px4-firmware/validation/data_validator_group.cpp

291 lines
7.5 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file data_validator_group.cpp
*
* A data validation group to identify anomalies in data streams
*
* @author Lorenz Meier <lorenz@px4.io>
*/
#include "data_validator_group.h"
#include <ecl/ecl.h>
DataValidatorGroup::DataValidatorGroup(unsigned siblings) :
_first(nullptr),
_curr_best(-1),
_prev_best(-1),
_first_failover_time(0),
_toggle_count(0)
{
DataValidator *next = _first;
for (unsigned i = 0; i < siblings; i++) {
next = new DataValidator(next);
}
_first = next;
}
DataValidatorGroup::~DataValidatorGroup()
{
}
void
DataValidatorGroup::set_timeout(uint64_t timeout_interval_us)
{
DataValidator *next = _first;
while (next != nullptr) {
next->set_timeout(timeout_interval_us);
next = next->sibling();
}
}
void
DataValidatorGroup::put(unsigned index, uint64_t timestamp, float val[3], uint64_t error_count, int priority)
{
DataValidator *next = _first;
unsigned i = 0;
while (next != nullptr) {
if (i == index) {
next->put(timestamp, val, error_count, priority);
break;
}
next = next->sibling();
i++;
}
}
float*
DataValidatorGroup::get_best(uint64_t timestamp, int *index)
{
DataValidator *next = _first;
// XXX This should eventually also include voting
int pre_check_best = _curr_best;
float pre_check_confidence = 1.0f;
int pre_check_prio = -1;
float max_confidence = -1.0f;
int max_priority = -1000;
int max_index = -1;
DataValidator *best = nullptr;
unsigned i = 0;
while (next != nullptr) {
float confidence = next->confidence(timestamp);
if (static_cast<int>(i) == pre_check_best) {
pre_check_prio = next->priority();
pre_check_confidence = confidence;
}
/*
* Switch if:
* 1) the confidence is higher and priority is equal or higher
* 2) the confidence is no less than 1% different and the priority is higher
*/
if (((max_confidence < MIN_REGULAR_CONFIDENCE) && (confidence >= MIN_REGULAR_CONFIDENCE)) ||
(confidence > max_confidence && (next->priority() >= max_priority)) ||
(fabsf(confidence - max_confidence) < 0.01f && (next->priority() > max_priority))
) {
max_index = i;
max_confidence = confidence;
max_priority = next->priority();
best = next;
}
next = next->sibling();
i++;
}
/* the current best sensor is not matching the previous best sensor */
if (max_index != _curr_best) {
bool true_failsafe = true;
/* check whether the switch was a failsafe or preferring a higher priority sensor */
if (pre_check_prio != -1 && pre_check_prio < max_priority &&
fabsf(pre_check_confidence - max_confidence) < 0.1f) {
/* this is not a failover */
true_failsafe = false;
/* reset error flags, this is likely a hotplug sensor coming online late */
best->reset_state();
}
/* if we're no initialized, initialize the bookkeeping but do not count a failsafe */
if (_curr_best < 0) {
_prev_best = max_index;
} else {
/* we were initialized before, this is a real failsafe */
_prev_best = pre_check_best;
if (true_failsafe) {
_toggle_count++;
/* if this is the first time, log when we failed */
if (_first_failover_time == 0) {
_first_failover_time = timestamp;
}
}
}
/* for all cases we want to keep a record of the best index */
_curr_best = max_index;
}
*index = max_index;
return (best) ? best->value() : nullptr;
}
float
DataValidatorGroup::get_vibration_factor(uint64_t timestamp)
{
DataValidator *next = _first;
float vibe = 0.0f;
/* find the best RMS value of a non-timed out sensor */
while (next != nullptr) {
if (next->confidence(timestamp) > 0.5f) {
float* rms = next->rms();
for (unsigned j = 0; j < 3; j++) {
if (rms[j] > vibe) {
vibe = rms[j];
}
}
}
next = next->sibling();
}
return vibe;
}
float
DataValidatorGroup::get_vibration_offset(uint64_t timestamp, int axis)
{
DataValidator *next = _first;
float vibe = -1.0f;
/* find the best vibration value of a non-timed out sensor */
while (next != nullptr) {
if (next->confidence(timestamp) > 0.5f) {
float* vibration_offset = next->vibration_offset();
if (vibe < 0.0f || vibration_offset[axis] < vibe) {
vibe = vibration_offset[axis];
}
}
next = next->sibling();
}
return vibe;
}
void
DataValidatorGroup::print()
{
/* print the group's state */
ECL_INFO("validator: best: %d, prev best: %d, failsafe: %s (%u events)",
_curr_best, _prev_best, (_toggle_count > 0) ? "YES" : "NO",
_toggle_count);
DataValidator *next = _first;
unsigned i = 0;
while (next != nullptr) {
if (next->used()) {
uint32_t flags = next->state();
ECL_INFO("sensor #%u, prio: %d, state:%s%s%s%s%s%s", i, next->priority(),
((flags & DataValidator::ERROR_FLAG_NO_DATA) ? " NO_DATA" : ""),
((flags & DataValidator::ERROR_FLAG_STALE_DATA) ? " STALE_DATA" : ""),
((flags & DataValidator::ERROR_FLAG_TIMEOUT) ? " DATA_TIMEOUT" : ""),
((flags & DataValidator::ERROR_FLAG_HIGH_ERRCOUNT) ? " HIGH_ERRCOUNT" : ""),
((flags & DataValidator::ERROR_FLAG_HIGH_ERRDENSITY) ? " HIGH_ERRDENSITY" : ""),
((flags == DataValidator::ERROR_FLAG_NO_ERROR) ? " OK" : ""));
next->print();
}
next = next->sibling();
i++;
}
}
unsigned
DataValidatorGroup::failover_count()
{
return _toggle_count;
}
int
DataValidatorGroup::failover_index()
{
DataValidator *next = _first;
unsigned i = 0;
while (next != nullptr) {
if (next->used() && (next->state() != DataValidator::ERROR_FLAG_NO_ERROR) && (i == (unsigned)_prev_best)) {
return i;
}
next = next->sibling();
i++;
}
return -1;
}
uint32_t
DataValidatorGroup::failover_state()
{
DataValidator *next = _first;
unsigned i = 0;
while (next != nullptr) {
if (next->used() && (next->state() != DataValidator::ERROR_FLAG_NO_ERROR) && (i == (unsigned)_prev_best)) {
return next->state();
}
next = next->sibling();
i++;
}
return DataValidator::ERROR_FLAG_NO_ERROR;
}