px4-firmware/apps/examples/kalman_demo/KalmanNav.cpp

707 lines
18 KiB
C++

/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file KalmanNav.cpp
*
* kalman filter navigation code
*/
#include <poll.h>
#include "KalmanNav.hpp"
// constants
// Titterton pg. 52
static const float omega = 7.2921150e-5f; // earth rotation rate, rad/s
static const float R0 = 6378137.0f; // earth radius, m
static const float RSq = 4.0680631591e+13; // earth radius squared
static const float g = 9.806f; // gravitational accel. m/s^2, XXX should be calibrated
KalmanNav::KalmanNav(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
// ekf matrices
F(9, 9),
G(9, 6),
P(9, 9),
V(6, 6),
// attitude measurement ekf matrices
HAtt(6, 9),
RAtt(6, 6),
// position measurement ekf matrices
HPos(5, 9),
RPos(5, 5),
// attitude representations
C_nb(),
q(),
// subscriptions
_sensors(&getSubscriptions(), ORB_ID(sensor_combined), 1), // limit to 1000 Hz
_gps(&getSubscriptions(), ORB_ID(vehicle_gps_position), 100), // limit to 10 Hz
_param_update(&getSubscriptions(), ORB_ID(parameter_update), 1000), // limit to 1 Hz
// publications
_pos(&getPublications(), ORB_ID(vehicle_global_position)),
_att(&getPublications(), ORB_ID(vehicle_attitude)),
// timestamps
_pubTimeStamp(hrt_absolute_time()),
_fastTimeStamp(hrt_absolute_time()),
_slowTimeStamp(hrt_absolute_time()),
_attTimeStamp(hrt_absolute_time()),
_outTimeStamp(hrt_absolute_time()),
// frame count
_navFrames(0),
// miss counts
_missFast(0),
_missSlow(0),
// state
fN(0), fE(0), fD(0),
phi(0), theta(0), psi(0),
vN(0), vE(0), vD(0),
lat(0), lon(0), alt(0),
// parameters for ground station
_vGyro(this, "V_GYRO"),
_vAccel(this, "V_ACCEL"),
_rMag(this, "R_MAG"),
_rGpsVel(this, "R_GPS_VEL"),
_rGpsPos(this, "R_GPS_POS"),
_rGpsAlt(this, "R_GPS_ALT"),
_rAccel(this, "R_ACCEL")
{
using namespace math;
// initial state covariance matrix
P = Matrix::identity(9) * 1.0f;
// wait for gps lock
while (1) {
struct pollfd fds[1];
fds[0].fd = _gps.getHandle();
fds[0].events = POLLIN;
// poll 10 seconds for new data
int ret = poll(fds, 1, 10000);
if (ret > 0) {
updateSubscriptions();
if (_gps.fix_type > 2) break;
} else if (ret == 0) {
printf("[kalman_demo] waiting for gps lock\n");
}
}
// initial state
phi = 0.0f;
theta = 0.0f;
psi = 0.0f;
vN = _gps.vel_n;
vE = _gps.vel_e;
vD = _gps.vel_d;
setLatDegE7(_gps.lat);
setLonDegE7(_gps.lon);
setAltE3(_gps.alt);
// initialize quaternions
q = Quaternion(EulerAngles(phi, theta, psi));
// initialize dcm
C_nb = Dcm(q);
// HPos is constant
HPos(0, 3) = 1.0f;
HPos(1, 4) = 1.0f;
HPos(2, 6) = 1.0f;
HPos(3, 7) = 1.0f;
HPos(4, 8) = 1.0f;
// initialize all parameters
updateParams();
}
void KalmanNav::update()
{
using namespace math;
struct pollfd fds[3];
fds[0].fd = _sensors.getHandle();
fds[0].events = POLLIN;
fds[1].fd = _param_update.getHandle();
fds[1].events = POLLIN;
fds[2].fd = _gps.getHandle();
fds[2].events = POLLIN;
// poll 20 milliseconds for new data
int ret = poll(fds, 2, 20);
// check return value
if (ret < 0) {
// XXX this is seriously bad - should be an emergency
return;
} else if (ret == 0) { // timeout
return;
}
// get new timestamp
uint64_t newTimeStamp = hrt_absolute_time();
// check updated subscriptions
if (_param_update.updated()) updateParams();
bool gpsUpdate = _gps.updated();
bool sensorsUpdate = _sensors.updated();
// get new information from subscriptions
// this clears update flag
updateSubscriptions();
// abort update if no new data
if (!(sensorsUpdate || gpsUpdate)) return;
// fast prediciton step
// note, using sensors timestamp so we can account
// for packet lag
float dtFast = (_sensors.timestamp - _fastTimeStamp) / 1.0e6f;
_fastTimeStamp = _sensors.timestamp;
if (dtFast < 1.0f / 50) {
predictFast(dtFast);
// count fast frames
_navFrames += 1;
} else _missFast++;
// slow prediction step
float dtSlow = (_sensors.timestamp - _slowTimeStamp) / 1.0e6f;
if (dtSlow > 1.0f / 100) { // 100 Hz
_slowTimeStamp = _sensors.timestamp;
if (dtSlow < 1.0f / 50) predictSlow(dtSlow);
else _missSlow ++;
}
// gps correction step
if (gpsUpdate) {
correctPos();
}
// attitude correction step
if (_sensors.timestamp - _attTimeStamp > 1e6 / 20) { // 20 Hz
_attTimeStamp = _sensors.timestamp;
correctAtt();
}
// publication
if (newTimeStamp - _pubTimeStamp > 1e6 / 50) { // 50 Hz
_pubTimeStamp = newTimeStamp;
updatePublications();
}
// output
if (newTimeStamp - _outTimeStamp > 1e6) { // 1 Hz
_outTimeStamp = newTimeStamp;
printf("nav: %4d Hz, misses fast: %4d slow: %4d\n", _navFrames, _missFast, _missSlow);
_navFrames = 0;
_missFast = 0;
_missSlow = 0;
}
}
void KalmanNav::updatePublications()
{
using namespace math;
// position publication
_pos.timestamp = _pubTimeStamp;
_pos.time_gps_usec = _gps.timestamp;
_pos.valid = true;
_pos.lat = getLatDegE7();
_pos.lon = getLonDegE7();
_pos.alt = float(alt);
_pos.relative_alt = float(alt); // TODO, make relative
_pos.vx = vN;
_pos.vy = vE;
_pos.vz = vD;
_pos.hdg = psi;
// attitude publication
_att.timestamp = _pubTimeStamp;
_att.roll = phi;
_att.pitch = theta;
_att.yaw = psi;
_att.rollspeed = _sensors.gyro_rad_s[0];
_att.pitchspeed = _sensors.gyro_rad_s[1];
_att.yawspeed = _sensors.gyro_rad_s[2];
// TODO, add gyro offsets to filter
_att.rate_offsets[0] = 0.0f;
_att.rate_offsets[1] = 0.0f;
_att.rate_offsets[2] = 0.0f;
for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++)
_att.R[i][j] = C_nb(i, j);
for (int i = 0; i < 4; i++) _att.q[i] = q(i);
_att.R_valid = true;
_att.q_valid = true;
_att.counter = _navFrames;
// update publications
SuperBlock::updatePublications();
}
void KalmanNav::predictFast(float dt)
{
using namespace math;
Vector3 w(_sensors.gyro_rad_s);
// attitude
q = q + q.derivative(w) * dt;
// renormalize quaternion if needed
if (fabsf(q.norm() - 1.0f) > 1e-4f) {
q = q.unit();
}
// C_nb update
C_nb = Dcm(q);
// euler update
EulerAngles euler(C_nb);
phi = euler.getPhi();
theta = euler.getTheta();
psi = euler.getPsi();
// specific acceleration in nav frame
Vector3 accelB(_sensors.accelerometer_m_s2);
Vector3 accelN = C_nb * accelB;
fN = accelN(0);
fE = accelN(1);
fD = accelN(2);
// trig
float sinL = sinf(lat);
float cosL = cosf(lat);
float cosLSing = cosf(lat);
if (fabsf(cosLSing) < 0.01f) cosLSing = 0.01f;
// position update
// neglects angular deflections in local gravity
// see Titerton pg. 70
float R = R0 + float(alt);
float LDot = vN / R;
float lDot = vE / (cosLSing * R);
float rotRate = 2 * omega + lDot;
float vNDot = fN - vE * rotRate * sinL +
vD * LDot;
float vDDot = fD - vE * rotRate * cosL -
vN * LDot + g;
float vEDot = fE + vN * rotRate * sinL +
vDDot * rotRate * cosL;
// rectangular integration
//printf("dt: %8.4f\n", double(dt));
//printf("fN: %8.4f, fE: %8.4f, fD: %8.4f\n", double(fN), double(fE), double(fD));
//printf("vN: %8.4f, vE: %8.4f, vD: %8.4f\n", double(vN), double(vE), double(vD));
vN += vNDot * dt;
vE += vEDot * dt;
vD += vDDot * dt;
lat += double(LDot * dt);
lon += double(lDot * dt);
alt += double(-vD * dt);
}
void KalmanNav::predictSlow(float dt)
{
using namespace math;
// trig
float sinL = sinf(lat);
float cosL = cosf(lat);
float cosLSq = cosL * cosL;
float tanL = tanf(lat);
// prepare for matrix
float R = R0 + float(alt);
// F Matrix
// Titterton pg. 291
F(0, 1) = -(omega * sinL + vE * tanL / R);
F(0, 2) = vN / R;
F(0, 4) = 1.0f / R;
F(0, 6) = -omega * sinL;
F(0, 8) = -vE / RSq;
F(1, 0) = omega * sinL + vE * tanL / R;
F(1, 2) = omega * cosL + vE / R;
F(1, 3) = -1.0f / R;
F(1, 8) = vN / RSq;
F(2, 0) = -vN / R;
F(2, 1) = -omega * cosL - vE / R;
F(2, 4) = -tanL / R;
F(2, 6) = -omega * cosL - vE / (R * cosLSq);
F(2, 8) = vE * tanL / RSq;
F(3, 1) = -fD;
F(3, 2) = fE;
F(3, 3) = vD / R;
F(3, 4) = -2 * (omega * sinL + vE * tanL / R);
F(3, 5) = vN / R;
F(3, 6) = -vE * (2 * omega * cosL + vE / (R * cosLSq));
F(3, 8) = (vE * vE * tanL - vN * vD) / RSq;
F(4, 0) = fD;
F(4, 2) = -fN;
F(4, 3) = 2 * omega * sinL + vE * tanL / R;
F(4, 4) = (vN * tanL + vD) / R;
F(4, 5) = 2 * omega * cosL + vE / R;
F(4, 6) = 2 * omega * (vN * cosL - vD * sinL) +
vN * vE / (R * cosLSq);
F(4, 8) = -vE * (vN * tanL + vD) / RSq;
F(5, 0) = -fE;
F(5, 1) = fN;
F(5, 3) = -2 * vN / R;
F(5, 4) = -2 * (omega * cosL + vE / R);
F(5, 6) = 2 * omega * vE * sinL;
F(5, 8) = (vN * vN + vE * vE) / RSq;
F(6, 3) = 1 / R;
F(6, 8) = -vN / RSq;
F(7, 4) = 1 / (R * cosL);
F(7, 6) = vE * tanL / (R * cosL);
F(7, 8) = -vE / (cosL * RSq);
F(8, 5) = -1;
// G Matrix
// Titterton pg. 291
G(0, 0) = -C_nb(0, 0);
G(0, 1) = -C_nb(0, 1);
G(0, 2) = -C_nb(0, 2);
G(1, 0) = -C_nb(1, 0);
G(1, 1) = -C_nb(1, 1);
G(1, 2) = -C_nb(1, 2);
G(2, 0) = -C_nb(2, 0);
G(2, 1) = -C_nb(2, 1);
G(2, 2) = -C_nb(2, 2);
G(3, 3) = C_nb(0, 0);
G(3, 4) = C_nb(0, 1);
G(3, 5) = C_nb(0, 2);
G(4, 3) = C_nb(1, 0);
G(4, 4) = C_nb(1, 1);
G(4, 5) = C_nb(1, 2);
G(5, 3) = C_nb(2, 0);
G(5, 4) = C_nb(2, 1);
G(5, 5) = C_nb(2, 2);
// continuous predictioon equations
// for discrte time EKF
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
P = P + (F * P + P * F.transpose() + G * V * G.transpose()) * dt;
}
void KalmanNav::correctAtt()
{
using namespace math;
// trig
float cosPhi = cosf(phi);
float cosTheta = cosf(theta);
float cosPsi = cosf(psi);
float sinPhi = sinf(phi);
float sinTheta = sinf(theta);
float sinPsi = sinf(psi);
// mag measurement
Vector3 zMag(_sensors.magnetometer_ga);
// mag predicted measurement
// choosing some typical magnetic field properties,
// TODO dip/dec depend on lat/ lon/ time
static const float dip = 0.0f / M_RAD_TO_DEG_F; // dip, inclination with level
static const float dec = 0.0f / M_RAD_TO_DEG_F; // declination, clockwise rotation from north
float bN = cosf(dip) * cosf(dec);
float bE = cosf(dip) * sinf(dec);
float bD = sinf(dip);
Vector3 bNav(bN, bE, bD);
Vector3 zMagHat = (C_nb.transpose() * bNav).unit();
// accel measurement
Vector3 zAccel(_sensors.accelerometer_m_s2);
float accelMag = zAccel.norm();
zAccel = zAccel.unit();
// ignore accel correction when accel mag not close to g
Matrix RAttAdjust = RAtt;
bool ignoreAccel = fabsf(accelMag - g) > 1.1f;
if (ignoreAccel) {
RAttAdjust(3, 3) = 1.0e10;
RAttAdjust(4, 4) = 1.0e10;
RAttAdjust(5, 5) = 1.0e10;
} else {
//printf("correcting attitude with accel\n");
}
// account for banked turn
// this would only work for fixed wing, so try to avoid
//Vector3 zCentrip = Vector3(0, cosf(phi), -sinf(phi))*g*tanf(phi);
// accel predicted measurement
Vector3 zAccelHat = (C_nb.transpose() * Vector3(0, 0, -g) /*+ zCentrip*/).unit();
// combined measurement
Vector zAtt(6);
Vector zAttHat(6);
for (int i = 0; i < 3; i++) {
zAtt(i) = zMag(i);
zAtt(i + 3) = zAccel(i);
zAttHat(i) = zMagHat(i);
zAttHat(i + 3) = zAccelHat(i);
}
// HMag , HAtt (0-2,:)
float tmp1 =
cosPsi * cosTheta * bN +
sinPsi * cosTheta * bE -
sinTheta * bD;
HAtt(0, 1) = -(
cosPsi * sinTheta * bN +
sinPsi * sinTheta * bE +
cosTheta * bD
);
HAtt(0, 2) = -cosTheta * (sinPsi * bN - cosPsi * bE);
HAtt(1, 0) =
(cosPhi * cosPsi * sinTheta + sinPhi * sinPsi) * bN +
(cosPhi * sinPsi * sinTheta - sinPhi * cosPsi) * bE +
cosPhi * cosTheta * bD;
HAtt(1, 1) = sinPhi * tmp1;
HAtt(1, 2) = -(
(sinPhi * sinPsi * sinTheta + cosPhi * cosPsi) * bN -
(sinPhi * cosPsi * sinTheta - cosPhi * sinPsi) * bE
);
HAtt(2, 0) = -(
(sinPhi * cosPsi * sinTheta - cosPhi * sinPsi) * bN +
(sinPhi * sinPsi * sinTheta + cosPhi * cosPsi) * bE +
(sinPhi * cosTheta) * bD
);
HAtt(2, 1) = cosPhi * tmp1;
HAtt(2, 2) = -(
(cosPhi * sinPsi * sinTheta - sinPhi * cosTheta) * bN -
(cosPhi * cosPsi * sinTheta + sinPhi * sinPsi) * bE
);
// HAccel , HAtt (3-5,:)
HAtt(3, 1) = cosTheta;
HAtt(4, 0) = -cosPhi * cosTheta;
HAtt(4, 1) = sinPhi * sinTheta;
HAtt(5, 0) = sinPhi * cosTheta;
HAtt(5, 1) = cosPhi * sinTheta;
// compute correction
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
Vector y = zAtt - zAttHat; // residual
Matrix S = HAtt * P * HAtt.transpose() + RAttAdjust; // residual covariance
Matrix K = P * HAtt.transpose() * S.inverse();
Vector xCorrect = K * y;
// check correciton is sane
for (size_t i = 0; i < xCorrect.getRows(); i++) {
float val = xCorrect(i);
if (isnan(val) || isinf(val)) {
// abort correction and return
printf("[kalman_demo] numerical failure in att correction\n");
// reset P matrix to identity
P = Matrix::identity(9) * 1.0f;
return;
}
}
// correct state
if (!ignoreAccel) {
phi += xCorrect(PHI);
theta += xCorrect(THETA);
}
psi += xCorrect(PSI);
// attitude also affects nav velocities
vN += xCorrect(VN);
vE += xCorrect(VE);
vD += xCorrect(VD);
// update state covariance
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
P = P - K * HAtt * P;
// fault detection
float beta = y.dot(S.inverse() * y);
if (beta > 1000.0f) {
printf("fault in attitude: beta = %8.4f\n", (double)beta);
//printf("y:\n"); y.print();
}
// update quaternions from euler
// angle correction
q = Quaternion(EulerAngles(phi, theta, psi));
}
void KalmanNav::correctPos()
{
using namespace math;
Vector y(6);
y(0) = _gps.vel_n - vN;
y(1) = _gps.vel_e - vE;
y(2) = double(_gps.lat) / 1.0e7 / M_RAD_TO_DEG - lat;
y(3) = double(_gps.lon) / 1.0e7 / M_RAD_TO_DEG - lon;
y(4) = double(_gps.alt) / 1.0e3 - alt;
// update gps noise
float cosLSing = cosf(lat);
float R = R0 + float(alt);
// prevent singularity
if (fabsf(cosLSing) < 0.01f) cosLSing = 0.01f;
float noiseLat = _rGpsPos.get() / R;
float noiseLon = _rGpsPos.get() / (R * cosLSing);
RPos(2, 2) = noiseLat * noiseLat;
RPos(3, 3) = noiseLon * noiseLon;
// compute correction
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
Matrix S = HPos * P * HPos.transpose() + RPos; // residual covariance
Matrix K = P * HPos.transpose() * S.inverse();
Vector xCorrect = K * y;
// check correction is sane
for (size_t i = 0; i < xCorrect.getRows(); i++) {
float val = xCorrect(i);
if (isnan(val) || isinf(val)) {
// abort correction and return
printf("[kalman_demo] numerical failure in gps correction\n");
// fallback to GPS
vN = _gps.vel_n;
vE = _gps.vel_e;
vD = _gps.vel_d;
setLatDegE7(_gps.lat);
setLonDegE7(_gps.lon);
setAltE3(_gps.alt);
// reset P matrix to identity
P = Matrix::identity(9) * 1.0f;
return;
}
}
// correct state
vN += xCorrect(VN);
vE += xCorrect(VE);
vD += xCorrect(VD);
lat += double(xCorrect(LAT));
lon += double(xCorrect(LON));
alt += double(xCorrect(ALT));
// update state covariance
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
P = P - K * HPos * P;
// fault detetcion
float beta = y.dot(S.inverse() * y);
if (beta > 1000.0f) {
printf("fault in gps: beta = %8.4f\n", (double)beta);
//printf("y:\n"); y.print();
}
}
void KalmanNav::updateParams()
{
using namespace math;
using namespace control;
SuperBlock::updateParams();
// gyro noise
V(0, 0) = _vGyro.get(); // gyro x, rad/s
V(1, 1) = _vGyro.get(); // gyro y
V(2, 2) = _vGyro.get(); // gyro z
// accel noise
V(3, 3) = _vAccel.get(); // accel x, m/s^2
V(4, 4) = _vAccel.get(); // accel y
V(5, 5) = _vAccel.get(); // accel z
// magnetometer noise
float noiseMagSq = _rMag.get() * _rMag.get();
RAtt(0, 0) = noiseMagSq; // normalized direction
RAtt(1, 1) = noiseMagSq;
RAtt(2, 2) = noiseMagSq;
// accelerometer noise
float noiseAccelSq = _rAccel.get() * _rAccel.get();
RAtt(3, 3) = noiseAccelSq; // normalized direction
RAtt(4, 4) = noiseAccelSq;
RAtt(5, 5) = noiseAccelSq;
// gps noise
float cosLSing = cosf(lat);
float R = R0 + float(alt);
// prevent singularity
if (fabsf(cosLSing) < 0.01f) cosLSing = 0.01f;
float noiseVel = _rGpsVel.get();
float noiseLat = _rGpsPos.get() / R;
float noiseLon = _rGpsPos.get() / (R * cosLSing);
float noiseAlt = _rGpsAlt.get();
RPos(0, 0) = noiseVel * noiseVel; // vn
RPos(1, 1) = noiseVel * noiseVel; // ve
RPos(2, 2) = noiseLat * noiseLat; // lat
RPos(3, 3) = noiseLon * noiseLon; // lon
RPos(4, 4) = noiseAlt * noiseAlt; // h
}