _state.pos(2);
} else {
// TODO: reset to last known gps based estimate
}
} else if (_control_status.flags.ev_hgt) {
// initialize vertical position with newest measurement
const extVisionSample &ev_newest = _ext_vision_buffer.get_newest();
// use the most recent data if it's time offset from the fusion time horizon is smaller
int32_t dt_newest = ev_newest.time_us - _imu_sample_delayed.time_us;
int32_t dt_delayed = _ev_sample_delayed.time_us - _imu_sample_delayed.time_us;
vert_pos_reset = true;
if (std::abs(dt_newest) < std::abs(dt_delayed)) {
_state.pos(2) = ev_newest.posNED(2);
} else {
_state.pos(2) = _ev_sample_delayed.posNED(2);
}
}
// reset the vertical velocity covariance values
zeroRows(P, 6, 6);
zeroCols(P, 6, 6);
// reset the vertical velocity state
if (_control_status.flags.gps && (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL)) {
// If we are using GPS, then use it to reset the vertical velocity
_state.vel(2) = gps_newest.vel(2);
// the state variance is the same as the observation
P[6][6] = sq(1.5f * gps_newest.sacc);
} else {
// we don't know what the vertical velocity is, so set it to zero
_state.vel(2) = 0.0f;
// Set the variance to a value large enough to allow the state to converge quickly
// that does not destabilise the filter
P[6][6] = 10.0f;
}
vert_vel_reset = true;
// store the reset amount and time to be published
if (vert_pos_reset) {
_state_reset_status.posD_change = _state.pos(2) - old_vert_pos;
_state_reset_status.posD_counter++;
}
if (vert_vel_reset) {
_state_reset_status.velD_change = _state.vel(2) - old_vert_vel;
_state_reset_status.velD_counter++;
}
// apply the change in height / height rate to our newest height / height rate estimate
// which have already been taken out from the output buffer
if (vert_pos_reset) {
_output_new.pos(2) += _state_reset_status.posD_change;
}
if (vert_vel_reset) {
_output_new.vel(2) += _state_reset_status.velD_change;
}
// add the reset amount to the output observer buffered data
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
if (vert_pos_reset) {
_output_buffer[i].pos(2) += _state_reset_status.posD_change;
_output_vert_buffer[i].vel_d_integ += _state_reset_status.posD_change;
}
if (vert_vel_reset) {
_output_buffer[i].vel(2) += _state_reset_status.velD_change;
_output_vert_buffer[i].vel_d += _state_reset_status.velD_change;
}
}
// add the reset amount to the output observer vertical position state
if (vert_pos_reset) {
_output_vert_delayed.vel_d_integ = _state.pos(2);
_output_vert_new.vel_d_integ = _state.pos(2);
}
if (vert_vel_reset) {
_output_vert_delayed.vel_d = _state.vel(2);
_output_vert_new.vel_d = _state.vel(2);
}
}
// align output filter states to match EKF states at the fusion time horizon
void Ekf::alignOutputFilter()
{
// calculate the quaternion delta between the output and EKF quaternions at the EKF fusion time horizon
Quatf q_delta = _state.quat_nominal.inversed() * _output_sample_delayed.quat_nominal;
q_delta.normalize();
// calculate the velocity and posiiton deltas between the output and EKF at the EKF fusion time horizon
const Vector3f vel_delta = _state.vel - _output_sample_delayed.vel;
const Vector3f pos_delta = _state.pos - _output_sample_delayed.pos;
// loop through the output filter state history and add the deltas
// Note q1 *= q2 is equivalent to q1 = q2 * q1
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].quat_nominal *= q_delta;
_output_buffer[i].quat_nominal.normalize();
_output_buffer[i].vel += vel_delta;
_output_buffer[i].pos += pos_delta;
}
}
// Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS.
// It is used to align the yaw angle after launch or takeoff for fixed wing vehicle only.
bool Ekf::realignYawGPS()
{
// Need at least 5 m/s of GPS horizontal speed and ratio of velocity error to velocity < 0.15 for a reliable alignment
float gpsSpeed = sqrtf(sq(_gps_sample_delayed.vel(0)) + sq(_gps_sample_delayed.vel(1)));
if ((gpsSpeed > 5.0f) && (_gps_sample_delayed.sacc < (0.15f * gpsSpeed))) {
// check for excessive GPS velocity innovations
bool badVelInnov = ((_vel_pos_test_ratio[0] > 1.0f) || (_vel_pos_test_ratio[1] > 1.0f)) && _control_status.flags.gps;
// calculate GPS course over ground angle
float gpsCOG = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0));
// calculate course yaw angle
float ekfGOG = atan2f(_state.vel(1), _state.vel(0));
// Check the EKF and GPS course over ground for consistency
float courseYawError = gpsCOG - ekfGOG;
// If the angles disagree and horizontal GPS velocity innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad
bool badYawErr = fabsf(courseYawError) > 0.5f;
bool badMagYaw = (badYawErr && badVelInnov);
if (badMagYaw) {
_num_bad_flight_yaw_events ++;
}
// correct yaw angle using GPS ground course if compass yaw bad or yaw is previously not aligned
if (badMagYaw || !_control_status.flags.yaw_align) {
ECL_WARN("EKF bad yaw corrected using GPS course");
// declare the magnetomer as failed if a bad yaw has occurred more than once
if (_flt_mag_align_complete && (_num_bad_flight_yaw_events >= 2) && !_control_status.flags.mag_fault) {
ECL_WARN("EKF stopping magnetometer use");
_control_status.flags.mag_fault = true;
}
// save a copy of the quaternion state for later use in calculating the amount of reset change
Quatf quat_before_reset = _state.quat_nominal;
// calculate the variance for the rotation estimate expressed as a rotation vector
// this will be used later to reset the quaternion state covariances
Vector3f angle_err_var_vec = calcRotVecVariances();
// update transformation matrix from body to world frame using the current state estimate
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
Eulerf euler321(_state.quat_nominal);
// apply yaw correction
if (!_flt_mag_align_complete) {
// This is our first flight aligment so we can assume that the recent change in velocity has occurred due to a
// forward direction takeoff or launch and therefore the inertial and GPS ground course discrepancy is due to yaw error
euler321(2) += courseYawError;
_flt_mag_align_complete = true;
} else if (_control_status.flags.wind) {
// we have previously aligned yaw in-flight and have wind estimates so set the yaw such that the vehicle nose is
// aligned with the wind relative GPS velocity vector
euler321(2) = atan2f((_gps_sample_delayed.vel(1) - _state.wind_vel(1)),
(_gps_sample_delayed.vel(0) - _state.wind_vel(0)));
} else {
// we don't have wind estimates, so align yaw to the GPS velocity vector
euler321(2) = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0));
}
// calculate new filter quaternion states using corected yaw angle
_state.quat_nominal = Quatf(euler321);
// If heading was bad, then we alos need to reset the velocity and position states
_velpos_reset_request = badMagYaw;
// update transformation matrix from body to world frame using the current state estimate
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// Use the last magnetometer measurements to reset the field states
_state.mag_B.zero();
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag;
// use the combined EKF and GPS speed variance to calculate a rough estimate of the yaw error after alignment
float SpdErrorVariance = sq(_gps_sample_delayed.sacc) + P[4][4] + P[5][5];
float sineYawError = math::constrain(sqrtf(SpdErrorVariance) / gpsSpeed, 0.0f, 1.0f);
angle_err_var_vec(2) = sq(asinf(sineYawError));
// reset the quaternion covariances using the rotation vector variances
initialiseQuatCovariances(angle_err_var_vec);
// reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance
zeroRows(P, 16, 21);
zeroCols(P, 16, 21);
for (uint8_t index = 16; index <= 21; index ++) {
P[index][index] = sq(_params.mag_noise);
}
// record the start time for the magnetic field alignment
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
// calculate the amount that the quaternion has changed by
_state_reset_status.quat_change = quat_before_reset.inversed() * _state.quat_nominal;
// add the reset amount to the output observer buffered data
// Note q1 *= q2 is equivalent to q1 = q2 * q1
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].quat_nominal *= _state_reset_status.quat_change;
}
// apply the change in attitude quaternion to our newest quaternion estimate
// which was already taken out from the output buffer
_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal;
// capture the reset event
_state_reset_status.quat_counter++;
return true;
} else {
// align mag states only
// calculate initial earth magnetic field states
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag;
// reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance
zeroRows(P, 16, 21);
zeroCols(P, 16, 21);
for (uint8_t index = 16; index <= 21; index ++) {
P[index][index] = sq(_params.mag_noise);
}
// record the start time for the magnetic field alignment
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
return true;
}
} else {
// attempt a normal alignment using the magnetometer
return resetMagHeading(_mag_sample_delayed.mag);
}
}
// Reset heading and magnetic field states
bool Ekf::resetMagHeading(Vector3f &mag_init)
{
// save a copy of the quaternion state for later use in calculating the amount of reset change
Quatf quat_before_reset = _state.quat_nominal;
Quatf quat_after_reset = _state.quat_nominal;
// calculate the variance for the rotation estimate expressed as a rotation vector
// this will be used later to reset the quaternion state covariances
Vector3f angle_err_var_vec = calcRotVecVariances();
// update transformation matrix from body to world frame using the current estimate
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// calculate the initial quaternion
// determine if a 321 or 312 Euler sequence is best
if (fabsf(_R_to_earth(2, 0)) < fabsf(_R_to_earth(2, 1))) {
// use a 321 sequence
// rotate the magnetometer measurement into earth frame
Eulerf euler321(_state.quat_nominal);
// Set the yaw angle to zero and calculate the rotation matrix from body to earth frame
euler321(2) = 0.0f;
Dcmf R_to_earth(euler321);
// calculate the observed yaw angle
if (_control_status.flags.ev_yaw) {
// convert the observed quaternion to a rotation matrix
Dcmf R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame
// calculate the yaw angle for a 312 sequence
euler321(2) = atan2f(R_to_earth_ev(1, 0), R_to_earth_ev(0, 0));
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) {
// rotate the magnetometer measurements into earth frame using a zero yaw angle
Vector3f mag_earth_pred = R_to_earth * _mag_sample_delayed.mag;
// the angle of the projection onto the horizontal gives the yaw angle
euler321(2) = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + _mag_declination;
} else {
// there is no yaw observation
return false;
}
// calculate initial quaternion states for the ekf
// we don't change the output attitude to avoid jumps
quat_after_reset = Quatf(euler321);
} else {
// use a 312 sequence
// Calculate the 312 sequence euler angles that rotate from earth to body frame
// See http://www.atacolorado.com/eulersequences.doc
Vector3f euler312;
euler312(0) = atan2f(-_R_to_earth(0, 1), _R_to_earth(1, 1)); // first rotation (yaw)
euler312(1) = asinf(_R_to_earth(2, 1)); // second rotation (roll)
euler312(2) = atan2f(-_R_to_earth(2, 0), _R_to_earth(2, 2)); // third rotation (pitch)
// Set the first rotation (yaw) to zero and calculate the rotation matrix from body to earth frame
euler312(0) = 0.0f;
// Calculate the body to earth frame rotation matrix from the euler angles using a 312 rotation sequence
float c2 = cosf(euler312(2));
float s2 = sinf(euler312(2));
float s1 = sinf(euler312(1));
float c1 = cosf(euler312(1));
float s0 = sinf(euler312(0));
float c0 = cosf(euler312(0));
Dcmf R_to_earth;
R_to_earth(0, 0) = c0 * c2 - s0 * s1 * s2;
R_to_earth(1, 1) = c0 * c1;
R_to_earth(2, 2) = c2 * c1;
R_to_earth(0, 1) = -c1 * s0;
R_to_earth(0, 2) = s2 * c0 + c2 * s1 * s0;
R_to_earth(1, 0) = c2 * s0 + s2 * s1 * c0;
R_to_earth(1, 2) = s0 * s2 - s1 * c0 * c2;
R_to_earth(2, 0) = -s2 * c1;
R_to_earth(2, 1) = s1;
// calculate the observed yaw angle
if (_control_status.flags.ev_yaw) {
// convert the observed quaternion to a rotation matrix
Dcmf R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame
// calculate the yaw angle for a 312 sequence
euler312(0) = atan2f(-R_to_earth_ev(0, 1), R_to_earth_ev(1, 1));
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) {
// rotate the magnetometer measurements into earth frame using a zero yaw angle
Vector3f mag_earth_pred = R_to_earth * _mag_sample_delayed.mag;
// the angle of the projection onto the horizontal gives the yaw angle
euler312(0) = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + _mag_declination;
} else {
// there is no yaw observation
return false;
}
// re-calculate the rotation matrix using the updated yaw angle
s0 = sinf(euler312(0));
c0 = cosf(euler312(0));
R_to_earth(0, 0) = c0 * c2 - s0 * s1 * s2;
R_to_earth(1, 1) = c0 * c1;
R_to_earth(2, 2) = c2 * c1;
R_to_earth(0, 1) = -c1 * s0;
R_to_earth(0, 2) = s2 * c0 + c2 * s1 * s0;
R_to_earth(1, 0) = c2 * s0 + s2 * s1 * c0;
R_to_earth(1, 2) = s0 * s2 - s1 * c0 * c2;
R_to_earth(2, 0) = -s2 * c1;
R_to_earth(2, 1) = s1;
// calculate initial quaternion states for the ekf
// we don't change the output attitude to avoid jumps
quat_after_reset = Quatf(R_to_earth);
}
// set the earth magnetic field states using the updated rotation
Dcmf _R_to_earth_after = quat_to_invrotmat(quat_after_reset);
_state.mag_I = _R_to_earth_after * mag_init;
// reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance
zeroRows(P, 16, 21);
zeroCols(P, 16, 21);
for (uint8_t index = 16; index <= 21; index ++) {
P[index][index] = sq(_params.mag_noise);
}
// record the time for the magnetic field alignment event
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
// calculate the amount that the quaternion has changed by
Quatf q_error = quat_before_reset.inversed() * quat_after_reset;
q_error.normalize();
// convert the quaternion delta to a delta angle
Vector3f delta_ang_error;
float scalar;
if (q_error(0) >= 0.0f) {
scalar = -2.0f;
} else {
scalar = 2.0f;
}
delta_ang_error(0) = scalar * q_error(1);
delta_ang_error(1) = scalar * q_error(2);
delta_ang_error(2) = scalar * q_error(3);
// update the quaternion state estimates and corresponding covariances only if the change in angle has been large
if (delta_ang_error.norm() > math::radians(15.0f)) {
// update quaternion states
_state.quat_nominal = quat_after_reset;
// record the state change
_state_reset_status.quat_change = q_error;
// update transformation matrix from body to world frame using the current estimate
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// reset the rotation from the EV to EKF frame of reference if it is being used
if ((_params.fusion_mode & MASK_ROTATE_EV) && (_params.fusion_mode & MASK_USE_EVPOS) && !_control_status.flags.ev_yaw) {
resetExtVisRotMat();
}
// update the yaw angle variance using the variance of the measurement
if (!_control_status.flags.ev_yaw) {
// using error estimate from external vision data
angle_err_var_vec(2) = sq(fmaxf(_ev_sample_delayed.angErr, 1.0e-2f));
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) {
// using magnetic heading tuning parameter
angle_err_var_vec(2) = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f));
}
// reset the quaternion covariances using the rotation vector variances
initialiseQuatCovariances(angle_err_var_vec);
// add the reset amount to the output observer buffered data
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
// Note q1 *= q2 is equivalent to q1 = q2 * q1
_output_buffer[i].quat_nominal *= _state_reset_status.quat_change;
}
// apply the change in attitude quaternion to our newest quaternion estimate
// which was already taken out from the output buffer
_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal;
// capture the reset event
_state_reset_status.quat_counter++;
}
return true;
}
// Calculate the magnetic declination to be used by the alignment and fusion processing
void Ekf::calcMagDeclination()
{
// set source of magnetic declination for internal use
if (_flt_mag_align_complete) {
// Use value consistent with earth field state
_mag_declination = atan2f(_state.mag_I(1), _state.mag_I(0));
} else if (_params.mag_declination_source & MASK_USE_GEO_DECL) {
// use parameter value until GPS is available, then use value returned by geo library
if (_NED_origin_initialised) {
_mag_declination = _mag_declination_gps;
_mag_declination_to_save_deg = math::degrees(_mag_declination);
} else {
_mag_declination = math::radians(_params.mag_declination_deg);
_mag_declination_to_save_deg = _params.mag_declination_deg;
}
} else {
// always use the parameter value
_mag_declination = math::radians(_params.mag_declination_deg);
_mag_declination_to_save_deg = _params.mag_declination_deg;
}
}
// This function forces the covariance matrix to be symmetric
void Ekf::makeSymmetrical(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last)
{
for (unsigned row = first; row <= last; row++) {
for (unsigned column = 0; column < row; column++) {
float tmp = (cov_mat[row][column] + cov_mat[column][row]) / 2;
cov_mat[row][column] = tmp;
cov_mat[column][row] = tmp;
}
}
}
void Ekf::constrainStates()
{
for (int i = 0; i < 4; i++) {
_state.quat_nominal(i) = math::constrain(_state.quat_nominal(i), -1.0f, 1.0f);
}
for (int i = 0; i < 3; i++) {
_state.vel(i) = math::constrain(_state.vel(i), -1000.0f, 1000.0f);
}
for (int i = 0; i < 3; i++) {
_state.pos(i) = math::constrain(_state.pos(i), -1.e6f, 1.e6f);
}
for (int i = 0; i < 3; i++) {
_state.gyro_bias(i) = math::constrain(_state.gyro_bias(i), -math::radians(20.f) * _dt_ekf_avg, math::radians(20.f) * _dt_ekf_avg);
}
for (int i = 0; i < 3; i++) {
_state.accel_bias(i) = math::constrain(_state.accel_bias(i), -_params.acc_bias_lim * _dt_ekf_avg, _params.acc_bias_lim * _dt_ekf_avg);
}
for (int i = 0; i < 3; i++) {
_state.mag_I(i) = math::constrain(_state.mag_I(i), -1.0f, 1.0f);
}
for (int i = 0; i < 3; i++) {
_state.mag_B(i) = math::constrain(_state.mag_B(i), -0.5f, 0.5f);
}
for (int i = 0; i < 2; i++) {
_state.wind_vel(i) = math::constrain(_state.wind_vel(i), -100.0f, 100.0f);
}
}
// calculate the earth rotation vector
void Ekf::calcEarthRateNED(Vector3f &omega, float lat_rad) const
{
omega(0) = CONSTANTS_EARTH_SPIN_RATE * cosf(lat_rad);
omega(1) = 0.0f;
omega(2) = -CONSTANTS_EARTH_SPIN_RATE * sinf(lat_rad);
}
// gets the innovations of velocity and position measurements
// 0-2 vel, 3-5 pos
void Ekf::get_vel_pos_innov(float vel_pos_innov[6])
{
memcpy(vel_pos_innov, _vel_pos_innov, sizeof(float) * 6);
}
// gets the innovations of the earth magnetic field measurements
void Ekf::get_aux_vel_innov(float aux_vel_innov[2])
{
memcpy(aux_vel_innov, _aux_vel_innov, sizeof(float) * 2);
}
// writes the innovations of the earth magnetic field measurements
void Ekf::get_mag_innov(float mag_innov[3])
{
memcpy(mag_innov, _mag_innov, 3 * sizeof(float));
}
// gets the innovations of the airspeed measnurement
void Ekf::get_airspeed_innov(float *airspeed_innov)
{
memcpy(airspeed_innov, &_airspeed_innov, sizeof(float));
}
// gets the innovations of the synthetic sideslip measurements
void Ekf::get_beta_innov(float *beta_innov)
{
memcpy(beta_innov, &_beta_innov, sizeof(float));
}
// gets the innovations of the heading measurement
void Ekf::get_heading_innov(float *heading_innov)
{
memcpy(heading_innov, &_heading_innov, sizeof(float));
}
// gets the innovation variances of velocity and position measurements
// 0-2 vel, 3-5 pos
void Ekf::get_vel_pos_innov_var(float vel_pos_innov_var[6])
{
memcpy(vel_pos_innov_var, _vel_pos_innov_var, sizeof(float) * 6);
}
// gets the innovation variances of the earth magnetic field measurements
void Ekf::get_mag_innov_var(float mag_innov_var[3])
{
memcpy(mag_innov_var, _mag_innov_var, sizeof(float) * 3);
}
// gest the innovation variance of the airspeed measurement
void Ekf::get_airspeed_innov_var(float *airspeed_innov_var)
{
memcpy(airspeed_innov_var, &_airspeed_innov_var, sizeof(float));
}
// gets the innovation variance of the synthetic sideslip measurement
void Ekf::get_beta_innov_var(float *beta_innov_var)
{
memcpy(beta_innov_var, &_beta_innov_var, sizeof(float));
}
// gets the innovation variance of the heading measurement
void Ekf::get_heading_innov_var(float *heading_innov_var)
{
memcpy(heading_innov_var, &_heading_innov_var, sizeof(float));
}
// get GPS check status
void Ekf::get_gps_check_status(uint16_t *val)
{
*val = _gps_check_fail_status.value;
}
// get the state vector at the delayed time horizon
void Ekf::get_state_delayed(float *state)
{
for (int i = 0; i < 4; i++) {
state[i] = _state.quat_nominal(i);
}
for (int i = 0; i < 3; i++) {
state[i + 4] = _state.vel(i);
}
for (int i = 0; i < 3; i++) {
state[i + 7] = _state.pos(i);
}
for (int i = 0; i < 3; i++) {
state[i + 10] = _state.gyro_bias(i);
}
for (int i = 0; i < 3; i++) {
state[i + 13] = _state.accel_bias(i);
}
for (int i = 0; i < 3; i++) {
state[i + 16] = _state.mag_I(i);
}
for (int i = 0; i < 3; i++) {
state[i + 19] = _state.mag_B(i);
}
for (int i = 0; i < 2; i++) {
state[i + 22] = _state.wind_vel(i);
}
}
// get the accelerometer bias
void Ekf::get_accel_bias(float bias[3])
{
float temp[3];
temp[0] = _state.accel_bias(0) / _dt_ekf_avg;
temp[1] = _state.accel_bias(1) / _dt_ekf_avg;
temp[2] = _state.accel_bias(2) / _dt_ekf_avg;
memcpy(bias, temp, 3 * sizeof(float));
}
// get the gyroscope bias in rad/s
void Ekf::get_gyro_bias(float bias[3])
{
float temp[3];
temp[0] = _state.gyro_bias(0) / _dt_ekf_avg;
temp[1] = _state.gyro_bias(1) / _dt_ekf_avg;
temp[2] = _state.gyro_bias(2) / _dt_ekf_avg;
memcpy(bias, temp, 3 * sizeof(float));
}
// get the diagonal elements of the covariance matrix
void Ekf::get_covariances(float *covariances)
{
for (unsigned i = 0; i < _k_num_states; i++) {
covariances[i] = P[i][i];
}
}
// get the position and height of the ekf origin in WGS-84 coordinates and time the origin was set
// return true if the origin is valid
bool Ekf::get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt)
{
memcpy(origin_time, &_last_gps_origin_time_us, sizeof(uint64_t));
memcpy(origin_pos, &_pos_ref, sizeof(map_projection_reference_s));
memcpy(origin_alt, &_gps_alt_ref, sizeof(float));
return _NED_origin_initialised;
}
// return an array containing the output predictor angular, velocity and position tracking
// error magnitudes (rad), (m/s), (m)
void Ekf::get_output_tracking_error(float error[3])
{
memcpy(error, _output_tracking_error, 3 * sizeof(float));
}
/*
Returns following IMU vibration metrics in the following array locations
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
*/
void Ekf::get_imu_vibe_metrics(float vibe[3])
{
memcpy(vibe, _vibe_metrics, 3 * sizeof(float));
}
/*
First argument returns GPS drift metrics in the following array locations
0 : Horizontal position drift rate (m/s)
1 : Vertical position drift rate (m/s)
2 : Filtered horizontal velocity (m/s)
Second argument returns true when IMU movement is blocking the drift calculation
Function returns true if the metrics have been updated and not returned previously by this function
*/
bool Ekf::get_gps_drift_metrics(float drift[3], bool *blocked)
{
memcpy(drift, _gps_drift_metrics, 3 * sizeof(float));
*blocked = !_vehicle_at_rest;
if (_gps_drift_updated) {
_gps_drift_updated = false;
return true;
}
return false;
}
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
void Ekf::get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv)
{
// report absolute accuracy taking into account the uncertainty in location of the origin
// If not aiding, return 0 for horizontal position estimate as no estimate is available
// TODO - allow for baro drift in vertical position error
float hpos_err = sqrtf(P[7][7] + P[8][8] + sq(_gps_origin_eph));
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_is_dead_reckoning && (_control_status.flags.gps || _control_status.flags.ev_pos)) {
hpos_err = math::max(hpos_err, sqrtf(sq(_vel_pos_innov[3]) + sq(_vel_pos_innov[4])));
}
*ekf_eph = hpos_err;
*ekf_epv = sqrtf(P[9][9] + sq(_gps_origin_epv));
}
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
void Ekf::get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv)
{
// TODO - allow for baro drift in vertical position error
float hpos_err = sqrtf(P[7][7] + P[8][8]);
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_is_dead_reckoning && (_control_status.flags.gps || _control_status.flags.ev_pos)) {
hpos_err = math::max(hpos_err, sqrtf(sq(_vel_pos_innov[3]) + sq(_vel_pos_innov[4])));
}
*ekf_eph = hpos_err;
*ekf_epv = sqrtf(P[9][9]);
}
// get the 1-sigma horizontal and vertical velocity uncertainty
void Ekf::get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv)
{
float hvel_err = sqrtf(P[4][4] + P[5][5]);
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal velocity error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_is_dead_reckoning) {
float vel_err_conservative = 0.0f;
if (_control_status.flags.opt_flow) {
float gndclearance = math::max(_params.rng_gnd_clearance, 0.1f);
vel_err_conservative = math::max((_terrain_vpos - _state.pos(2)), gndclearance) * sqrtf(sq(_flow_innov[0]) + sq(_flow_innov[1]));
}
if (_control_status.flags.gps || _control_status.flags.ev_pos) {
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_vel_pos_innov[0]) + sq(_vel_pos_innov[1])));
}
hvel_err = math::max(hvel_err, vel_err_conservative);
}
*ekf_evh = hvel_err;
*ekf_evv = sqrtf(P[6][6]);
}
/*
Returns the following vehicle control limits required by the estimator to keep within sensor limitations.
vxy_max : Maximum ground relative horizontal speed (meters/sec). NaN when limiting is not needed.
vz_max : Maximum ground relative vertical speed (meters/sec). NaN when limiting is not needed.
hagl_min : Minimum height above ground (meters). NaN when limiting is not needed.
hagl_max : Maximum height above ground (meters). NaN when limiting is not needed.
*/
void Ekf::get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max)
{
// Calculate range finder limits
float rangefinder_hagl_min = _rng_valid_min_val;
// Allow use of 75% of rangefinder maximum range to allow for angular motion
float rangefinder_hagl_max = 0.75f * _rng_valid_max_val;
// Calculate optical flow limits
// Allow ground relative velocity to use 50% of available flow sensor range to allow for angular motion
float flow_vxy_max = fmaxf(0.5f * _flow_max_rate * (_terrain_vpos - _state.pos(2)), 0.0f);
float flow_hagl_min = _flow_min_distance;
float flow_hagl_max = _flow_max_distance;
// TODO : calculate visual odometry limits
bool relying_on_rangefinder = _control_status.flags.rng_hgt && !_params.range_aid;
bool relying_on_optical_flow = _control_status.flags.opt_flow && !(_control_status.flags.gps || _control_status.flags.ev_pos);
// Do not require limiting by default
*vxy_max = NAN;
*vz_max = NAN;
*hagl_min = NAN;
*hagl_max = NAN;
// Keep within range sensor limit when using rangefinder as primary height source
if (relying_on_rangefinder) {
*vxy_max = NAN;
*vz_max = NAN;
*hagl_min = rangefinder_hagl_min;
*hagl_max = rangefinder_hagl_max;
}
// Keep within flow AND range sensor limits when exclusively using optical flow
if (relying_on_optical_flow) {
*vxy_max = flow_vxy_max;
*vz_max = NAN;
*hagl_min = fmaxf(rangefinder_hagl_min, flow_hagl_min);
*hagl_max = fminf(rangefinder_hagl_max, flow_hagl_max);
}
}
bool Ekf::reset_imu_bias()
{
if (_imu_sample_delayed.time_us - _last_imu_bias_cov_reset_us < (uint64_t)10e6) {
return false;
}
// Zero the delta angle and delta velocity bias states
_state.gyro_bias.zero();
_state.accel_bias.zero();
// Zero the corresponding covariances
zeroCols(P, 10, 15);
zeroRows(P, 10, 15);
// Set the corresponding variances to the values use for initial alignment
float dt = FILTER_UPDATE_PERIOD_S;
P[12][12] = P[11][11] = P[10][10] = sq(_params.switch_on_gyro_bias * dt);
P[15][15] = P[14][14] = P[13][13] = sq(_params.switch_on_accel_bias * dt);
_last_imu_bias_cov_reset_us = _imu_sample_delayed.time_us;
// Set previous frame values
_prev_dvel_bias_var(0) = P[13][13];
_prev_dvel_bias_var(1) = P[14][14];
_prev_dvel_bias_var(2) = P[15][15];
return true;
}
// get EKF innovation consistency check status information comprising of:
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
// Where a measurement type is a vector quantity, eg magnetoemter, GPS position, etc, the maximum value is returned.
void Ekf::get_innovation_test_status(uint16_t *status, float *mag, float *vel, float *pos, float *hgt, float *tas, float *hagl, float *beta)
{
// return the integer bitmask containing the consistency check pass/fail satus
*status = _innov_check_fail_status.value;
// return the largest magnetometer innovation test ratio
*mag = sqrtf(math::max(_yaw_test_ratio, math::max(math::max(_mag_test_ratio[0], _mag_test_ratio[1]), _mag_test_ratio[2])));
// return the largest NED velocity innovation test ratio
*vel = sqrtf(math::max(math::max(_vel_pos_test_ratio[0], _vel_pos_test_ratio[1]), _vel_pos_test_ratio[2]));
// return the largest NE position innovation test ratio
*pos = sqrtf(math::max(_vel_pos_test_ratio[3], _vel_pos_test_ratio[4]));
// return the vertical position innovation test ratio
*hgt = sqrtf(_vel_pos_test_ratio[5]);
// return the airspeed fusion innovation test ratio
*tas = sqrtf(_tas_test_ratio);
// return the terrain height innovation test ratio
*hagl = sqrtf(_terr_test_ratio);
// return the synthetic sideslip innovation test ratio
*beta = sqrtf(_beta_test_ratio);
}
// return a bitmask integer that describes which state estimates are valid
void Ekf::get_ekf_soln_status(uint16_t *status)
{
ekf_solution_status soln_status;
soln_status.flags.attitude = _control_status.flags.tilt_align && _control_status.flags.yaw_align && (_fault_status.value == 0);
soln_status.flags.velocity_horiz = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow || (_control_status.flags.fuse_beta && _control_status.flags.fuse_aspd)) && (_fault_status.value == 0);
soln_status.flags.velocity_vert = (_control_status.flags.baro_hgt || _control_status.flags.ev_hgt || _control_status.flags.gps_hgt || _control_status.flags.rng_hgt) && (_fault_status.value == 0);
soln_status.flags.pos_horiz_rel = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow) && (_fault_status.value == 0);
soln_status.flags.pos_horiz_abs = (_control_status.flags.gps || _control_status.flags.ev_pos) && (_fault_status.value == 0);
soln_status.flags.pos_vert_abs = soln_status.flags.velocity_vert;
soln_status.flags.pos_vert_agl = get_terrain_valid();
soln_status.flags.const_pos_mode = !soln_status.flags.velocity_horiz;
soln_status.flags.pred_pos_horiz_rel = soln_status.flags.pos_horiz_rel;
soln_status.flags.pred_pos_horiz_abs = soln_status.flags.pos_horiz_abs;
bool gps_vel_innov_bad = (_vel_pos_test_ratio[0] > 1.0f) || (_vel_pos_test_ratio[1] > 1.0f);
bool gps_pos_innov_bad = (_vel_pos_test_ratio[3] > 1.0f) || (_vel_pos_test_ratio[4] > 1.0f);
bool mag_innov_good = (_mag_test_ratio[0] < 1.0f) && (_mag_test_ratio[1] < 1.0f) && (_mag_test_ratio[2] < 1.0f) && (_yaw_test_ratio < 1.0f);
soln_status.flags.gps_glitch = (gps_vel_innov_bad || gps_pos_innov_bad) && mag_innov_good;
soln_status.flags.accel_error = _bad_vert_accel_detected;
*status = soln_status.value;
}
// fuse measurement
void Ekf::fuse(float *K, float innovation)
{
for (unsigned i = 0; i < 4; i++) {
_state.quat_nominal(i) = _state.quat_nominal(i) - K[i] * innovation;
}
_state.quat_nominal.normalize();
for (unsigned i = 0; i < 3; i++) {
_state.vel(i) = _state.vel(i) - K[i + 4] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.pos(i) = _state.pos(i) - K[i + 7] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.gyro_bias(i) = _state.gyro_bias(i) - K[i + 10] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.accel_bias(i) = _state.accel_bias(i) - K[i + 13] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.mag_I(i) = _state.mag_I(i) - K[i + 16] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.mag_B(i) = _state.mag_B(i) - K[i + 19] * innovation;
}
for (unsigned i = 0; i < 2; i++) {
_state.wind_vel(i) = _state.wind_vel(i) - K[i + 22] * innovation;
}
}
// zero specified range of rows in the state covariance matrix
void Ekf::zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last)
{
uint8_t row;
for (row = first; row <= last; row++) {
memset(&cov_mat[row][0], 0, sizeof(cov_mat[0][0]) * 24);
}
}
// zero specified range of columns in the state covariance matrix
void Ekf::zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last)
{
uint8_t row;
for (row = 0; row <= 23; row++) {
memset(&cov_mat[row][first], 0, sizeof(cov_mat[0][0]) * (1 + last - first));
}
}
void Ekf::zeroOffDiag(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last)
{
// save diagonal elements
uint8_t row;
float variances[_k_num_states];
for (row = first; row <= last; row++) {
variances[row] = cov_mat[row][row];
}
// zero rows and columns
zeroRows(cov_mat, first, last);
zeroCols(cov_mat, first, last);
// restore diagonals
for (row = first; row <= last; row++) {
cov_mat[row][row] = variances[row];
}
}
void Ekf::setDiag(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last, float variance)
{
// zero rows and columns
zeroRows(cov_mat, first, last);
zeroCols(cov_mat, first, last);
// set diagonals
uint8_t row;
for (row = first; row <= last; row++) {
cov_mat[row][row] = variance;
}
}
bool Ekf::global_position_is_valid()
{
// return true if the origin is set we are not doing unconstrained free inertial navigation
// and have not started using synthetic position observations to constrain drift
return (_NED_origin_initialised && !_deadreckon_time_exceeded && !_using_synthetic_position);
}
// return true if we are totally reliant on inertial dead-reckoning for position
void Ekf::update_deadreckoning_status()
{
bool velPosAiding = (_control_status.flags.gps || _control_status.flags.ev_pos)
&& ((_time_last_imu - _time_last_pos_fuse <= _params.no_aid_timeout_max)
|| (_time_last_imu - _time_last_vel_fuse <= _params.no_aid_timeout_max)
|| (_time_last_imu - _time_last_delpos_fuse <= _params.no_aid_timeout_max));
bool optFlowAiding = _control_status.flags.opt_flow && (_time_last_imu - _time_last_of_fuse <= _params.no_aid_timeout_max);
bool airDataAiding = _control_status.flags.wind && (_time_last_imu - _time_last_arsp_fuse <= _params.no_aid_timeout_max) && (_time_last_imu - _time_last_beta_fuse <= _params.no_aid_timeout_max);
_is_wind_dead_reckoning = !velPosAiding && !optFlowAiding && airDataAiding;
_is_dead_reckoning = !velPosAiding && !optFlowAiding && !airDataAiding;
// record the time we start inertial dead reckoning
if (!_is_dead_reckoning) {
_time_ins_deadreckon_start = _time_last_imu - _params.no_aid_timeout_max;
}
// report if we have been deadreckoning for too long
_deadreckon_time_exceeded = ((_time_last_imu - _time_ins_deadreckon_start) > (unsigned)_params.valid_timeout_max);
}
// perform a vector cross product
Vector3f EstimatorInterface::cross_product(const Vector3f &vecIn1, const Vector3f &vecIn2)
{
Vector3f vecOut;
vecOut(0) = vecIn1(1) * vecIn2(2) - vecIn1(2) * vecIn2(1);
vecOut(1) = vecIn1(2) * vecIn2(0) - vecIn1(0) * vecIn2(2);
vecOut(2) = vecIn1(0) * vecIn2(1) - vecIn1(1) * vecIn2(0);
return vecOut;
}
// calculate the inverse rotation matrix from a quaternion rotation
Matrix3f EstimatorInterface::quat_to_invrotmat(const Quatf &quat)
{
float q00 = quat(0) * quat(0);
float q11 = quat(1) * quat(1);
float q22 = quat(2) * quat(2);
float q33 = quat(3) * quat(3);
float q01 = quat(0) * quat(1);
float q02 = quat(0) * quat(2);
float q03 = quat(0) * quat(3);
float q12 = quat(1) * quat(2);
float q13 = quat(1) * quat(3);
float q23 = quat(2) * quat(3);
Matrix3f dcm;
dcm(0, 0) = q00 + q11 - q22 - q33;
dcm(1, 1) = q00 - q11 + q22 - q33;
dcm(2, 2) = q00 - q11 - q22 + q33;
dcm(0, 1) = 2.0f * (q12 - q03);
dcm(0, 2) = 2.0f * (q13 + q02);
dcm(1, 0) = 2.0f * (q12 + q03);
dcm(1, 2) = 2.0f * (q23 - q01);
dcm(2, 0) = 2.0f * (q13 - q02);
dcm(2, 1) = 2.0f * (q23 + q01);
return dcm;
}
// calculate the variances for the rotation vector equivalent
Vector3f Ekf::calcRotVecVariances()
{
Vector3f rot_var_vec;
float q0, q1, q2, q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float t2 = q0*q0;
float t3 = acosf(q0);
float t4 = -t2+1.0f;
float t5 = t2-1.0f;
if ((t4 > 1e-9f) && (t5 < -1e-9f)) {
float t6 = 1.0f/t5;
float t7 = q1*t6*2.0f;
float t8 = 1.0f/powf(t4,1.5f);
float t9 = q0*q1*t3*t8*2.0f;
float t10 = t7+t9;
float t11 = 1.0f/sqrtf(t4);
float t12 = q2*t6*2.0f;
float t13 = q0*q2*t3*t8*2.0f;
float t14 = t12+t13;
float t15 = q3*t6*2.0f;
float t16 = q0*q3*t3*t8*2.0f;
float t17 = t15+t16;
rot_var_vec(0) = t10*(P[0][0]*t10+P[1][0]*t3*t11*2.0f)+t3*t11*(P[0][1]*t10+P[1][1]*t3*t11*2.0f)*2.0f;
rot_var_vec(1) = t14*(P[0][0]*t14+P[2][0]*t3*t11*2.0f)+t3*t11*(P[0][2]*t14+P[2][2]*t3*t11*2.0f)*2.0f;
rot_var_vec(2) = t17*(P[0][0]*t17+P[3][0]*t3*t11*2.0f)+t3*t11*(P[0][3]*t17+P[3][3]*t3*t11*2.0f)*2.0f;
} else {
rot_var_vec(0) = 4.0f * P[1][1];
rot_var_vec(1) = 4.0f * P[2][2];
rot_var_vec(2) = 4.0f * P[3][3];
}
return rot_var_vec;
}
// initialise the quaternion covariances using rotation vector variances
void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var)
{
// calculate an equivalent rotation vector from the quaternion
float q0,q1,q2,q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float delta = 2.0f*acosf(q0);
float scaler = (delta/sinf(delta*0.5f));
float rotX = scaler*q1;
float rotY = scaler*q2;
float rotZ = scaler*q3;
// autocode generated using matlab symbolic toolbox
float t2 = rotX*rotX;
float t4 = rotY*rotY;
float t5 = rotZ*rotZ;
float t6 = t2+t4+t5;
if (t6 > 1e-9f) {
float t7 = sqrtf(t6);
float t8 = t7*0.5f;
float t3 = sinf(t8);
float t9 = t3*t3;
float t10 = 1.0f/t6;
float t11 = 1.0f/sqrtf(t6);
float t12 = cosf(t8);
float t13 = 1.0f/powf(t6,1.5f);
float t14 = t3*t11;
float t15 = rotX*rotY*t3*t13;
float t16 = rotX*rotZ*t3*t13;
float t17 = rotY*rotZ*t3*t13;
float t18 = t2*t10*t12*0.5f;
float t27 = t2*t3*t13;
float t19 = t14+t18-t27;
float t23 = rotX*rotY*t10*t12*0.5f;
float t28 = t15-t23;
float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f;
float t25 = rotX*rotZ*t10*t12*0.5f;
float t31 = t16-t25;
float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f;
float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f;
float t24 = t15-t23;
float t26 = t16-t25;
float t29 = t4*t10*t12*0.5f;
float t34 = t3*t4*t13;
float t30 = t14+t29-t34;
float t32 = t5*t10*t12*0.5f;
float t40 = t3*t5*t13;
float t33 = t14+t32-t40;
float t36 = rotY*rotZ*t10*t12*0.5f;
float t39 = t17-t36;
float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f;
float t37 = t15-t23;
float t38 = t17-t36;
float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25);
float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39;
float t43 = t16-t25;
float t44 = t17-t36;
// zero all the quaternion covariances
zeroRows(P, 0, 3);
zeroCols(P, 0, 3);
// Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox
P[0][0] = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f;
P[0][1] = t22;
P[0][2] = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f;
P[0][3] = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f;
P[1][0] = t22;
P[1][1] = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26);
P[1][2] = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P[1][3] = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P[2][0] = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f;
P[2][1] = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P[2][2] = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38);
P[2][3] = t42;
P[3][0] = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f;
P[3][1] = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P[3][2] = t42;
P[3][3] = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44);
} else {
// the equations are badly conditioned so use a small angle approximation
P[0][0] = 0.0f;
P[0][1] = 0.0f;
P[0][2] = 0.0f;
P[0][3] = 0.0f;
P[1][0] = 0.0f;
P[1][1] = 0.25f * rot_vec_var(0);
P[1][2] = 0.0f;
P[1][3] = 0.0f;
P[2][0] = 0.0f;
P[2][1] = 0.0f;
P[2][2] = 0.25f * rot_vec_var(1);
P[2][3] = 0.0f;
P[3][0] = 0.0f;
P[3][1] = 0.0f;
P[3][2] = 0.0f;
P[3][3] = 0.25f * rot_vec_var(2);
}
}
void Ekf::setControlBaroHeight()
{
_control_status.flags.baro_hgt = true;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlRangeHeight()
{
_control_status.flags.rng_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlGPSHeight()
{
_control_status.flags.gps_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlEVHeight()
{
_control_status.flags.ev_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
}
// update the estimated misalignment between the EV navigation frame and the EKF navigation frame
// and calculate a rotation matrix which rotates EV measurements into the EKF's navigatin frame
void Ekf::calcExtVisRotMat()
{
// calculate the quaternion delta between the EKF and EV reference frames at the EKF fusion time horizon
Quatf quat_inv = _ev_sample_delayed.quat.inversed();
Quatf q_error = quat_inv * _state.quat_nominal;
q_error.normalize();
// convert to a delta angle and apply a spike and low pass filter
Vector3f rot_vec = q_error.to_axis_angle();
float rot_vec_norm = rot_vec.norm();
if (rot_vec_norm > 1e-6f) {
// apply an input limiter to protect from spikes
Vector3f _input_delta_vec = rot_vec - _ev_rot_vec_filt;
float input_delta_mag = _input_delta_vec.norm();
if (input_delta_mag > 0.1f) {
rot_vec = _ev_rot_vec_filt + _input_delta_vec * (0.1f / input_delta_mag);
}
// Apply a first order IIR low pass filter
const float omega_lpf_us = 0.2e-6f; // cutoff frequency in rad/uSec
float alpha = math::constrain(omega_lpf_us * (float)(_time_last_imu - _ev_rot_last_time_us), 0.0f, 1.0f);
_ev_rot_last_time_us = _time_last_imu;
_ev_rot_vec_filt = _ev_rot_vec_filt * (1.0f - alpha) + rot_vec * alpha;
}
// convert filtered vector to a quaternion and then to a rotation matrix
q_error.from_axis_angle(_ev_rot_vec_filt);
_ev_rot_mat = quat_to_invrotmat(q_error);
}
// reset the estimated misalignment between the EV navigation frame and the EKF navigation frame
// and update the rotation matrix which rotates EV measurements into the EKF's navigation frame
void Ekf::resetExtVisRotMat()
{
// calculate the quaternion delta between the EKF and EV reference frames at the EKF fusion time horizon
Quatf quat_inv = _ev_sample_delayed.quat.inversed();
Quatf q_error = quat_inv * _state.quat_nominal;
q_error.normalize();
// convert to a delta angle and reset
Vector3f rot_vec = q_error.to_axis_angle();
float rot_vec_norm = rot_vec.norm();
if (rot_vec_norm > 1e-9f) {
_ev_rot_vec_filt = rot_vec;
} else {
_ev_rot_vec_filt.zero();
}
// reset the rotation matrix
_ev_rot_mat = quat_to_invrotmat(q_error);
}
// return the quaternions for the rotation from the EKF to the External Vision system frame of reference
void Ekf::get_ekf2ev_quaternion(float *quat)
{
Quatf quat_ekf2ev;
quat_ekf2ev.from_axis_angle(_ev_rot_vec_filt);
for (unsigned i = 0; i < 4; i++) {
quat[i] = quat_ekf2ev(i);
}
}