px4-firmware/misc/pascal/insn32/regm/regm_pass2.c

1527 lines
54 KiB
C

/**********************************************************************
* regm_pass2.c
* Convert the buffered pcode to the basic register model with an
* indefinite number of registers (arguments, general, and special
* registers) and with 32-bit immediate size.
*
* Copyright (C) 2008-2009 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <spudmonkey@racsa.co.cr>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*********************************************************************/
/**********************************************************************
* Included Files
**********************************************************************/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "keywords.h"
#include "pdefs.h"
#include "pxdefs.h"
#include "pfdefs.h"
#include "pedefs.h"
#include "pofflib.h"
#include "perr.h"
#include "pinsn32.h"
#include "builtins.h"
#include "regm.h"
#include "regm_tree.h"
#include "regm_registers2.h"
#include "regm_pass2.h"
/************************************a*********************************
* Definitions
**********************************************************************/
/**********************************************************************
* Private Types
**********************************************************************/
struct regm_opmap_s;
typedef void (*regm_mapper_t)(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode, struct procdata_s *pNode);
struct regm_opmap_s
{
uint8_t chOpCode;
int8_t chImmediate;
int8_ chSpecial;
regm_mapper_t pMapper;
};
/**********************************************************************
* Private Function Prototypes
**********************************************************************/
static void regm_NoOperation(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_UnaryOperation(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_BinaryOperation(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_CompareVsZero(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_BinaryComparison(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_LoadImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_LoadMultiple(uint32_t dwRDest, uint32_t dwRSrc);
static void regm_LoadMultipleImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_StoreMultiple(uint32_t dwRDest, uint32_t dwRSrc);
static void regm_StoreImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_StoreMultipleImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_Duplicate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_PushImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_PopSpecial(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_SetDataCount(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_PushSpecial(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_Return(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_LoadOffset(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_LoadMultipleOffset(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_StoreOffset(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_StoreMultipleOffset(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_LoadIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode, struct procdata_s *pNode);
static void regm_LoadMultipleIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_StoreIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode, struct procdata_s *pNode);
static void regm_StoreMultipleIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_ConditionalBranchVsZero(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_ConditionalBranchBinary(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_UnconditionalBranch(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_IncrementSpecial(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_LoadAddress(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode, struct procdata_s *pNode);
static void regm_LoadAddressIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_SetupOutArgs(uint32_t nParms, const uint32_t *pwArgSize);
static void regm_MapInRet(uint32_t wRetSize);
static void regm_PCal(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_SysIo(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_LibCall(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_Float(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_IllegalPCode(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode);
static void regm_GenerateRegm(struct procdata_s *pNode, void *pvArg);
static int regm_Pass2Node(struct procdata_s *pNode, void *pvArg);
/**********************************************************************
* Public Variables
**********************************************************************/
/* On the initialize passes, the register number will simply be the offset
* from the top of the stack. The following variable keeps trck of the
* stack offset.
*/
uint32_t g_dwStackOffset;
uint32_t g_dwRegisterCount = 0;
int g_bRegisterCountValid = 0;
/**********************************************************************
* Private Variables
**********************************************************************/
static const struct regm_opmap_s vrgOpMap1[64] =
{
/* 0x00: oNOP */ {0, 0, 0, regm_NoOperation},
/* 0x01: oNEG */ {rRSBI, 0, 0, regm_UnaryOperation},
/* 0x02: oABS */ {rRSB, 0, 0, regm_UnaryOperation},
/* 0x03: oINC */ {rADDI, 1, 0, regm_UnaryOperation},
/* 0x04: oDEC */ {rSUBI, 1, 0, regm_UnaryOperation},
/* 0x05: oNOT */ {rMVN, 0, 0, regm_UnaryOperation},
/* 0x06: oADD */ {rADD, 0, 0, regm_BinaryOperation},
/* 0x07: oSUB */ {rSUB, 0, 0, regm_BinaryOperation},
/* 0x08: oMUL */ {rMUL, 0, 0, regm_BinaryOperation},
/* 0x09: oDIV */ {rDIV, 0, 0, regm_BinaryOperation},
/* 0x0a: oMOD */ {rMOD, 0, 0, regm_BinaryOperation},
/* 0x0b: oSLL */ {rSLL, 0, 0, regm_BinaryOperation},
/* 0x0c: oSRL */ {rSRL, 0, 0, regm_BinaryOperation},
/* 0x0d: oSRA */ {rSRA, 0, 0, regm_BinaryOperation},
/* 0x0e: oOR */ {rOR, 0, 0, regm_BinaryOperation},
/* 0x0f: oAND */ {rAND, 0, 0, regm_BinaryOperation},
/* 0x10: oEQUZ */ {rBEQ, 0, 0, regm_CompareVsZero},
/* 0x11: oNEQZ */ {rBNE, 0, 0, regm_CompareVsZero},
/* 0x12: oLTZ */ {rBLT, 0, 0, regm_CompareVsZero},
/* 0x13: oGTEZ */ {rBGTE, 0, 0, regm_CompareVsZero},
/* 0x14: oGTZ */ {rBGT, 0, 0, regm_CompareVsZero},
/* 0x15: oLTEZ */ {rBLTE, 0, 0, regm_CompareVsZero},
/* 0x16: */ {0, 0, 0, regm_IllegalPCode},
/* 0x17: */ {0, 0, 0, regm_IllegalPCode},
/* 0x18: oEQU */ {rBEQ, 0, 0, regm_BinaryComparison},
/* 0x19: oNEQ */ {rBNE, 0, 0, regm_BinaryComparison},
/* 0x1a: oLT */ {rBLT, 0, 0, regm_BinaryComparison},
/* 0x1b: oGTE */ {rBGTE, 0, 0, regm_BinaryComparison},
/* 0x1c: oGT */ {rBGT, 0, 0, regm_BinaryComparison},
/* 0x1d: oLTE */ {rBLTE, 0, 0, regm_BinaryComparison},
/* 0x1e: */ {0, 0, 0, regm_IllegalPCode},
/* 0x1f: oBIT */ {rBEQ, 0, 0, regm_BinaryComparison},
/* 0x20: oLDI */ {rLD, 2, SPB, regm_LoadImmediate},
/* 0x21: oLDIH */ {rLDH, 1, SPB, regm_LoadImmediate},
/* 0x22: oLDIB */ {rLDB, 0, SPB, regm_LoadImmediate},
/* 0x23: oLDIM */ {0, 0, SPB, regm_LoadMultipleImmediate},
/* 0x24: oSTI */ {rST, 2, SPB, regm_StoreImmediate},
/* 0x25: oSTIH */ {rSTH, 1, SPB, regm_StoreImmediate},
/* 0x26: oSTIB */ {rSTB, 0, SPB, regm_StoreImmediate},
/* 0x27: oSTIM */ {0, 0, SPB, regm_StoreMultipleImmediate},
/* 0x28: oDUP */ {0, 0, 0, regm_Duplicate},
/* 0x17: */ {0, 0, 0, regm_IllegalPCode},
/* 0x2a: oPUSHS */ {0, 0, CSP, regm_PushSpecial},
/* 0x2b: oPOPS */ {0, 0, CSP, regm_PopSpecial},
/* 0x2c: */ {0, 0, 0, regm_IllegalPCode},
/* 0x2d: */ {0, 0, 0, regm_IllegalPCode},
/* 0x2e: */ {0, 0, 0, regm_IllegalPCode},
/* 0x2f: oRET */ {0, 0, 0, regm_Return},
/* 0x30: */ {0, 0, 0, regm_IllegalPCode},
/* 0x31: */ {0, 0, 0, regm_IllegalPCode},
/* 0x32: */ {0, 0, 0, regm_IllegalPCode},
/* 0x33: */ {0, 0, 0, regm_IllegalPCode},
/* 0x34: */ {0, 0, 0, regm_IllegalPCode},
/* 0x35: */ {0, 0, 0, regm_IllegalPCode},
/* 0x36: */ {0, 0, 0, regm_IllegalPCode},
/* 0x37: */ {0, 0, 0, regm_IllegalPCode},
/* 0x38: */ {0, 0, 0, regm_IllegalPCode},
/* 0x39: */ {0, 0, 0, regm_IllegalPCode},
/* 0x3a: */ {0, 0, 0, regm_IllegalPCode},
/* 0x3b: */ {0, 0, 0, regm_IllegalPCode},
/* 0x3c: */ {0, 0, 0, regm_IllegalPCode},
/* 0x3d: */ {0, 0, 0, regm_IllegalPCode},
/* 0x3e: */ {0, 0, 0, regm_IllegalPCode},
/* 0x3f: oEND */ {0, 0, 0, regm_Return}
};
static const struct regm_opmap_s vrgOpMap2[64] =
{
/* 0x80: oLD */ {rLD, 2, SPB, regm_LoadOffset},
/* 0x81: oLDH */ {rLDH, 1, SPB, regm_LoadOffset},
/* 0x82: oLDB */ {rLDB, 0, SPB, regm_LoadOffset},
/* 0x83: oLDM */ {0, 0, SPB, regm_LoadMultipleOffset},
/* 0x84: oST */ {rST, 2, SPB, regm_StoreOffset},
/* 0x85: oSTH */ {rSTH, 1, SPB, regm_StoreOffset},
/* 0x86: oSTB */ {rSTB, 0, SPB, regm_StoreOffset},
/* 0x87: oSTM */ {0, 0, SPB, regm_StoreMultipleOffset},
/* 0x88: oLDX */ {rLD, 2, SPB, regm_LoadIndexed},
/* 0x89: oLDXH */ {rLDH, 1, SPB, regm_LoadIndexed},
/* 0x8a: oLDXB */ {rLDB, 0, SPB, regm_LoadIndexed},
/* 0x8b: oLDXM */ {0, 0, SPB, regm_LoadMultipleIndexed},
/* 0x8c: oSTX */ {rST, 2, SPB, regm_StoreIndexed},
/* 0x8d: oSTXH */ {rSTH, 1, SPB, regm_StoreIndexed},
/* 0x8e: oSTXB */ {rSTB, 0, SPB, regm_StoreIndexed},
/* 0x8f: oSTXM */ {0, 0, SPB, regm_StoreMultipleIndexed},
/* 0x90: oJEQUZ */ {rBEQ, 0, 0, regm_ConditionalBranchVsZero},
/* 0x91: oJNEQZ */ {rBNE, 0, 0, regm_ConditionalBranchVsZero},
/* 0x92: oJLTZ */ {rBLT, 0, 0, regm_ConditionalBranchVsZero},
/* 0x93: oJGTEZ */ {rBGTE, 0, 0, regm_ConditionalBranchVsZero},
/* 0x94: oJGTZ */ {rBGT, 0, 0, regm_ConditionalBranchVsZero},
/* 0x95: oJLTEZ */ {rBLTE, 0, 0, regm_ConditionalBranchVsZero},
/* 0x96: oJMP */ {rB, 0, 0, regm_UnconditionalBranch},
/* 0x97: oPUSH */ {0, 0, 0, regm_PushImmediate},
/* 0x98: oJEQU */ {rBEQ, 0, 0, regm_ConditionalBranchBinary},
/* 0x99: oJNEQ */ {rBNE, 0, 0, regm_ConditionalBranchBinary},
/* 0x9a: oJLT */ {rBLT, 0, 0, regm_ConditionalBranchBinary},
/* 0x9b: oJGTE */ {rBGTE, 0, 0, regm_ConditionalBranchBinary},
/* 0x9c: oJGT */ {rBGT, 0, 0, regm_ConditionalBranchBinary},
/* 0x9d: oJLTE */ {rBLTE, 0, 0, regm_ConditionalBranchBinary},
/* 0x9e: */ {0, 0, 0, regm_IllegalPCode},
/* 0x9f: oINDS */ {0, 0, SP, regm_IncrementSpecial},
/* 0xa0: oLDS */ {rLD, 2, LSP, regm_LoadOffset},
/* 0xa1: oLDSH */ {rLDH, 1, LSP, regm_LoadOffset},
/* 0xa2: oLDSB */ {rLDB, 0, LSP, regm_LoadOffset},
/* 0xa3: oLDSM */ {0, 0, LSP, regm_LoadMultipleOffset},
/* 0xa4: oSTS */ {rST, 2, LSP, regm_StoreOffset},
/* 0xa5: oSTSH */ {rSTH, 1, LSP, regm_StoreOffset},
/* 0xa6: oSTSB */ {rSTB, 0, LSP, regm_StoreOffset},
/* 0xa7: oSTSM */ {0, 0, LSP, regm_StoreMultipleOffset},
/* 0xa8: oLDSX */ {rLD, 2, LSP, regm_LoadIndexed},
/* 0xa9: oLDSXH */ {rLDH, 1, LSP, regm_LoadIndexed},
/* 0xaa: oLDSXB */ {rLDB, 0, LSP, regm_LoadIndexed},
/* 0xab: oLDSXM */ {0, 0, LSP, regm_LoadMultipleIndexed},
/* 0xac: oSTSX */ {rST, 2, LSP, regm_StoreIndexed},
/* 0xad: oSTSXH */ {rSTH, 1, LSP, regm_StoreIndexed},
/* 0xae: oSTSXB */ {rSTB, 0, LSP, regm_StoreIndexed},
/* 0xaf: oSTSXM */ {0, 0, LSP, regm_StoreMultipleIndexed},
/* 0xb0: oLA */ {0, 0, SPB, regm_LoadAddress},
/* 0xb1: oLAS */ {0, 0, LSP, regm_LoadAddress},
/* 0xb2: oLAC */ {0, 0, CSB, regm_LoadAddress},
/* 0xb3: */ {0, 0, 0, regm_IllegalPCode},
/* 0xb4: oLAX */ {0, 0, SPB, regm_LoadAddressIndexed},
/* 0xb5: oLASX */ {0, 0, LSP, regm_LoadAddressIndexed},
/* 0xb6: oSLSP */ {0, 0, LSP, regm_PopSpecial},
/* 0xb7: oSDC */ {0, 0, DC, regm_SetDataCount},
/* 0xb8: */ {0, 0, 0, regm_IllegalPCode},
/* 0xb9: oPCAL */ {0, 0, 0, regm_PCal},
/* 0xba: oSYSIO */ {0, 0, 0, regm_SysIo},
/* 0xbb: oLIB */ {0, 0, 0, regm_LibCall},
/* 0xbc: oFLOAT */ {0, 0, 0, regm_Float},
/* 0xbd: oLABEL */ {0, 0, 0, regm_NoOperation},
/* 0xbe: oINCLUDE*/ {0, 0, 0, regm_NoOperation},
/* 0xbf: oLINE */ {0, 0, 0, regm_NoOperation}
};
static const struct regm_builtin_s g_rgSysIoBuiltIns[MAX_XOP] =
{
/* 0x00 */ ILLEGAL_BUILTIN_INIT, xEOF_INIT,
/* 0x02 */ xEOLN_INIT, xRESET_INIT,
/* 0x04 */ xREWRITE_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x06 */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x08 */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x0a */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x0c */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x0e */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x10 */ xREADLN_INIT, xREAD_PAGE_INIT,
/* 0x12 */ xREAD_BINARY_INIT, xREAD_INT_INIT,
/* 0x14 */ xREAD_CHAR_INIT, xREAD_STRING_INIT,
/* 0x16 */ xREAD_REAL_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x18 */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x1a */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x1c */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x1e */ ILLEGAL_BUILTIN_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x20 */ xWRITELN_INIT, xWRITE_PAGE_INIT,
/* 0x22 */ xWRITE_BINARY_INIT, xWRITE_INT_INIT,
/* 0x24 */ xWRITE_CHAR_INIT, xWRITE_STRING_INIT,
/* 0x25 */ xWRITE_REAL_INIT
};
static const struct regm_builtin_s g_rgLibCallBuiltIns[MAX_LBOP] =
{
/* 0x00 */ lbGETENV_INIT, lbSTR2STR_INIT,
/* 0x02 */ lbCSTR2STR_INIT, lbSTR2RSTR_INIT,
/* 0x04 */ lbCSTR2RSTR_INIT, lbVAL_INIT,
/* 0x06 */ lbMKSTK_INIT, lbMKSTKSTR_INIT,
/* 0x08 */ lbMKSTKC_INIT, lbSTRCAT_INIT,
/* 0x0a */ lbSTRCATC_INIT, lbSTRCMP_INIT
};
static const struct regm_builtin_s g_rgRrFopBuiltIns[MAX_FOP] =
{
/* 0x00 */ ILLEGAL_BUILTIN_INIT, fpFLOAT_INIT,
/* 0x02 */ fpTRUNC_INIT, fpROUND_INIT,
/* 0x04 */ fpADD_RR_INIT, fpSUB_RR_INIT,
/* 0x06 */ fpMUL_RR_INIT, fpDIV_RR_INIT,
/* 0x00 */ fpMOD_RR_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x0a */ fpEQU_RR_INIT, fpNEQ_RR_INIT,
/* 0x0c */ fpLT_RR_INIT, fpGTE_RR_INIT,
/* 0x0e */ fpGT_RR_INIT, fpLTE_RR_INIT,
/* 0x10 */ fpNEG_R_INIT, fpABS_R_INIT,
/* 0x12 */ fpSQR_R_INIT, fpSQRT_R_INIT,
/* 0x14 */ fpSIN_R_INIT, fpCOS_R_INIT,
/* 0x16 */ fpATAN_R_INIT, fpLN_R_INIT,
/* 0x18 */ fpEXP_R_INIT
};
static const struct regm_builtin_s g_rgRiFopBuiltIns[MAX_FOP] =
{
/* 0x00 */ ILLEGAL_BUILTIN_INIT, fpFLOAT_INIT,
/* 0x02 */ fpTRUNC_INIT, fpROUND_INIT,
/* 0x04 */ fpADD_RI_INIT, fpSUB_RI_INIT,
/* 0x06 */ fpMUL_RI_INIT, fpDIV_RI_INIT,
/* 0x00 */ fpMOD_RI_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x0a */ fpEQU_RI_INIT, fpNEQ_RI_INIT,
/* 0x0c */ fpLT_RI_INIT, fpGTE_RI_INIT,
/* 0x0e */ fpGT_RI_INIT, fpLTE_RI_INIT,
/* 0x10 */ fpNEG_I_INIT, fpABS_I_INIT,
/* 0x12 */ fpSQR_I_INIT, fpSQRT_I_INIT,
/* 0x14 */ fpSIN_I_INIT, fpCOS_I_INIT,
/* 0x16 */ fpATAN_I_INIT, fpLN_I_INIT,
/* 0x18 */ fpEXP_I_INIT
};
static const struct regm_builtin_s g_rgIrFopBuiltIns[MAX_FOP] =
{
/* 0x00 */ ILLEGAL_BUILTIN_INIT, fpFLOAT_INIT,
/* 0x02 */ fpTRUNC_INIT, fpROUND_INIT,
/* 0x04 */ fpADD_IR_INIT, fpSUB_IR_INIT,
/* 0x06 */ fpMUL_IR_INIT, fpDIV_IR_INIT,
/* 0x00 */ fpMOD_IR_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x0a */ fpEQU_IR_INIT, fpNEQ_IR_INIT,
/* 0x0c */ fpLT_IR_INIT, fpGTE_IR_INIT,
/* 0x0e */ fpGT_IR_INIT, fpLTE_IR_INIT,
/* 0x10 */ fpNEG_R_INIT, fpABS_R_INIT,
/* 0x12 */ fpSQR_R_INIT, fpSQRT_R_INIT,
/* 0x14 */ fpSIN_R_INIT, fpCOS_R_INIT,
/* 0x16 */ fpATAN_R_INIT, fpLN_R_INIT,
/* 0x18 */ fpEXP_R_INIT
};
static const struct regm_builtin_s g_rgIiFopBuiltIns[MAX_FOP] =
{
/* 0x00 */ ILLEGAL_BUILTIN_INIT, fpFLOAT_INIT,
/* 0x02 */ fpTRUNC_INIT, fpROUND_INIT,
/* 0x04 */ fpADD_II_INIT, fpSUB_II_INIT,
/* 0x06 */ fpMUL_II_INIT, fpDIV_II_INIT,
/* 0x00 */ fpMOD_II_INIT, ILLEGAL_BUILTIN_INIT,
/* 0x0a */ fpEQU_II_INIT, fpNEQ_II_INIT,
/* 0x0c */ fpLT_II_INIT, fpGTE_II_INIT,
/* 0x0e */ fpGT_II_INIT, fpLTE_II_INIT,
/* 0x10 */ fpNEG_I_INIT, fpABS_I_INIT,
/* 0x12 */ fpSQR_I_INIT, fpSQRT_I_INIT,
/* 0x14 */ fpSIN_I_INIT, fpCOS_I_INIT,
/* 0x16 */ fpATAN_I_INIT, fpLN_I_INIT,
/* 0x18 */ fpEXP_I_INIT
};
static const struct regm_builtin_s *g_prgFopBuiltIns[4] =
{
/* Real - Real */ g_rgRrFopBuiltIns,
/* Integer - Real */ g_rgRiFopBuiltIns,
/* Real - Ingeter */ g_rgIrFopBuiltIns,
/* Integer - Integer */ g_rgIiFopBuiltIns
};
/**********************************************************************
* Private Functions
**********************************************************************/
/***********************************************************************/
static void regm_NoOperation(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode, struct procdata_s *pNode)
{
TRACE(stderr, "[regm_NoOperation]");
/* Do nothing */
}
/***********************************************************************/
/* These pcodes are all binary operations in the sense that they take
* one input and produce one output:
*
* INPUT: TOS(0)
* OUTPUT: TOS(0)
* Stack is unchanged.
*/
static void regm_UnaryOperation(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode, struct procdata_s *pNode)
{
uint32_t dwUnaryRegister = MKCCREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwCcRegister = MKCCREG(g_dwStackOffset);
TRACE(stderr, "[regm_UnaryOperation]");
switch (GETOP(pOpCode))
{
case oABS:
regm_GenerateForm1ICc(rCMPI, dwUnaryRegister, 0, dwCcRegister);
regm_GenerateForm4ICc(rBGTE, 2, dwCcRegister);
default:
regm_GenerateForm3I(pEntry->chOpCode, dwUnaryRegister,
dwUnaryRegister, pEntry->chImmediate);
break;
}
}
/***********************************************************************/
/* These pcodes are all binary operations in the sense that they take
* two input:
*
* INPUT: TOS(0), TOS(-1)
* OUTPUT: TOS(0)
* Stack reduced by one.
*
* These all generate form 3r instructions:
*/
static void regm_BinaryOperation(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwROperand1 = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwROperand2 = MKREG(g_dwStackOffset - 2*sINT_SIZE);
uint32_t dwRDest = dwROperand2;
TRACE(stderr, "[regm_BinaryOperation]");
/* Generate the binary operation */
regm_GenerateForm3R(pEntry->chOpCode, dwRDest, dwROperand1, dwROperand2);
/* Reduce stack */
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* These pcodes are all boolean unary operations in the sense that
* the pcode form takes one input and generates one output:
*
* INPUT: TOS(0)
* OUTPUT: TOS(0)
* Stack unchanged
*
* The complication is that the resulting boolean is not represented by
* data in the register model but, rather, as a condition code setting.
* For now we can, however, force a large number of condition code
* registers; during a later fixup pass, we can force this to a single
* condition code register.
*/
static void regm_CompareVsZero(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwUnaryRegister = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwCcRegister = MKCCREG(g_dwStackOffset);
TRACE(stderr, "[regm_CompareVsZero]");
regm_GenerateForm1ICc(rCMPI, dwUnaryRegister, 0, dwCcRegister);
regm_GenerateForm2I(rMOVI, dwUnaryRegister, 0);
regm_GenerateForm4ICc(pEntry->chOpCode, 2, dwCcRegister);
regm_GenerateForm2I(rMOVI, dwUnaryRegister, 1);
}
/***********************************************************************/
/* These pcodes are all boolean binary operations in the sense that
* the pcode form takes two inputs and generates one output:
*
* INPUT: TOS(0), TOS(-1)
* OUTPUT: TOS(0)
* Stack reduced by one.
*
* The complication is that the resulting boolean not represented by
* data in the register model but, rather, as a condition code setting.
* For now we can, however, force a large number of condition code
* registers; during a later fixup pass, we can force this to a single
* condition code register.
*/
static void regm_BinaryComparison(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwROperand1 = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwROperand2 = MKREG(g_dwStackOffset - 2*sINT_SIZE);
uint32_t dwRDest = dwROperand2;
uint32_t dwCcRegister = MKCCREG(g_dwStackOffset);
TRACE(stderr, "[regm_BinaryComparison]");
switch (GETOP(pOpCode))
{
case oBIT:
regm_GenerateForm3R(rAND, dwRDest, dwROperand1, dwROperand2);
regm_GenerateForm1ICc(rCMPI, dwRDest, 0, dwCcRegister);
break;
default:
regm_GenerateForm1RCc(rCMP, dwROperand1, dwROperand2, dwCcRegister);
break;
}
regm_GenerateForm2I(rMOVI, dwRDest, 0);
regm_GenerateForm4ICc(pEntry->chOpCode, 2, dwCcRegister);
regm_GenerateForm2I(rMOVI, dwRDest, 1);
/* Reduce stack */
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* Load from the address on the stack. Stack is unchanged */
static void regm_LoadImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwROperand1 = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRDest = dwROperand1;
TRACE(stderr, "[regm_LoadImmediate]");
/* Use the immediate value as an index against the SPB/LSP */
regm_GenerateForm3R(pEntry->chOpCode, dwRDest, dwROperand1,
MKSPECIAL(pEntry->chSpecial));
}
/***********************************************************************/
/* Generic load multiple logic */
static void regm_LoadMultiple(uint32_t dwRDest, uint32_t dwRSrc)
{
TRACE(stderr, "[regm_LoadMultiple]");
if (g_bRegisterCountValid)
{
regm_GenerateForm3I(rLDM, dwRDest, dwRSrc, g_dwRegisterCount);
/* Adjust the stack for the g_dwRegisterCount values added to the
* stack.
*/
g_dwStackOffset += g_dwRegisterCount * sINT_SIZE;
g_bRegisterCountValid = 0;
}
else
{
fatal(ePOFFCONFUSION);
}
}
/***********************************************************************/
/* SPB/LSP relative source offset is on the stack. Stack increase determined
* by content of DC register.
*/
static void regm_LoadMultipleImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRSrc = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRDest = dwRSrc;
TRACE(stderr, "[regm_LoadMultipleImmediate]");
/* Adjust the src for the SPB/LSP value and generate the multiple load */
regm_GenerateForm3R(rADD, dwRSrc, dwRSrc, MKSPECIAL(pEntry->chSpecial));
regm_LoadMultiple(dwRSrc, dwRDest);
/* Stack will be increased by an amount determined by DC in
* regm_LoadMultiple. However, we need to also account for the
* immediate stack value that we consume here.
*/
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* Store value on stack to address on stack. Stack is reduced by two */
static void regm_StoreImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRSrc = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwROperand1 = MKREG(g_dwStackOffset - 2*sINT_SIZE);
TRACE(stderr, "[regm_StoreImmediate]");
/* Use the immediate value as an index against the SPB/LSP */
regm_GenerateForm3R(pEntry->chOpCode, dwRSrc, dwROperand1,
MKSPECIAL(pEntry->chSpecial));
/* Reduce stack */
g_dwStackOffset -= 2*sINT_SIZE;
}
/***********************************************************************/
/* Generic store multiple logic */
static void regm_StoreMultiple(uint32_t dwRDest, uint32_t dwRSrc)
{
TRACE(stderr, "[regm_StoreMultiple]");
if (g_bRegisterCountValid)
{
regm_GenerateForm3I(rSTM, dwRSrc, dwRDest, g_dwRegisterCount);
/* Adjust the stack for the g_dwRegisterCount values added to the
* stack.
*/
g_dwStackOffset -= g_dwRegisterCount * sINT_SIZE;
g_bRegisterCountValid = 0;
}
else
{
fatal(ePOFFCONFUSION);
}
}
/***********************************************************************/
/* Store multiple values on stack to address on stack. Stack is reduced
* by an amount determined by the content of DC.
*/
static void regm_StoreMultipleImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRDest = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRSrc = MKREG(g_dwStackOffset - (g_dwRegisterCount + 1)*sINT_SIZE);
TRACE(stderr, "[regm_StoreMultipleImmediate]");
/* Adjust the src for the SPB/LSP value and generate the multiple load */
regm_GenerateForm3R(rADD, dwRDest, dwRDest, MKSPECIAL(pEntry->chSpecial));
regm_StoreMultiple(dwRSrc, dwRDest);
/* Stack will be increased by an amount determined by DC in
* regm_StoreMultiple. However, we need to also account for the
* immediate stack value that we consume here.
*/
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* Duplicate the TOS. stack increases by one */
static void regm_Duplicate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwROperand1 = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRDest = MKREG(g_dwStackOffset);
TRACE(stderr, "[regm_Duplicate]");
/* Generate the binary operation */
regm_GenerateForm2R(rMOV, dwRDest, dwROperand1);
/* Increment the stack */
g_dwStackOffset += sINT_SIZE;
}
/***********************************************************************/
/* Put the immediate value at the top of the stack. Increment stack */
static void regm_PushImmediate(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRDest = g_dwStackOffset;
TRACE(stderr, "[regm_PushImmediate]");
/* The value may be too large to represent with a MOVI, but we'll handle
* that later.
*/
regm_GenerateForm2I(rMOVI, dwRDest, GETARG(pOpCode));
/* Increment the stack */
g_dwStackOffset += sINT_SIZE;
}
/***********************************************************************/
/* Push the special register onto the stack. Stack increments by one */
static void regm_PushSpecial(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRDest = g_dwStackOffset;
TRACE(stderr, "[regm_PushSpecial]");
regm_GenerateForm2R(rMOV, dwRDest, MKSPECIAL(pEntry->chSpecial));
/* Increment the stack */
g_dwStackOffset += sINT_SIZE;
}
/***********************************************************************/
/* Pop the TOS into the special register. Stack decrements by one */
static void regm_PopSpecial(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwROperand1 = MKREG(g_dwStackOffset - 1*sINT_SIZE);
TRACE(stderr, "[regm_PopSpecial]");
regm_GenerateForm2R(rMOV, MKSPECIAL(pEntry->chSpecial), dwROperand1);
/* Decrement the stack */
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* Save the immediate value in the data count register */
static void regm_SetDataCount(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
/* We don't acutally use the DC register. It is an artifact just
* get here. We save the byte count as a even number of registers.
*/
g_dwRegisterCount = (GETARG(pOpCode) + 3) >> 2;
g_bRegisterCountValid = 1;
}
/***********************************************************************/
static void regm_Return(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
TRACE(stderr, "[regm_Return]");
/* This should have been processed by the prologue/epilogue logic */
fatal(ePOFFCONFUSION);
}
/***********************************************************************/
/* Load at offset from SPB/LSP. Stack increases by one */
static void regm_LoadOffset(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRDest = g_dwStackOffset;
TRACE(stderr, "[regm_LoadOffset]");
/* Use the immediate value as an index against the SPB/LSP */
regm_GenerateForm3I(pEntry->chOpCode, dwRDest, MKSPECIAL(pEntry->chSpecial),
GETARG(pOpCode) >> pEntry->chImmediate);
/* Increment the stack */
g_dwStackOffset += sINT_SIZE;
}
/***********************************************************************/
/* Load multiple registgers at offset from SPB/LSP. Stack increase depends
* on value in DC (only)
*/
static void regm_LoadMultipleOffset(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRSrc = MKREG(g_dwStackOffset);
uint32_t dwRDest = dwRSrc;
TRACE(stderr, "[regm_LoadMultipleOffset]");
regm_GenerateForm3R(rADD, dwRSrc, MKSPECIAL(pEntry->chSpecial),
GETARG(pOpCode));
regm_LoadMultiple(dwRSrc, dwRDest);
}
/***********************************************************************/
/* Store at offset from SPB/LSP. Stack decreases by one */
static void regm_StoreOffset(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRSrc = MKREG(g_dwStackOffset - 1*sINT_SIZE);
TRACE(stderr, "[regm_StoreOffset]");
/* Use the immediate value as an index against the SPB/LSP */
regm_GenerateForm3I(pEntry->chOpCode, dwRSrc,
MKSPECIAL(pEntry->chSpecial),
GETARG(pOpCode) >> pEntry->chImmediate);
/* Decrement the stack */
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* Store multiple at offset from SPB/LSP. Stack decreases an amount
* determined by the content of the DC regsiter.
*/
static void regm_StoreMultipleOffset(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRSrc = MKREG(g_dwStackOffset - g_dwRegisterCount*sINT_SIZE);
uint32_t dwRDest;
TRACE(stderr, "[regm_StoreMultipleOffset]");
regm_GenerateForm3R(rADD, dwRDest, MKSPECIAL(pEntry->chSpecial),
GETARG(pOpCode));
regm_StoreMultiple(dwRSrc, dwRDest);
}
/***********************************************************************/
/* Load value using index on stack + argument + SPB/LSP. Stack is unchanged */
static void regm_LoadIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRIndex = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRDest = dwRIndex;
TRACE(stderr, "[regm_LoadIndexed]");
/* Add the SPB/LSP to the index to make it relative to the stack,
* then use this with the immediate values to obtain the data.
*/
regm_GenerateForm3R(rADD, dwRIndex, dwRIndex,
MKSPECIAL(pEntry->chSpecial));
regm_GenerateForm3I(pEntry->chOpCode, dwRDest, dwRDest,
GETARG(pOpCode) >> pEntry->chImmediate);
}
/***********************************************************************/
/* Load multiple values using index on stack + argument + SPB/LSP. Stack
* will increase my an amount that depends on the contents of DC.
*/
static void regm_LoadMultipleIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRIndex = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRSrc = dwRIndex;
uint32_t dwRDest = dwRIndex;
TRACE(stderr, "[regm_LoadMultipleIndexed]");
/* Add the SPB/LSP to the index to make it relative to the stack,
* add the offset, then generate the multple load.
*/
regm_GenerateForm3R(rADD, dwRSrc, dwRIndex,
MKSPECIAL(pEntry->chSpecial));
regm_GenerateForm3I(rADDI, dwRSrc, dwRSrc, GETARG(pOpCode));
regm_LoadMultiple(dwRSrc, dwRDest);
/* Stack will be increased by an amount determined by DC in
* regm_LoadMultiple. However, we need to also account for the
* index stack value that we consume here.
*/
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* Store value at TOS to index + offset + SPB/LSP. Stack decreases by two */
static void regm_StoreIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRSrc = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRIndex = MKREG(g_dwStackOffset - 2*sINT_SIZE);
TRACE(stderr, "[regm_StoreIndexed]");
/* Add the LSP to the index to make it relative to the stack,
* then use this with the immediate values to obtain the data.
*/
regm_GenerateForm3R(rADD, dwRIndex, dwRIndex,
MKSPECIAL(pEntry->chSpecial));
regm_GenerateForm3I(pEntry->chOpCode, dwRSrc, dwRIndex,
GETARG(pOpCode) >> pEntry->chImmediate);
/* Decrement the stack */
g_dwStackOffset -= 2*sINT_SIZE;
}
/***********************************************************************/
/* Store values at TOS to index + offset + SPB/LSP. Stack decreases by
* amount determined by the content of the DC register.
*/
static void regm_StoreMultipleIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRIndex = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRSrc = MKREG(g_dwStackOffset - (g_dwRegisterCount + 1)*sINT_SIZE);
uint32_t dwRDest;
TRACE(stderr, "[regm_StoreMultipleIndexed]");
/* Adjust the src for the SPB/LSP value and generate the multiple load */
regm_GenerateForm3R(rADD, dwRDest, dwRIndex,
MKSPECIAL(pEntry->chSpecial));
regm_GenerateForm3I(rADDI, dwRDest, dwRDest, GETARG(pOpCode));
regm_StoreMultiple(dwRSrc, dwRDest);
/* Stack will be increased by an amount determined by DC in
* regm_StoreMultiple. However, we need to also account for the
* immediate stack value that we consume here.
*/
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* These pcodes are all conditional branch operations. The pcode form
* takes one input (that is compared with zero) and branches based
* the result. The stack is decremented by one.
*/
static void regm_ConditionalBranchVsZero(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwUnaryRegister = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwCcRegister = MKCCREG(g_dwStackOffset);
TRACE(stderr, "[regm_ConditionalBranchVsZero]");
regm_GenerateForm1ICc(rCMPI, dwUnaryRegister, 0, dwCcRegister);
regm_GenerateForm4ICc(pEntry->chOpCode, GETARG(pOpCode), dwCcRegister);
/* Decrement the stack */
g_dwStackOffset -= sINT_SIZE;
}
/***********************************************************************/
/* These pcodes are all conditional branch operations. The pcode form
* takes two inputs that are compared. The pcode branches on the result
* of the comparison. The stack is reduced by two.
*/
static void regm_ConditionalBranchBinary(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwROperand1 = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwROperand2 = MKREG(g_dwStackOffset - 2*sINT_SIZE);
uint32_t dwCcRegister = MKCCREG(g_dwStackOffset);
TRACE(stderr, "[regm_BinaryComparison]");
/* Generate the compare and branch */
regm_GenerateForm1RCc(rCMP, dwROperand1, dwROperand2, dwCcRegister);
regm_GenerateForm4ICc(pEntry->chOpCode, GETARG(pOpCode), dwCcRegister);
/* Reduce stack */
g_dwStackOffset -= 2*sINT_SIZE;
}
/***********************************************************************/
/* Branch unconditionally. The stack is not changed */
static void regm_UnconditionalBranch(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
TRACE(stderr, "[regm_UnconditionalBranch]");
regm_GenerateForm4I(rB, GETARG(pOpCode));
}
/***********************************************************************/
/* Add constant value to special register. Stack does not change */
static void regm_IncrementSpecial(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
int32_t dwIncrement = (int32_t)(GETOP(pOpCode));
uint32_t dwRSpecial = MKSPECIAL(pEntry->chSpecial);
TRACE(stderr, "[regm_IncrementSpecial]");
/* The value may be too large to represent with a MOVI, but we'll handle
* that later.
*/
if (dwIncrement < 0)
{
regm_GenerateForm3I(rSUBI, dwRSpecial, dwRSpecial, -dwIncrement);
}
else if (dwIncrement > 0)
{
regm_GenerateForm3I(rADDI, dwRSpecial, dwRSpecial, dwIncrement);
}
if (pEntry->chSpecial == SP)
{
g_dwStackOffset += dwIncrement;
}
}
/***********************************************************************/
/* Load address at offset from special register. Stack increases by one */
static void regm_LoadAddress(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRDest = g_dwStackOffset;
TRACE(stderr, "[regm_LoadAddress]");
/* Use the immediate value as an index against the SPB/LSP */
regm_GenerateForm3I(rADD, dwRDest, MKSPECIAL(pEntry->chSpecial),
GETARG(pOpCode));
/* Increment the stack */
g_dwStackOffset += sINT_SIZE;
}
/***********************************************************************/
/* Load address at indexed offset from special register. Stack is unchanged */
static void regm_LoadAddressIndexed(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
uint32_t dwRIndex = MKREG(g_dwStackOffset - 1*sINT_SIZE);
uint32_t dwRDest = dwRIndex;
TRACE(stderr, "[regm_LoadAddressIndexed]");
/* Add the LSP or SPB to the index to make it relative to the stack,
* then use this with the immediate values to obtain the data.
*/
regm_GenerateForm3R(rADD, dwRIndex, dwRIndex,
MKSPECIAL(pEntry->chSpecial));
regm_GenerateForm3I(rADD, dwRDest, dwRIndex, GETARG(pOpCode));
}
/***********************************************************************/
static void regm_SetupOutArgs(uint32_t nParms, const uint32_t *pwArgSize)
{
int nArgRegs;
int32_t dwOffset;
int i;
for (i = 0, nArgRegs = 0; i < nParms; i++)
{
nArgRegs += (pwArgSize[i] + 3) >> 2;
}
/* Emit move instructions to handle each */
dwOffset = g_dwStackOffset - sINT_SIZE;
for (i = 0; i < nArgRegs; i++)
{
uint32_t dwDest = MKOUTARG(i);
uint32_t dwSrc = MKREG(dwOffset);
regm_GenerateForm2R(rMOV, dwDest, dwSrc);
dwOffset -= sINT_SIZE;
}
}
/***********************************************************************/
static void regm_MapInRet(uint32_t wRetSize)
{
int nRetRegs;
int32_t dwOffset;
int i;
/* Get the number of registers that are returned */
nRetRegs += (wRetSize + 3) >> 2;
/* Emit move instructions to handle each */
#warning "This offset is not correct"
dwOffset = g_dwStackOffset - sINT_SIZE;
for (i = 0; i < nRetRegs; i++)
{
uint32_t dwSrc = MKINRET(i);
uint32_t dwDest = MKREG(dwOffset);
regm_GenerateForm2R(rMOV, dwDest, dwSrc);
dwOffset -= sINT_SIZE;
}
}
/***********************************************************************/
static void regm_PCal(const struct regm_opmap_s *pEntry, OPTYPE *pOpCode,
struct procdata_s *pNode)
{
poffLibDebugFuncInfo_t *pFuncInfo = pNode->pFuncInfo;
TRACE(stderr, "[regm_PCal]");
if (!pFuncInfo)
{
fatal(ePOFFCONFUSION);
}
/* Map the "output" parameter stack to a set of "output" argument
* registers.
*/
regm_SetupOutArgs(pFuncInfo->nparms, pFuncInfo->argsize);
regm_GenerateForm3I(rADDI, MKSPECIAL(SP), MKSPECIAL(SP), 3*sINT_SIZE);
regm_GenerateForm3I(rST, MKSPECIAL(LSP), MKSPECIAL(SP), -3);
regm_GenerateForm3I(rST, MKSPECIAL(BRG), MKSPECIAL(SP), -2);
regm_GenerateForm4I(rBL, GETARG(pOpCode));
#warning "This is in the wrong place"
regm_MapInRet(pFuncInfo->retsize);
/* Increment the stack */
g_dwStackOffset += 3*sINT_SIZE;
}
/***********************************************************************/
static void regm_SysIo(const struct regm_opmap_s *pEntry, OPTYPE *pOpCode,
struct procdata_s *pNode)
{
const struct regm_builtin_s *pBuiltIn;
uint32_t xop;
TRACE(stderr, "[regm_SysIo]");
/* Get the function information for this sysio xop */
xop = GETARG(pOpCode);
if (xop >= MAX_XOP)
{
fatal(ePOFFCONFUSION);
}
pBuiltIn = &g_rgSysIoBuiltIns[xop];
/* Map the "output" parameter stack to a set of "output" argument
* registers.
*/
regm_SetupOutArgs(pBuiltIn->nParms, pBuiltIn->wArgSize);
/* Generate a call to the runtime library */
#warning "Not implemented"
/* Handled returned values */
regm_MapInRet(pBuiltIn->wRetSize);
}
/***********************************************************************/
static void regm_LibCall(const struct regm_opmap_s *pEntry, OPTYPE *pOpCode,
struct procdata_s *pNode)
{
const struct regm_builtin_s *pBuiltIn;
uint32_t lbop;
TRACE(stderr, "[regm_LibCall]");
/* Get the function information for this library op */
lbop = GETARG(pOpCode);
if (lbop >= MAX_LBOP)
{
fatal(ePOFFCONFUSION);
}
pBuiltIn = &g_rgLibCallBuiltIns[lbop];
/* Map the "output" parameter stack to a set of "output" argument
* registers.
*/
regm_SetupOutArgs(pBuiltIn->nParms, pBuiltIn->wArgSize);
/* Generate a call to the runtime library */
#warning "Not implemented"
/* Handled returned values */
regm_MapInRet(pBuiltIn->wRetSize);
}
/***********************************************************************/
static void regm_Float(const struct regm_opmap_s *pEntry, OPTYPE *pOpCode,
struct procdata_s *pNode)
{
static const struct regm_builtin_s *pFopBuiltIns;
const struct regm_builtin_s *pBuiltIn;
uint32_t foptab;
uint32_t fop;
TRACE(stderr, "[regm_FLoat]");
/* Select the correct table for the builtin */
foptab = (GETARG(pOpCode) & ~fpMASK) >> fpSHIFT;
pFopBuiltIns = g_prgFopBuiltIns[foptab];
/* Select the correct function from the table for this floating
* point operation.
*/
fop = GETARG(pOpCode) & fpMASK;
if (fop >= MAX_FOP)
{
fatal(ePOFFCONFUSION);
}
pBuiltIn = &pFopBuiltIns[fop];
/* Map the "output" parameter stack to a set of "output" argument
* registers.
*/
regm_SetupOutArgs(pBuiltIn->nParms, pBuiltIn->wArgSize);
/* Generate a call to the runtime library */
#warning "Not implemented"
/* Handled returned values */
regm_MapInRet(pBuiltIn->wRetSize);
}
/***********************************************************************/
static void regm_IllegalPCode(const struct regm_opmap_s *pEntry,
OPTYPE *pOpCode,
struct procdata_s *pNode)
{
TRACE(stderr, "[regm_IllegalPCode]");
fatal(eILLEGALOPCODE);
}
/***********************************************************************/
static void regm_GenerateRegm(struct procdata_s *pNode, void *pvArg)
{
int32_t dwFrameSize = 0;
int i, j;
TRACE(stderr, "[regm_GenerateRegm]");
/* Analyze the proc/func prologue */
i = 0; j = pNode->nPCodes;
if (GETOP(&pNode->pPCode[0]) == oINDS)
{
dwFrameSize = GETARG(&pNode->pPCode[0]);
i++; j--;
}
regm_GeneratePrologue(dwFrameSize);
/* Set the initial stack offset. Parameters will look like
* negative offsets; local stack will look positive.
*/
g_dwStackOffset = dwFrameSize;
/* Generate regm code for each p-code */
for (; i < j; i++)
{
const struct regm_opmap_s *rgOpMap;
uint8_t chOpCode = GETOP(&pNode->pPCode[i]);
/* Select the right decode table */
if ((chOpCode & o32) != 0)
{
rgOpMap = vrgOpMap2;
chOpCode &= ~o32;
}
else
{
rgOpMap = vrgOpMap1;
}
/* Make sure that the table index is within range */
if (chOpCode > 63)
{
fatal(eBADSHORTINT);
}
/* Perform the opcode mapping */
rgOpMap->pMapper(rgOpMap, &pNode->pPCode[i], pNode);
}
/* If a frame was obtained at the beginning, make sure that
* there is matching frame release logic at the end.
*/
if (dwFrameSize > 0)
{
if ((GETOP(&pNode->pPCode[i]) != oINDS) ||
(dwFrameSize != -(int32_t)GETARG(&pNode->pPCode[i])))
{
fatal(ePOFFCONFUSION);
}
i++;
}
/* Analyze the proc/func epilogue */
if ((GETOP(&pNode->pPCode[i]) != oRET) &&
(GETOP(&pNode->pPCode[i]) != oEND))
{
fatal(ePOFFCONFUSION);
}
regm_GenerateEpilogue(dwFrameSize);
}
/***********************************************************************/
static int regm_Pass2Node(struct procdata_s *pNode, void *pvArg)
{
TRACE(stderr, "[regm_Pass2Node]");
/* Generate code for each child of this proc/func block */
if (pNode->child)
{
(void)regm_ForEachChild(pNode->child, regm_Pass2Node, pvArg);
}
/* Generate code for this node */
regm_GenerateRegm(pNode, pvArg);
/* Does this node have a peer at the same level? If so, then
* do the same for its peer.
*/
if (pNode->peer)
{
(void)regm_Pass2Node(pNode->peer, pvArg);
}
return 0;
}
/**********************************************************************
* Public Functions
**********************************************************************/
/***********************************************************************/
/* Pass 2: Convert the buffered pcode to the basic register model with
* an indefinite number of registers (arguments, general, and special
* registers) and with 32-bit immediate size.
*/
void regm_Pass2(poffHandle_t hPoff)
{
TRACE(stderr, "[regm_Pass2]");
/* Initiate traversal at the root node */
(void)regm_Pass2Node(regm_GetRootNode(), NULL);
}
/***********************************************************************/