px4-firmware/EKF/ekf.h

550 lines
24 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf.h
* Class for core functions for ekf attitude and position estimator.
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "estimator_interface.h"
#include "geo.h"
class Ekf : public EstimatorInterface
{
public:
Ekf() = default;
~Ekf() = default;
// initialise variables to sane values (also interface class)
bool init(uint64_t timestamp);
// should be called every time new data is pushed into the filter
bool update();
// gets the innovations of velocity and position measurements
// 0-2 vel, 3-5 pos
void get_vel_pos_innov(float vel_pos_innov[6]);
// gets the innovations of the earth magnetic field measurements
void get_mag_innov(float mag_innov[3]);
// gets the innovations of the heading measurement
void get_heading_innov(float *heading_innov);
// gets the innovation variances of velocity and position measurements
// 0-2 vel, 3-5 pos
void get_vel_pos_innov_var(float vel_pos_innov_var[6]);
// gets the innovation variances of the earth magnetic field measurements
void get_mag_innov_var(float mag_innov_var[3]);
// gets the innovations of airspeed measurement
void get_airspeed_innov(float *airspeed_innov);
// gets the innovation variance of the airspeed measurement
void get_airspeed_innov_var(float *airspeed_innov_var);
// gets the innovations of synthetic sideslip measurement
void get_beta_innov(float *beta_innov);
// gets the innovation variance of the synthetic sideslip measurement
void get_beta_innov_var(float *beta_innov_var);
// gets the innovation variance of the heading measurement
void get_heading_innov_var(float *heading_innov_var);
// gets the innovation variance of the flow measurement
void get_flow_innov_var(float flow_innov_var[2]);
// gets the innovation of the flow measurement
void get_flow_innov(float flow_innov[2]);
// gets the innovation variance of the drag specific force measurement
void get_drag_innov_var(float drag_innov_var[2]);
// gets the innovation of the drag specific force measurement
void get_drag_innov(float drag_innov[2]);
// gets the innovation variance of the HAGL measurement
void get_hagl_innov_var(float *hagl_innov_var);
// gets the innovation of the HAGL measurement
void get_hagl_innov(float *hagl_innov);
// get the state vector at the delayed time horizon
void get_state_delayed(float *state);
// get the wind velocity in m/s
void get_wind_velocity(float *wind);
// get the diagonal elements of the covariance matrix
void get_covariances(float *covariances);
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined
bool collect_gps(uint64_t time_usec, struct gps_message *gps);
bool collect_imu(imuSample &imu);
// get the ekf WGS-84 origin position and height and the system time it was last set
// return true if the origin is valid
bool get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt);
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
void get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning);
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
void get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning);
// get the 1-sigma horizontal and vertical velocity uncertainty
void get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv, bool *dead_reckoning);
void get_vel_var(Vector3f &vel_var);
void get_pos_var(Vector3f &pos_var);
// return an array containing the output predictor angular, velocity and position tracking
// error magnitudes (rad), (m/s), (m)
void get_output_tracking_error(float error[3]);
/*
Returns following IMU vibration metrics in the following array locations
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
*/
void get_imu_vibe_metrics(float vibe[3]);
// return true if the global position estimate is valid
bool global_position_is_valid();
// return true if the EKF is dead reckoning the position using inertial data only
bool inertial_dead_reckoning();
// return true if the etimate is valid
// return the estimated terrain vertical position relative to the NED origin
bool get_terrain_vert_pos(float *ret);
// get the accerometer bias in m/s/s
void get_accel_bias(float bias[3]);
// get the gyroscope bias in rad/s
void get_gyro_bias(float bias[3]);
// get GPS check status
void get_gps_check_status(uint16_t *val);
// return the amount the local vertical position changed in the last reset and the number of reset events
void get_posD_reset(float *delta, uint8_t *counter) {*delta = _state_reset_status.posD_change; *counter = _state_reset_status.posD_counter;}
// return the amount the local vertical velocity changed in the last reset and the number of reset events
void get_velD_reset(float *delta, uint8_t *counter) {*delta = _state_reset_status.velD_change; *counter = _state_reset_status.velD_counter;}
// return the amount the local horizontal position changed in the last reset and the number of reset events
void get_posNE_reset(float delta[2], uint8_t *counter)
{
memcpy(delta, &_state_reset_status.posNE_change._data[0], sizeof(_state_reset_status.posNE_change._data));
*counter = _state_reset_status.posNE_counter;
}
// return the amount the local horizontal velocity changed in the last reset and the number of reset events
void get_velNE_reset(float delta[2], uint8_t *counter)
{
memcpy(delta, &_state_reset_status.velNE_change._data[0], sizeof(_state_reset_status.velNE_change._data));
*counter = _state_reset_status.velNE_counter;
}
// return the amount the quaternion has changed in the last reset and the number of reset events
void get_quat_reset(float delta_quat[4], uint8_t *counter)
{
memcpy(delta_quat, &_state_reset_status.quat_change._data[0], sizeof(_state_reset_status.quat_change._data));
*counter = _state_reset_status.quat_counter;
}
// get EKF innovation consistency check status information comprising of:
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
// Where a measurement type is a vector quantity, eg magnetoemter, GPS position, etc, the maximum value is returned.
void get_innovation_test_status(uint16_t *status, float *mag, float *vel, float *pos, float *hgt, float *tas, float *hagl);
// return a bitmask integer that describes which state estimates can be used for flight control
void get_ekf_soln_status(uint16_t *status);
private:
static constexpr uint8_t _k_num_states{24};
static constexpr float _k_earth_rate{0.000072921f};
static constexpr float _gravity_mss{9.80665f};
// reset event monitoring
// structure containing velocity, position, height and yaw reset information
struct {
uint8_t velNE_counter; // number of horizontal position reset events (allow to wrap if count exceeds 255)
uint8_t velD_counter; // number of vertical velocity reset events (allow to wrap if count exceeds 255)
uint8_t posNE_counter; // number of horizontal position reset events (allow to wrap if count exceeds 255)
uint8_t posD_counter; // number of vertical position reset events (allow to wrap if count exceeds 255)
uint8_t quat_counter; // number of quaternion reset events (allow to wrap if count exceeds 255)
Vector2f velNE_change; // North East velocity change due to last reset (m)
float velD_change; // Down velocity change due to last reset (m/s)
Vector2f posNE_change; // North, East position change due to last reset (m)
float posD_change; // Down position change due to last reset (m)
Quaternion quat_change; // quaternion delta due to last reset - multiply pre-reset quaternion by this to get post-reset quaternion
} _state_reset_status{};
float _dt_ekf_avg{0.001f * FILTER_UPDATE_PERIOD_MS}; // average update rate of the ekf
float _dt_update{0.01f}; // delta time since last ekf update. This time can be used for filters
// which run at the same rate as the Ekf::update() function
stateSample _state{}; // state struct of the ekf running at the delayed time horizon
bool _filter_initialised{false}; // true when the EKF sttes and covariances been initialised
bool _earth_rate_initialised{false}; // true when we know the earth rotatin rate (requires GPS)
bool _fuse_height{false}; // baro height data should be fused
bool _fuse_pos{false}; // gps position data should be fused
bool _fuse_hor_vel{false}; // gps horizontal velocity measurement should be fused
bool _fuse_vert_vel{false}; // gps vertical velocity measurement should be fused
// booleans true when fresh sensor data is available at the fusion time horizon
bool _gps_data_ready{false};
bool _mag_data_ready{false};
bool _baro_data_ready{false};
bool _range_data_ready{false};
bool _flow_data_ready{false};
bool _ev_data_ready{false};
bool _tas_data_ready{false};
uint64_t _time_last_fake_gps{0}; // last time in us at which we have faked gps measurement for static mode
uint64_t _time_last_pos_fuse{0}; // time the last fusion of horizontal position measurements was performed (usec)
uint64_t _time_last_vel_fuse{0}; // time the last fusion of velocity measurements was performed (usec)
uint64_t _time_last_hgt_fuse{0}; // time the last fusion of height measurements was performed (usec)
uint64_t _time_last_of_fuse{0}; // time the last fusion of optical flow measurements were performed (usec)
uint64_t _time_last_arsp_fuse{0}; // time the last fusion of airspeed measurements were performed (usec)
uint64_t _time_last_beta_fuse{0}; // time the last fusion of synthetic sideslip measurements were performed (usec)
Vector2f _last_known_posNE; // last known local NE position vector (m)
float _last_disarmed_posD{0.0f}; // vertical position recorded at arming (m)
float _imu_collection_time_adj{0.0f}; // the amount of time the IMU collection needs to be advanced to meet the target set by FILTER_UPDATE_PERIOD_MS (sec)
uint64_t _time_acc_bias_check{0}; // last time the accel bias check passed (usec)
Vector3f _earth_rate_NED; // earth rotation vector (NED) in rad/s
matrix::Dcm<float> _R_to_earth; // transformation matrix from body frame to earth frame from last EKF predition
// used by magnetometer fusion mode selection
Vector2f _accel_lpf_NE; // Low pass filtered horizontal earth frame acceleration (m/s**2)
float _yaw_delta_ef{0.0f}; // Recent change in yaw angle measured about the earth frame D axis (rad)
float _yaw_rate_lpf_ef{0.0f}; // Filtered angular rate about earth frame D axis (rad/sec)
bool _mag_bias_observable{false}; // true when there is enough rotation to make magnetometer bias errors observable
bool _yaw_angle_observable{false}; // true when there is enough horizontal acceleration to make yaw observable
uint64_t _time_yaw_started{0}; // last system time in usec that a yaw rotation moaneouvre was detected
float P[_k_num_states][_k_num_states] {}; // state covariance matrix
float _vel_pos_innov[6] {}; // innovations: 0-2 vel, 3-5 pos
float _vel_pos_innov_var[6] {}; // innovation variances: 0-2 vel, 3-5 pos
float _mag_innov[3] {}; // earth magnetic field innovations
float _mag_innov_var[3] {}; // earth magnetic field innovation variance
float _airspeed_innov{0.0f}; // airspeed measurement innovation
float _airspeed_innov_var{0.0f}; // airspeed measurement innovation variance
float _beta_innov{0.0f}; // synthetic sideslip measurement innovation
float _beta_innov_var{0.0f}; // synthetic sideslip measurement innovation variance
float _drag_innov[2] {}; // multirotor drag measurement innovation
float _drag_innov_var[2] {}; // multirotor drag measurement innovation variance
float _heading_innov{0.0f}; // heading measurement innovation
float _heading_innov_var{0.0f}; // heading measurement innovation variance
// optical flow processing
float _flow_innov[2] {}; // flow measurement innovation
float _flow_innov_var[2] {}; // flow innovation variance
Vector3f _flow_gyro_bias; // bias errors in optical flow sensor rate gyro outputs
Vector3f _imu_del_ang_of; // bias corrected delta angle measurements accumulated across the same time frame as the optical flow rates
float _delta_time_of{0.0f}; // time in sec that _imu_del_ang_of was accumulated over
float _mag_declination{0.0f}; // magnetic declination used by reset and fusion functions (rad)
// output predictor states
Vector3f _delta_angle_corr; // delta angle correction vector
imuSample _imu_down_sampled{}; // down sampled imu data (sensor rate -> filter update rate)
Quaternion _q_down_sampled; // down sampled quaternion (tracking delta angles between ekf update steps)
Vector3f _vel_err_integ; // integral of velocity tracking error
Vector3f _pos_err_integ; // integral of position tracking error
float _output_tracking_error[3] {}; // contains the magnitude of the angle, velocity and position track errors (rad, m/s, m)
// variables used for the GPS quality checks
float _gpsDriftVelN{0.0f}; // GPS north position derivative (m/s)
float _gpsDriftVelE{0.0f}; // GPS east position derivative (m/s)
float _gps_drift_velD{0.0f}; // GPS down position derivative (m/s)
float _gps_velD_diff_filt{0.0f}; // GPS filtered Down velocity (m/s)
float _gps_velN_filt{0.0f}; // GPS filtered North velocity (m/s)
float _gps_velE_filt{0.0f}; // GPS filtered East velocity (m/s)
uint64_t _last_gps_fail_us{0}; // last system time in usec that the GPS failed it's checks
// Variables used to publish the WGS-84 location of the EKF local NED origin
uint64_t _last_gps_origin_time_us{0}; // time the origin was last set (uSec)
float _gps_alt_ref{0.0f}; // WGS-84 height (m)
// Variables used to initialise the filter states
uint32_t _hgt_counter{0}; // number of height samples read during initialisation
float _rng_filt_state{0.0f}; // filtered height measurement
uint32_t _mag_counter{0}; // number of magnetometer samples read during initialisation
uint32_t _ev_counter{0}; // number of exgernal vision samples read during initialisation
uint64_t _time_last_mag{0}; // measurement time of last magnetomter sample
Vector3f _mag_filt_state; // filtered magnetometer measurement
Vector3f _delVel_sum; // summed delta velocity
float _hgt_sensor_offset{0.0f}; // set as necessary if desired to maintain the same height after a height reset (m)
float _baro_hgt_offset{0.0f}; // baro height reading at the local NED origin (m)
// Variables used to control activation of post takeoff functionality
float _last_on_ground_posD{0.0f}; // last vertical position when the in_air status was false (m)
bool _flt_mag_align_complete{true}; // true when the in-flight mag field alignment has been completed
uint64_t _time_last_movement{0}; // last system time in usec that sufficient movement to use 3-axis magnetometer fusion was detected
float _saved_mag_variance[6] {}; // magnetic field state variances that have been saved for use at the next initialisation (Ga**2)
gps_check_fail_status_u _gps_check_fail_status{};
// variables used to inhibit accel bias learning
bool _accel_bias_inhibit{false}; // true when the accel bias learning is being inhibited
float _accel_mag_filt{0.0f}; // acceleration magnitude after application of a decaying envelope filter (m/sec**2)
float _ang_rate_mag_filt{0.0f}; // angular rate magnitude after application of a decaying envelope filter (rad/sec)
Vector3f _prev_dvel_bias_var; // saved delta velocity XYZ bias variances (m/sec)**2
// Terrain height state estimation
float _terrain_vpos{0.0f}; // estimated vertical position of the terrain underneath the vehicle in local NED frame (m)
float _terrain_var{1e4f}; // variance of terrain position estimate (m^2)
float _hagl_innov{0.0f}; // innovation of the last height above terrain measurement (m)
float _hagl_innov_var{0.0f}; // innovation variance for the last height above terrain measurement (m^2)
uint64_t _time_last_hagl_fuse; // last system time in usec that the hagl measurement failed it's checks
bool _terrain_initialised{false}; // true when the terrain estimator has been intialised
float _sin_tilt_rng{0.0f}; // sine of the range finder tilt rotation about the Y body axis
float _cos_tilt_rng{0.0f}; // cosine of the range finder tilt rotation about the Y body axis
float _R_rng_to_earth_2_2{0.0f}; // 2,2 element of the rotation matrix from sensor frame to earth frame
bool _range_data_continuous{false}; // true when we are receiving range finder data faster than a 2Hz average
float _dt_last_range_update_filt_us{0.0f}; // filtered value of the delta time elapsed since the last range measurement came into
// the filter (microseconds)
// height sensor fault status
bool _baro_hgt_faulty{false}; // true if valid baro data is unavailable for use
bool _gps_hgt_faulty{false}; // true if valid gps height data is unavailable for use
bool _rng_hgt_faulty{false}; // true if valid rnage finder height data is unavailable for use
int _primary_hgt_source{VDIST_SENSOR_BARO}; // priary source of height data set at initialisation
// imu fault status
uint64_t _time_bad_vert_accel{0}; // last time a bad vertical accel was detected (usec)
uint64_t _time_good_vert_accel{0}; // last time a good vertical accel was detected (usec)
bool _bad_vert_accel_detected{false}; // true when bad vertical accelerometer data has been detected
// update the real time complementary filter states. This includes the prediction
// and the correction step
void calculateOutputStates();
// initialise filter states of both the delayed ekf and the real time complementary filter
bool initialiseFilter(void);
// initialise ekf covariance matrix
void initialiseCovariance();
// predict ekf state
void predictState();
// predict ekf covariance
void predictCovariance();
// ekf sequential fusion of magnetometer measurements
void fuseMag();
// fuse the first euler angle from either a 321 or 312 rotation sequence as the observation (currently measures yaw using the magnetometer)
void fuseHeading();
// fuse magnetometer declination measurement
void fuseDeclination();
// fuse airspeed measurement
void fuseAirspeed();
// fuse synthetic zero sideslip measurement
void fuseSideslip();
// fuse body frame drag specific forces for multi-rotor wind estimation
void fuseDrag();
// fuse velocity and position measurements (also barometer height)
void fuseVelPosHeight();
// reset velocity states of the ekf
bool resetVelocity();
// fuse optical flow line of sight rate measurements
void fuseOptFlow();
// calculate optical flow bias errors
void calcOptFlowBias();
// initialise the terrain vertical position estimator
// return true if the initialisation is successful
bool initHagl();
// run the terrain estimator
void runTerrainEstimator();
// update the terrain vertical position estimate using a height above ground measurement from the range finder
void fuseHagl();
// reset the heading and magnetic field states using the declination and magnetometer measurements
// return true if successful
bool resetMagHeading(Vector3f &mag_init);
// calculate the magnetic declination to be used by the alignment and fusion processing
void calcMagDeclination();
// reset position states of the ekf (only vertical position)
bool resetPosition();
// reset height state of the ekf
void resetHeight();
// modify output filter to match the the EKF state at the fusion time horizon
void alignOutputFilter();
// limit the diagonal of the covariance matrix
void fixCovarianceErrors();
// make ekf covariance matrix symmetric between a nominated state indexe range
void makeSymmetrical(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last);
// constrain the ekf states
void constrainStates();
// generic function which will perform a fusion step given a kalman gain K
// and a scalar innovation value
void fuse(float *K, float innovation);
// calculate the earth rotation vector from a given latitude
void calcEarthRateNED(Vector3f &omega, double lat_rad) const;
// return true id the GPS quality is good enough to set an origin and start aiding
bool gps_is_good(struct gps_message *gps);
// Control the filter fusion modes
void controlFusionModes();
// control fusion of external vision observations
void controlExternalVisionFusion();
// control fusion of optical flow observtions
void controlOpticalFlowFusion();
// control fusion of GPS observations
void controlGpsFusion();
// control fusion of magnetometer observations
void controlMagFusion();
// control fusion of range finder observations
void controlRangeFinderFusion();
// control fusion of air data observations
void controlAirDataFusion();
// control fusion of synthetic sideslip observations
void controlBetaFusion();
// control fusion of multi-rotor drag specific force observations
void controlDragFusion();
// control fusion of pressure altitude observations
void controlBaroFusion();
// control fusion of velocity and position observations
void controlVelPosFusion();
// control for height sensor timeouts, sensor changes and state resets
void controlHeightSensorTimeouts();
// return the square of two floating point numbers - used in auto coded sections
inline float sq(float var)
{
return var * var;
}
// set control flags to use baro height
void setControlBaroHeight();
// set control flags to use range height
void setControlRangeHeight();
// set control flags to use GPS height
void setControlGPSHeight();
// set control flags to use external vision height
void setControlEVHeight();
// zero the specified range of rows in the state covariance matrix
void zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last);
// zero the specified range of columns in the state covariance matrix
void zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last);
// calculate the measurement variance for the optical flow sensor
float calcOptFlowMeasVar();
// rotate quaternion covariances into variances for an equivalent rotation vector
Vector3f calcRotVecVariances();
// initialise the quaternion covariances using rotation vector variances
void initialiseQuatCovariances(Vector3f &rot_vec_var);
// perform a limited reset of the magnetic field state covariances
void resetMagCovariance();
// perform a limited reset of the wind state covariances
void resetWindCovariance();
// perform a reset of the wind states
void resetWindStates();
// check that the range finder data is continuous
void checkRangeDataContinuity();
};