forked from Archive/PX4-Autopilot
1365 lines
48 KiB
Python
Executable File
1365 lines
48 KiB
Python
Executable File
#! /usr/bin/env python
|
|
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import os
|
|
import math
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from pyulog import *
|
|
|
|
"""
|
|
Reads in IMU data from a static thermal calibration test and performs a curve fit of gyro, accel and baro bias vs temperature
|
|
Data can be gathered using the following sequence:
|
|
|
|
1) Power up the board and set the TC_A_ENABLE, TC_B_ENABLE and TC_G_ENABLE parameters to 1
|
|
2) Set all CAL_GYR and CAL_ACC parameters to defaults
|
|
3) Set the parameter SDLOG_MODE to 2, and SDLOG_PROFILE "Thermal calibration" bit (2) to enable logging of sensor data for calibration and power off
|
|
4) Cold soak the board for 30 minutes
|
|
5) Move to a warm dry, still air, constant pressure environment.
|
|
6) Apply power for 45 minutes, keeping the board still.
|
|
7) Remove power and extract the .ulog file
|
|
8) Open a terminal window in the Firmware/Tools directory and run the python calibration script script file: 'python process_sensor_caldata.py <full path name to .ulog file>
|
|
9) Power the board, connect QGC and load the parameter from the generated .params file onto the board using QGC. Due to the number of parameters, loading them may take some time.
|
|
10) TODO - we need a way for user to reliably tell when parameters have all been changed and saved.
|
|
11) After parameters have finished loading, set SDLOG_MODE and SDLOG_PROFILE to their respective values prior to step 4) and remove power.
|
|
12) Power the board and perform a normal gyro and accelerometer sensor calibration using QGC. The board must be repowered after this step before flying due to large parameter changes and the thermal compensation parameters only being read on startup.
|
|
|
|
Outputs thermal compensation parameters in a file named <inputfilename>.params which can be loaded onto the board using QGroundControl
|
|
Outputs summary plots in a pdf file named <inputfilename>.pdf
|
|
|
|
"""
|
|
|
|
def resampleWithDeltaX(x,y):
|
|
xMin = np.amin(x)
|
|
xMax = np.amax(x)
|
|
nbInterval = 2000
|
|
interval = (xMax-xMin)/nbInterval
|
|
|
|
resampledY = np.zeros(nbInterval)
|
|
resampledX = np.zeros(nbInterval)
|
|
resampledCount = np.zeros(nbInterval)
|
|
|
|
for idx in range(0,len(x)):
|
|
if x[idx]<xMin:
|
|
binIdx = 0
|
|
elif x[idx]<xMax:
|
|
binIdx = int((x[idx]-xMin)/(interval))
|
|
else:
|
|
binIdx = nbInterval-1
|
|
resampledY[binIdx] += y[idx]
|
|
resampledX[binIdx] += x[idx]
|
|
resampledCount[binIdx] += 1
|
|
|
|
idxNotEmpty = np.where(resampledCount != 0)
|
|
resampledCount = resampledCount[idxNotEmpty]
|
|
resampledY = resampledY[idxNotEmpty]
|
|
resampledX = resampledX[idxNotEmpty]
|
|
|
|
resampledY /= resampledCount
|
|
resampledX /= resampledCount
|
|
|
|
return resampledX,resampledY
|
|
|
|
parser = argparse.ArgumentParser(description='Reads in IMU data from a static thermal calibration test and performs a curve fit of gyro, accel and baro bias vs temperature')
|
|
parser.add_argument('filename', metavar='file.ulg', help='ULog input file')
|
|
parser.add_argument('--no_resample', dest='noResample', action='store_const',
|
|
const=True, default=False, help='skip resampling and use raw data')
|
|
|
|
def is_valid_directory(parser, arg):
|
|
if os.path.isdir(arg):
|
|
# Directory exists so return the directory
|
|
return arg
|
|
else:
|
|
parser.error('The directory {} does not exist'.format(arg))
|
|
|
|
args = parser.parse_args()
|
|
ulog_file_name = args.filename
|
|
noResample = args.noResample
|
|
|
|
ulog = ULog(ulog_file_name, None)
|
|
data = ulog.data_list
|
|
|
|
# extract gyro data
|
|
num_gyros = 0
|
|
for d in data:
|
|
if d.name == 'sensor_gyro':
|
|
if d.multi_id == 0:
|
|
sensor_gyro_0 = d.data
|
|
print('found gyro 0 data')
|
|
num_gyros += 1
|
|
elif d.multi_id == 1:
|
|
sensor_gyro_1 = d.data
|
|
print('found gyro 1 data')
|
|
num_gyros += 1
|
|
elif d.multi_id == 2:
|
|
sensor_gyro_2 = d.data
|
|
print('found gyro 2 data')
|
|
num_gyros += 1
|
|
elif d.multi_id == 3:
|
|
sensor_gyro_3 = d.data
|
|
print('found gyro 3 data')
|
|
num_gyros += 1
|
|
|
|
# extract accel data
|
|
num_accels = 0
|
|
for d in data:
|
|
if d.name == 'sensor_accel':
|
|
if d.multi_id == 0:
|
|
sensor_accel_0 = d.data
|
|
print('found accel 0 data')
|
|
num_accels += 1
|
|
elif d.multi_id == 1:
|
|
sensor_accel_1 = d.data
|
|
print('found accel 1 data')
|
|
num_accels += 1
|
|
elif d.multi_id == 2:
|
|
sensor_accel_2 = d.data
|
|
print('found accel 2 data')
|
|
num_accels += 1
|
|
elif d.multi_id == 3:
|
|
sensor_accel_3 = d.data
|
|
print('found accel 3 data')
|
|
num_accels += 1
|
|
|
|
# extract baro data
|
|
num_baros = 0
|
|
for d in data:
|
|
if d.name == 'sensor_baro':
|
|
if d.multi_id == 0:
|
|
sensor_baro_0 = d.data
|
|
print('found baro 0 data')
|
|
num_baros += 1
|
|
elif d.multi_id == 1:
|
|
sensor_baro_1 = d.data
|
|
print('found baro 1 data')
|
|
num_baros += 1
|
|
elif d.multi_id == 2:
|
|
sensor_baro_2 = d.data
|
|
print('found baro 2 data')
|
|
num_baros += 1
|
|
elif d.multi_id == 3:
|
|
sensor_baro_3 = d.data
|
|
print('found baro 3 data')
|
|
num_baros += 1
|
|
|
|
# open file to save plots to PDF
|
|
from matplotlib.backends.backend_pdf import PdfPages
|
|
output_plot_filename = ulog_file_name + ".pdf"
|
|
pp = PdfPages(output_plot_filename)
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of gyro 0 thermal correction parameters
|
|
gyro_0_params = {
|
|
'TC_G0_ID':0,
|
|
'TC_G0_TMIN':0.0,
|
|
'TC_G0_TMAX':0.0,
|
|
'TC_G0_TREF':0.0,
|
|
'TC_G0_X0_0':0.0,
|
|
'TC_G0_X1_0':0.0,
|
|
'TC_G0_X2_0':0.0,
|
|
'TC_G0_X3_0':0.0,
|
|
'TC_G0_X0_1':0.0,
|
|
'TC_G0_X1_1':0.0,
|
|
'TC_G0_X2_1':0.0,
|
|
'TC_G0_X3_1':0.0,
|
|
'TC_G0_X0_2':0.0,
|
|
'TC_G0_X1_2':0.0,
|
|
'TC_G0_X2_2':0.0,
|
|
'TC_G0_X3_2':0.0
|
|
}
|
|
|
|
# curve fit the data for gyro 0 corrections
|
|
if num_gyros >= 1 and not math.isnan(sensor_gyro_0['temperature'][0]):
|
|
gyro_0_params['TC_G0_ID'] = int(np.median(sensor_gyro_0['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
gyro_0_params['TC_G0_TMIN'] = np.amin(sensor_gyro_0['temperature'])
|
|
gyro_0_params['TC_G0_TMAX'] = np.amax(sensor_gyro_0['temperature'])
|
|
gyro_0_params['TC_G0_TREF'] = 0.5 * (gyro_0_params['TC_G0_TMIN'] + gyro_0_params['TC_G0_TMAX'])
|
|
temp_rel = sensor_gyro_0['temperature'] - gyro_0_params['TC_G0_TREF']
|
|
temp_rel_resample = np.linspace(gyro_0_params['TC_G0_TMIN']-gyro_0_params['TC_G0_TREF'], gyro_0_params['TC_G0_TMAX']-gyro_0_params['TC_G0_TREF'], 100)
|
|
temp_resample = temp_rel_resample + gyro_0_params['TC_G0_TREF']
|
|
|
|
# fit X axis
|
|
if noResample:
|
|
coef_gyro_0_x = np.polyfit(temp_rel,sensor_gyro_0['x'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_0['x'])
|
|
coef_gyro_0_x = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_0_params['TC_G0_X3_0'] = coef_gyro_0_x[0]
|
|
gyro_0_params['TC_G0_X2_0'] = coef_gyro_0_x[1]
|
|
gyro_0_params['TC_G0_X1_0'] = coef_gyro_0_x[2]
|
|
gyro_0_params['TC_G0_X0_0'] = coef_gyro_0_x[3]
|
|
fit_coef_gyro_0_x = np.poly1d(coef_gyro_0_x)
|
|
gyro_0_x_resample = fit_coef_gyro_0_x(temp_rel_resample)
|
|
|
|
# fit Y axis
|
|
if noResample:
|
|
coef_gyro_0_y = np.polyfit(temp_rel,sensor_gyro_0['y'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_0['y'])
|
|
coef_gyro_0_y = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_0_params['TC_G0_X3_1'] = coef_gyro_0_y[0]
|
|
gyro_0_params['TC_G0_X2_1'] = coef_gyro_0_y[1]
|
|
gyro_0_params['TC_G0_X1_1'] = coef_gyro_0_y[2]
|
|
gyro_0_params['TC_G0_X0_1'] = coef_gyro_0_y[3]
|
|
fit_coef_gyro_0_y = np.poly1d(coef_gyro_0_y)
|
|
gyro_0_y_resample = fit_coef_gyro_0_y(temp_rel_resample)
|
|
|
|
# fit Z axis
|
|
if noResample:
|
|
coef_gyro_0_z = np.polyfit(temp_rel,sensor_gyro_0['z'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_0['z'])
|
|
coef_gyro_0_z = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_0_params['TC_G0_X3_2'] = coef_gyro_0_z[0]
|
|
gyro_0_params['TC_G0_X2_2'] = coef_gyro_0_z[1]
|
|
gyro_0_params['TC_G0_X1_2'] = coef_gyro_0_z[2]
|
|
gyro_0_params['TC_G0_X0_2'] = coef_gyro_0_z[3]
|
|
fit_coef_gyro_0_z = np.poly1d(coef_gyro_0_z)
|
|
gyro_0_z_resample = fit_coef_gyro_0_z(temp_rel_resample)
|
|
|
|
# gyro0 vs temperature
|
|
plt.figure(1,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,1)
|
|
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['x'],'b')
|
|
plt.plot(temp_resample,gyro_0_x_resample,'r')
|
|
plt.title('Gyro 0 ({}) Bias vs Temperature'.format(gyro_0_params['TC_G0_ID']))
|
|
plt.ylabel('X bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,2)
|
|
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['y'],'b')
|
|
plt.plot(temp_resample,gyro_0_y_resample,'r')
|
|
plt.ylabel('Y bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,3)
|
|
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['z'],'b')
|
|
plt.plot(temp_resample,gyro_0_z_resample,'r')
|
|
plt.ylabel('Z bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
#################################################################################
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of gyro 1 thermal correction parameters
|
|
gyro_1_params = {
|
|
'TC_G1_ID':0,
|
|
'TC_G1_TMIN':0.0,
|
|
'TC_G1_TMAX':0.0,
|
|
'TC_G1_TREF':0.0,
|
|
'TC_G1_X0_0':0.0,
|
|
'TC_G1_X1_0':0.0,
|
|
'TC_G1_X2_0':0.0,
|
|
'TC_G1_X3_0':0.0,
|
|
'TC_G1_X0_1':0.0,
|
|
'TC_G1_X1_1':0.0,
|
|
'TC_G1_X2_1':0.0,
|
|
'TC_G1_X3_1':0.0,
|
|
'TC_G1_X0_2':0.0,
|
|
'TC_G1_X1_2':0.0,
|
|
'TC_G1_X2_2':0.0,
|
|
'TC_G1_X3_2':0.0
|
|
}
|
|
|
|
# curve fit the data for gyro 1 corrections
|
|
if num_gyros >= 2 and not math.isnan(sensor_gyro_1['temperature'][0]):
|
|
gyro_1_params['TC_G1_ID'] = int(np.median(sensor_gyro_1['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
gyro_1_params['TC_G1_TMIN'] = np.amin(sensor_gyro_1['temperature'])
|
|
gyro_1_params['TC_G1_TMAX'] = np.amax(sensor_gyro_1['temperature'])
|
|
gyro_1_params['TC_G1_TREF'] = 0.5 * (gyro_1_params['TC_G1_TMIN'] + gyro_1_params['TC_G1_TMAX'])
|
|
temp_rel = sensor_gyro_1['temperature'] - gyro_1_params['TC_G1_TREF']
|
|
temp_rel_resample = np.linspace(gyro_1_params['TC_G1_TMIN']-gyro_1_params['TC_G1_TREF'], gyro_1_params['TC_G1_TMAX']-gyro_1_params['TC_G1_TREF'], 100)
|
|
temp_resample = temp_rel_resample + gyro_1_params['TC_G1_TREF']
|
|
|
|
# fit X axis
|
|
if noResample:
|
|
coef_gyro_1_x = np.polyfit(temp_rel,sensor_gyro_1['x'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_1['x'])
|
|
coef_gyro_1_x = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_1_params['TC_G1_X3_0'] = coef_gyro_1_x[0]
|
|
gyro_1_params['TC_G1_X2_0'] = coef_gyro_1_x[1]
|
|
gyro_1_params['TC_G1_X1_0'] = coef_gyro_1_x[2]
|
|
gyro_1_params['TC_G1_X0_0'] = coef_gyro_1_x[3]
|
|
fit_coef_gyro_1_x = np.poly1d(coef_gyro_1_x)
|
|
gyro_1_x_resample = fit_coef_gyro_1_x(temp_rel_resample)
|
|
|
|
# fit Y axis
|
|
if noResample:
|
|
coef_gyro_1_y = np.polyfit(temp_rel,sensor_gyro_1['y'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_1['y'])
|
|
coef_gyro_1_y = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_1_params['TC_G1_X3_1'] = coef_gyro_1_y[0]
|
|
gyro_1_params['TC_G1_X2_1'] = coef_gyro_1_y[1]
|
|
gyro_1_params['TC_G1_X1_1'] = coef_gyro_1_y[2]
|
|
gyro_1_params['TC_G1_X0_1'] = coef_gyro_1_y[3]
|
|
fit_coef_gyro_1_y = np.poly1d(coef_gyro_1_y)
|
|
gyro_1_y_resample = fit_coef_gyro_1_y(temp_rel_resample)
|
|
|
|
# fit Z axis
|
|
if noResample:
|
|
coef_gyro_1_z = np.polyfit(temp_rel,sensor_gyro_1['z'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_1['z'])
|
|
coef_gyro_1_z = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_1_params['TC_G1_X3_2'] = coef_gyro_1_z[0]
|
|
gyro_1_params['TC_G1_X2_2'] = coef_gyro_1_z[1]
|
|
gyro_1_params['TC_G1_X1_2'] = coef_gyro_1_z[2]
|
|
gyro_1_params['TC_G1_X0_2'] = coef_gyro_1_z[3]
|
|
fit_coef_gyro_1_z = np.poly1d(coef_gyro_1_z)
|
|
gyro_1_z_resample = fit_coef_gyro_1_z(temp_rel_resample)
|
|
|
|
# gyro1 vs temperature
|
|
plt.figure(2,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,1)
|
|
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['x'],'b')
|
|
plt.plot(temp_resample,gyro_1_x_resample,'r')
|
|
plt.title('Gyro 1 ({}) Bias vs Temperature'.format(gyro_1_params['TC_G1_ID']))
|
|
plt.ylabel('X bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,2)
|
|
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['y'],'b')
|
|
plt.plot(temp_resample,gyro_1_y_resample,'r')
|
|
plt.ylabel('Y bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,3)
|
|
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['z'],'b')
|
|
plt.plot(temp_resample,gyro_1_z_resample,'r')
|
|
plt.ylabel('Z bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
#################################################################################
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of gyro 2 thermal correction parameters
|
|
gyro_2_params = {
|
|
'TC_G2_ID':0,
|
|
'TC_G2_TMIN':0.0,
|
|
'TC_G2_TMAX':0.0,
|
|
'TC_G2_TREF':0.0,
|
|
'TC_G2_X0_0':0.0,
|
|
'TC_G2_X1_0':0.0,
|
|
'TC_G2_X2_0':0.0,
|
|
'TC_G2_X3_0':0.0,
|
|
'TC_G2_X0_1':0.0,
|
|
'TC_G2_X1_1':0.0,
|
|
'TC_G2_X2_1':0.0,
|
|
'TC_G2_X3_1':0.0,
|
|
'TC_G2_X0_2':0.0,
|
|
'TC_G2_X1_2':0.0,
|
|
'TC_G2_X2_2':0.0,
|
|
'TC_G2_X3_2':0.0
|
|
}
|
|
|
|
# curve fit the data for gyro 2 corrections
|
|
if num_gyros >= 3 and not math.isnan(sensor_gyro_2['temperature'][0]):
|
|
gyro_2_params['TC_G2_ID'] = int(np.median(sensor_gyro_2['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
gyro_2_params['TC_G2_TMIN'] = np.amin(sensor_gyro_2['temperature'])
|
|
gyro_2_params['TC_G2_TMAX'] = np.amax(sensor_gyro_2['temperature'])
|
|
gyro_2_params['TC_G2_TREF'] = 0.5 * (gyro_2_params['TC_G2_TMIN'] + gyro_2_params['TC_G2_TMAX'])
|
|
temp_rel = sensor_gyro_2['temperature'] - gyro_2_params['TC_G2_TREF']
|
|
temp_rel_resample = np.linspace(gyro_2_params['TC_G2_TMIN']-gyro_2_params['TC_G2_TREF'], gyro_2_params['TC_G2_TMAX']-gyro_2_params['TC_G2_TREF'], 100)
|
|
temp_resample = temp_rel_resample + gyro_2_params['TC_G2_TREF']
|
|
|
|
# fit X axis
|
|
if noResample:
|
|
coef_gyro_2_x = np.polyfit(temp_rel,sensor_gyro_2['x'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_2['x'])
|
|
coef_gyro_2_x = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_2_params['TC_G2_X3_0'] = coef_gyro_2_x[0]
|
|
gyro_2_params['TC_G2_X2_0'] = coef_gyro_2_x[1]
|
|
gyro_2_params['TC_G2_X1_0'] = coef_gyro_2_x[2]
|
|
gyro_2_params['TC_G2_X0_0'] = coef_gyro_2_x[3]
|
|
fit_coef_gyro_2_x = np.poly1d(coef_gyro_2_x)
|
|
gyro_2_x_resample = fit_coef_gyro_2_x(temp_rel_resample)
|
|
|
|
# fit Y axis
|
|
if noResample:
|
|
coef_gyro_2_y = np.polyfit(temp_rel,sensor_gyro_2['y'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_2['y'])
|
|
coef_gyro_2_y = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_2_params['TC_G2_X3_1'] = coef_gyro_2_y[0]
|
|
gyro_2_params['TC_G2_X2_1'] = coef_gyro_2_y[1]
|
|
gyro_2_params['TC_G2_X1_1'] = coef_gyro_2_y[2]
|
|
gyro_2_params['TC_G2_X0_1'] = coef_gyro_2_y[3]
|
|
fit_coef_gyro_2_y = np.poly1d(coef_gyro_2_y)
|
|
gyro_2_y_resample = fit_coef_gyro_2_y(temp_rel_resample)
|
|
|
|
# fit Z axis
|
|
if noResample:
|
|
coef_gyro_2_z = np.polyfit(temp_rel,sensor_gyro_2['z'],3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_2['z'])
|
|
coef_gyro_2_z = np.polyfit(temp, sens ,3)
|
|
|
|
gyro_2_params['TC_G2_X3_2'] = coef_gyro_2_z[0]
|
|
gyro_2_params['TC_G2_X2_2'] = coef_gyro_2_z[1]
|
|
gyro_2_params['TC_G2_X1_2'] = coef_gyro_2_z[2]
|
|
gyro_2_params['TC_G2_X0_2'] = coef_gyro_2_z[3]
|
|
fit_coef_gyro_2_z = np.poly1d(coef_gyro_2_z)
|
|
gyro_2_z_resample = fit_coef_gyro_2_z(temp_rel_resample)
|
|
|
|
# gyro2 vs temperature
|
|
plt.figure(3,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,1)
|
|
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['x'],'b')
|
|
plt.plot(temp_resample,gyro_2_x_resample,'r')
|
|
plt.title('Gyro 2 ({}) Bias vs Temperature'.format(gyro_2_params['TC_G2_ID']))
|
|
plt.ylabel('X bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,2)
|
|
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['y'],'b')
|
|
plt.plot(temp_resample,gyro_2_y_resample,'r')
|
|
plt.ylabel('Y bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,3)
|
|
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['z'],'b')
|
|
plt.plot(temp_resample,gyro_2_z_resample,'r')
|
|
plt.ylabel('Z bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
#################################################################################
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of gyro 3 thermal correction parameters
|
|
gyro_3_params = {
|
|
'TC_G3_ID':0,
|
|
'TC_G3_TMIN':0.0,
|
|
'TC_G3_TMAX':0.0,
|
|
'TC_G3_TREF':0.0,
|
|
'TC_G3_X0_0':0.0,
|
|
'TC_G3_X1_0':0.0,
|
|
'TC_G3_X2_0':0.0,
|
|
'TC_G3_X3_0':0.0,
|
|
'TC_G3_X0_1':0.0,
|
|
'TC_G3_X1_1':0.0,
|
|
'TC_G3_X2_1':0.0,
|
|
'TC_G3_X3_1':0.0,
|
|
'TC_G3_X0_2':0.0,
|
|
'TC_G3_X1_2':0.0,
|
|
'TC_G3_X2_2':0.0,
|
|
'TC_G3_X3_2':0.0
|
|
}
|
|
|
|
# curve fit the data for gyro 3 corrections
|
|
if num_gyros >= 4 and not math.isnan(sensor_gyro_3['temperature'][0]):
|
|
gyro_3_params['TC_G3_ID'] = int(np.median(sensor_gyro_3['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
gyro_3_params['TC_G3_TMIN'] = np.amin(sensor_gyro_3['temperature'])
|
|
gyro_3_params['TC_G3_TMAX'] = np.amax(sensor_gyro_3['temperature'])
|
|
gyro_3_params['TC_G3_TREF'] = 0.5 * (gyro_3_params['TC_G3_TMIN'] + gyro_3_params['TC_G3_TMAX'])
|
|
temp_rel = sensor_gyro_3['temperature'] - gyro_3_params['TC_G3_TREF']
|
|
temp_rel_resample = np.linspace(gyro_3_params['TC_G3_TMIN']-gyro_3_params['TC_G3_TREF'], gyro_3_params['TC_G3_TMAX']-gyro_3_params['TC_G3_TREF'], 100)
|
|
temp_resample = temp_rel_resample + gyro_3_params['TC_G3_TREF']
|
|
|
|
# fit X axis
|
|
coef_gyro_3_x = np.polyfit(temp_rel,sensor_gyro_3['x'],3)
|
|
gyro_3_params['TC_G3_X3_0'] = coef_gyro_3_x[0]
|
|
gyro_3_params['TC_G3_X2_0'] = coef_gyro_3_x[1]
|
|
gyro_3_params['TC_G3_X1_0'] = coef_gyro_3_x[2]
|
|
gyro_3_params['TC_G3_X0_0'] = coef_gyro_3_x[3]
|
|
fit_coef_gyro_3_x = np.poly1d(coef_gyro_3_x)
|
|
gyro_3_x_resample = fit_coef_gyro_3_x(temp_rel_resample)
|
|
|
|
# fit Y axis
|
|
coef_gyro_3_y = np.polyfit(temp_rel,sensor_gyro_3['y'],3)
|
|
gyro_3_params['TC_G3_X3_1'] = coef_gyro_3_y[0]
|
|
gyro_3_params['TC_G3_X2_1'] = coef_gyro_3_y[1]
|
|
gyro_3_params['TC_G3_X1_1'] = coef_gyro_3_y[2]
|
|
gyro_3_params['TC_G3_X0_1'] = coef_gyro_3_y[3]
|
|
fit_coef_gyro_3_y = np.poly1d(coef_gyro_3_y)
|
|
gyro_3_y_resample = fit_coef_gyro_3_y(temp_rel_resample)
|
|
|
|
# fit Z axis
|
|
coef_gyro_3_z = np.polyfit(temp_rel,sensor_gyro_3['z'],3)
|
|
gyro_3_params['TC_G3_X3_2'] = coef_gyro_3_z[0]
|
|
gyro_3_params['TC_G3_X2_2'] = coef_gyro_3_z[1]
|
|
gyro_3_params['TC_G3_X1_2'] = coef_gyro_3_z[2]
|
|
gyro_3_params['TC_G3_X0_2'] = coef_gyro_3_z[3]
|
|
fit_coef_gyro_3_z = np.poly1d(coef_gyro_3_z)
|
|
gyro_3_z_resample = fit_coef_gyro_3_z(temp_rel_resample)
|
|
|
|
# gyro3 vs temperature
|
|
plt.figure(4,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,1)
|
|
plt.plot(sensor_gyro_3['temperature'],sensor_gyro_3['x'],'b')
|
|
plt.plot(temp_resample,gyro_3_x_resample,'r')
|
|
plt.title('Gyro 2 ({}) Bias vs Temperature'.format(gyro_3_params['TC_G3_ID']))
|
|
plt.ylabel('X bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,2)
|
|
plt.plot(sensor_gyro_3['temperature'],sensor_gyro_3['y'],'b')
|
|
plt.plot(temp_resample,gyro_3_y_resample,'r')
|
|
plt.ylabel('Y bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,3)
|
|
plt.plot(sensor_gyro_3['temperature'],sensor_gyro_3['z'],'b')
|
|
plt.plot(temp_resample,gyro_3_z_resample,'r')
|
|
plt.ylabel('Z bias (rad/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
#################################################################################
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of accel 0 thermal correction parameters
|
|
accel_0_params = {
|
|
'TC_A0_ID':0,
|
|
'TC_A0_TMIN':0.0,
|
|
'TC_A0_TMAX':0.0,
|
|
'TC_A0_TREF':0.0,
|
|
'TC_A0_X0_0':0.0,
|
|
'TC_A0_X1_0':0.0,
|
|
'TC_A0_X2_0':0.0,
|
|
'TC_A0_X3_0':0.0,
|
|
'TC_A0_X0_1':0.0,
|
|
'TC_A0_X1_1':0.0,
|
|
'TC_A0_X2_1':0.0,
|
|
'TC_A0_X3_1':0.0,
|
|
'TC_A0_X0_2':0.0,
|
|
'TC_A0_X1_2':0.0,
|
|
'TC_A0_X2_2':0.0,
|
|
'TC_A0_X3_2':0.0
|
|
}
|
|
|
|
# curve fit the data for accel 0 corrections
|
|
if num_accels >= 1 and not math.isnan(sensor_accel_0['temperature'][0]):
|
|
accel_0_params['TC_A0_ID'] = int(np.median(sensor_accel_0['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
accel_0_params['TC_A0_TMIN'] = np.amin(sensor_accel_0['temperature'])
|
|
accel_0_params['TC_A0_TMAX'] = np.amax(sensor_accel_0['temperature'])
|
|
accel_0_params['TC_A0_TREF'] = 0.5 * (accel_0_params['TC_A0_TMIN'] + accel_0_params['TC_A0_TMAX'])
|
|
temp_rel = sensor_accel_0['temperature'] - accel_0_params['TC_A0_TREF']
|
|
temp_rel_resample = np.linspace(accel_0_params['TC_A0_TMIN']-accel_0_params['TC_A0_TREF'], accel_0_params['TC_A0_TMAX']-accel_0_params['TC_A0_TREF'], 100)
|
|
temp_resample = temp_rel_resample + accel_0_params['TC_A0_TREF']
|
|
|
|
# fit X axis
|
|
correction_x = sensor_accel_0['x'] - np.median(sensor_accel_0['x'])
|
|
if noResample:
|
|
coef_accel_0_x = np.polyfit(temp_rel,correction_x,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_x)
|
|
coef_accel_0_x = np.polyfit(temp, sens ,3)
|
|
|
|
accel_0_params['TC_A0_X3_0'] = coef_accel_0_x[0]
|
|
accel_0_params['TC_A0_X2_0'] = coef_accel_0_x[1]
|
|
accel_0_params['TC_A0_X1_0'] = coef_accel_0_x[2]
|
|
accel_0_params['TC_A0_X0_0'] = coef_accel_0_x[3]
|
|
fit_coef_accel_0_x = np.poly1d(coef_accel_0_x)
|
|
correction_x_resample = fit_coef_accel_0_x(temp_rel_resample)
|
|
|
|
# fit Y axis
|
|
correction_y = sensor_accel_0['y']-np.median(sensor_accel_0['y'])
|
|
if noResample:
|
|
coef_accel_0_y = np.polyfit(temp_rel,correction_y,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_y)
|
|
coef_accel_0_y = np.polyfit(temp, sens ,3)
|
|
|
|
accel_0_params['TC_A0_X3_1'] = coef_accel_0_y[0]
|
|
accel_0_params['TC_A0_X2_1'] = coef_accel_0_y[1]
|
|
accel_0_params['TC_A0_X1_1'] = coef_accel_0_y[2]
|
|
accel_0_params['TC_A0_X0_1'] = coef_accel_0_y[3]
|
|
fit_coef_accel_0_y = np.poly1d(coef_accel_0_y)
|
|
correction_y_resample = fit_coef_accel_0_y(temp_rel_resample)
|
|
|
|
# fit Z axis
|
|
correction_z = sensor_accel_0['z']-np.median(sensor_accel_0['z'])
|
|
if noResample:
|
|
coef_accel_0_z = np.polyfit(temp_rel,correction_z,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_z)
|
|
coef_accel_0_z = np.polyfit(temp, sens ,3)
|
|
|
|
accel_0_params['TC_A0_X3_2'] = coef_accel_0_z[0]
|
|
accel_0_params['TC_A0_X2_2'] = coef_accel_0_z[1]
|
|
accel_0_params['TC_A0_X1_2'] = coef_accel_0_z[2]
|
|
accel_0_params['TC_A0_X0_2'] = coef_accel_0_z[3]
|
|
fit_coef_accel_0_z = np.poly1d(coef_accel_0_z)
|
|
correction_z_resample = fit_coef_accel_0_z(temp_rel_resample)
|
|
|
|
# accel 0 vs temperature
|
|
plt.figure(5,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,1)
|
|
plt.plot(sensor_accel_0['temperature'],correction_x,'b')
|
|
plt.plot(temp_resample,correction_x_resample,'r')
|
|
plt.title('Accel 0 ({}) Bias vs Temperature'.format(accel_0_params['TC_A0_ID']))
|
|
plt.ylabel('X bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,2)
|
|
plt.plot(sensor_accel_0['temperature'],correction_y,'b')
|
|
plt.plot(temp_resample,correction_y_resample,'r')
|
|
plt.ylabel('Y bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,3)
|
|
plt.plot(sensor_accel_0['temperature'],correction_z,'b')
|
|
plt.plot(temp_resample,correction_z_resample,'r')
|
|
plt.ylabel('Z bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
#################################################################################
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of accel 1 thermal correction parameters
|
|
accel_1_params = {
|
|
'TC_A1_ID':0,
|
|
'TC_A1_TMIN':0.0,
|
|
'TC_A1_TMAX':0.0,
|
|
'TC_A1_TREF':0.0,
|
|
'TC_A1_X0_0':0.0,
|
|
'TC_A1_X1_0':0.0,
|
|
'TC_A1_X2_0':0.0,
|
|
'TC_A1_X3_0':0.0,
|
|
'TC_A1_X0_1':0.0,
|
|
'TC_A1_X1_1':0.0,
|
|
'TC_A1_X2_1':0.0,
|
|
'TC_A1_X3_1':0.0,
|
|
'TC_A1_X0_2':0.0,
|
|
'TC_A1_X1_2':0.0,
|
|
'TC_A1_X2_2':0.0,
|
|
'TC_A1_X3_2':0.0
|
|
}
|
|
|
|
# curve fit the data for accel 1 corrections
|
|
if num_accels >= 2 and not math.isnan(sensor_accel_1['temperature'][0]):
|
|
accel_1_params['TC_A1_ID'] = int(np.median(sensor_accel_1['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
accel_1_params['TC_A1_TMIN'] = np.amin(sensor_accel_1['temperature'])
|
|
accel_1_params['TC_A1_TMAX'] = np.amax(sensor_accel_1['temperature'])
|
|
accel_1_params['TC_A1_TREF'] = 0.5 * (accel_1_params['TC_A1_TMIN'] + accel_1_params['TC_A1_TMAX'])
|
|
temp_rel = sensor_accel_1['temperature'] - accel_1_params['TC_A1_TREF']
|
|
temp_rel_resample = np.linspace(accel_1_params['TC_A1_TMIN']-accel_1_params['TC_A1_TREF'], accel_1_params['TC_A1_TMAX']-accel_1_params['TC_A1_TREF'], 100)
|
|
temp_resample = temp_rel_resample + accel_1_params['TC_A1_TREF']
|
|
|
|
# fit X axis
|
|
correction_x = sensor_accel_1['x']-np.median(sensor_accel_1['x'])
|
|
if noResample:
|
|
coef_accel_1_x = np.polyfit(temp_rel,correction_x,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_x)
|
|
coef_accel_1_x = np.polyfit(temp, sens ,3)
|
|
|
|
accel_1_params['TC_A1_X3_0'] = coef_accel_1_x[0]
|
|
accel_1_params['TC_A1_X2_0'] = coef_accel_1_x[1]
|
|
accel_1_params['TC_A1_X1_0'] = coef_accel_1_x[2]
|
|
accel_1_params['TC_A1_X0_0'] = coef_accel_1_x[3]
|
|
fit_coef_accel_1_x = np.poly1d(coef_accel_1_x)
|
|
correction_x_resample = fit_coef_accel_1_x(temp_rel_resample)
|
|
|
|
# fit Y axis
|
|
correction_y = sensor_accel_1['y']-np.median(sensor_accel_1['y'])
|
|
if noResample:
|
|
coef_accel_1_y = np.polyfit(temp_rel,correction_y,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_y)
|
|
coef_accel_1_y = np.polyfit(temp, sens ,3)
|
|
|
|
accel_1_params['TC_A1_X3_1'] = coef_accel_1_y[0]
|
|
accel_1_params['TC_A1_X2_1'] = coef_accel_1_y[1]
|
|
accel_1_params['TC_A1_X1_1'] = coef_accel_1_y[2]
|
|
accel_1_params['TC_A1_X0_1'] = coef_accel_1_y[3]
|
|
fit_coef_accel_1_y = np.poly1d(coef_accel_1_y)
|
|
correction_y_resample = fit_coef_accel_1_y(temp_rel_resample)
|
|
|
|
# fit Z axis
|
|
correction_z = (sensor_accel_1['z'])-np.median(sensor_accel_1['z'])
|
|
if noResample:
|
|
coef_accel_1_z = np.polyfit(temp_rel,correction_z,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_z)
|
|
coef_accel_1_z = np.polyfit(temp, sens ,3)
|
|
|
|
accel_1_params['TC_A1_X3_2'] = coef_accel_1_z[0]
|
|
accel_1_params['TC_A1_X2_2'] = coef_accel_1_z[1]
|
|
accel_1_params['TC_A1_X1_2'] = coef_accel_1_z[2]
|
|
accel_1_params['TC_A1_X0_2'] = coef_accel_1_z[3]
|
|
fit_coef_accel_1_z = np.poly1d(coef_accel_1_z)
|
|
correction_z_resample = fit_coef_accel_1_z(temp_rel_resample)
|
|
|
|
# accel 1 vs temperature
|
|
plt.figure(6,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,1)
|
|
plt.plot(sensor_accel_1['temperature'],correction_x,'b')
|
|
plt.plot(temp_resample,correction_x_resample,'r')
|
|
plt.title('Accel 1 ({}) Bias vs Temperature'.format(accel_1_params['TC_A1_ID']))
|
|
plt.ylabel('X bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,2)
|
|
plt.plot(sensor_accel_1['temperature'],correction_y,'b')
|
|
plt.plot(temp_resample,correction_y_resample,'r')
|
|
plt.ylabel('Y bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,3)
|
|
plt.plot(sensor_accel_1['temperature'],correction_z,'b')
|
|
plt.plot(temp_resample,correction_z_resample,'r')
|
|
plt.ylabel('Z bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
|
|
#################################################################################
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of accel 2 thermal correction parameters
|
|
accel_2_params = {
|
|
'TC_A2_ID':0,
|
|
'TC_A2_TMIN':0.0,
|
|
'TC_A2_TMAX':0.0,
|
|
'TC_A2_TREF':0.0,
|
|
'TC_A2_X0_0':0.0,
|
|
'TC_A2_X1_0':0.0,
|
|
'TC_A2_X2_0':0.0,
|
|
'TC_A2_X3_0':0.0,
|
|
'TC_A2_X0_1':0.0,
|
|
'TC_A2_X1_1':0.0,
|
|
'TC_A2_X2_1':0.0,
|
|
'TC_A2_X3_1':0.0,
|
|
'TC_A2_X0_2':0.0,
|
|
'TC_A2_X1_2':0.0,
|
|
'TC_A2_X2_2':0.0,
|
|
'TC_A2_X3_2':0.0
|
|
}
|
|
|
|
# curve fit the data for accel 2 corrections
|
|
if num_accels >= 3 and not math.isnan(sensor_accel_2['temperature'][0]):
|
|
accel_2_params['TC_A2_ID'] = int(np.median(sensor_accel_2['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
accel_2_params['TC_A2_TMIN'] = np.amin(sensor_accel_2['temperature'])
|
|
accel_2_params['TC_A2_TMAX'] = np.amax(sensor_accel_2['temperature'])
|
|
accel_2_params['TC_A2_TREF'] = 0.5 * (accel_2_params['TC_A2_TMIN'] + accel_2_params['TC_A2_TMAX'])
|
|
temp_rel = sensor_accel_2['temperature'] - accel_2_params['TC_A2_TREF']
|
|
temp_rel_resample = np.linspace(accel_2_params['TC_A2_TMIN']-accel_2_params['TC_A2_TREF'], accel_2_params['TC_A2_TMAX']-accel_2_params['TC_A2_TREF'], 100)
|
|
temp_resample = temp_rel_resample + accel_2_params['TC_A2_TREF']
|
|
|
|
# fit X axis
|
|
correction_x = sensor_accel_2['x']-np.median(sensor_accel_2['x'])
|
|
if noResample:
|
|
coef_accel_2_x = np.polyfit(temp_rel,correction_x,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_x)
|
|
coef_accel_2_x = np.polyfit(temp, sens ,3)
|
|
|
|
accel_2_params['TC_A2_X3_0'] = coef_accel_2_x[0]
|
|
accel_2_params['TC_A2_X2_0'] = coef_accel_2_x[1]
|
|
accel_2_params['TC_A2_X1_0'] = coef_accel_2_x[2]
|
|
accel_2_params['TC_A2_X0_0'] = coef_accel_2_x[3]
|
|
fit_coef_accel_2_x = np.poly1d(coef_accel_2_x)
|
|
correction_x_resample = fit_coef_accel_2_x(temp_rel_resample)
|
|
|
|
# fit Y axis
|
|
correction_y = sensor_accel_2['y']-np.median(sensor_accel_2['y'])
|
|
if noResample:
|
|
coef_accel_2_y = np.polyfit(temp_rel,correction_y,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_y)
|
|
coef_accel_2_y = np.polyfit(temp, sens ,3)
|
|
|
|
accel_2_params['TC_A2_X3_1'] = coef_accel_2_y[0]
|
|
accel_2_params['TC_A2_X2_1'] = coef_accel_2_y[1]
|
|
accel_2_params['TC_A2_X1_1'] = coef_accel_2_y[2]
|
|
accel_2_params['TC_A2_X0_1'] = coef_accel_2_y[3]
|
|
fit_coef_accel_2_y = np.poly1d(coef_accel_2_y)
|
|
correction_y_resample = fit_coef_accel_2_y(temp_rel_resample)
|
|
|
|
# fit Z axis
|
|
correction_z = sensor_accel_2['z']-np.median(sensor_accel_2['z'])
|
|
if noResample:
|
|
coef_accel_2_z = np.polyfit(temp_rel,correction_z,3)
|
|
else:
|
|
temp, sens = resampleWithDeltaX(temp_rel,correction_z)
|
|
coef_accel_2_z = np.polyfit(temp, sens ,3)
|
|
|
|
accel_2_params['TC_A2_X3_2'] = coef_accel_2_z[0]
|
|
accel_2_params['TC_A2_X2_2'] = coef_accel_2_z[1]
|
|
accel_2_params['TC_A2_X1_2'] = coef_accel_2_z[2]
|
|
accel_2_params['TC_A2_X0_2'] = coef_accel_2_z[3]
|
|
fit_coef_accel_2_z = np.poly1d(coef_accel_2_z)
|
|
correction_z_resample = fit_coef_accel_2_z(temp_rel_resample)
|
|
|
|
# accel 2 vs temperature
|
|
plt.figure(7,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,1)
|
|
plt.plot(sensor_accel_2['temperature'],correction_x,'b')
|
|
plt.plot(temp_resample,correction_x_resample,'r')
|
|
plt.title('Accel 2 ({}) Bias vs Temperature'.format(accel_2_params['TC_A2_ID']))
|
|
plt.ylabel('X bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,2)
|
|
plt.plot(sensor_accel_2['temperature'],correction_y,'b')
|
|
plt.plot(temp_resample,correction_y_resample,'r')
|
|
plt.ylabel('Y bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,3)
|
|
plt.plot(sensor_accel_2['temperature'],correction_z,'b')
|
|
plt.plot(temp_resample,correction_z_resample,'r')
|
|
plt.ylabel('Z bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
#################################################################################
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of accel 3 thermal correction parameters
|
|
accel_3_params = {
|
|
'TC_A3_ID':0,
|
|
'TC_A3_TMIN':0.0,
|
|
'TC_A3_TMAX':0.0,
|
|
'TC_A3_TREF':0.0,
|
|
'TC_A3_X0_0':0.0,
|
|
'TC_A3_X1_0':0.0,
|
|
'TC_A3_X2_0':0.0,
|
|
'TC_A3_X3_0':0.0,
|
|
'TC_A3_X0_1':0.0,
|
|
'TC_A3_X1_1':0.0,
|
|
'TC_A3_X2_1':0.0,
|
|
'TC_A3_X3_1':0.0,
|
|
'TC_A3_X0_2':0.0,
|
|
'TC_A3_X1_2':0.0,
|
|
'TC_A3_X2_2':0.0,
|
|
'TC_A3_X3_2':0.0
|
|
}
|
|
|
|
# curve fit the data for accel 2 corrections
|
|
if num_accels >= 4 and not math.isnan(sensor_accel_3['temperature'][0]):
|
|
accel_3_params['TC_A3_ID'] = int(np.median(sensor_accel_3['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
accel_3_params['TC_A3_TMIN'] = np.amin(sensor_accel_3['temperature'])
|
|
accel_3_params['TC_A3_TMAX'] = np.amax(sensor_accel_3['temperature'])
|
|
accel_3_params['TC_A3_TREF'] = 0.5 * (accel_3_params['TC_A3_TMIN'] + accel_3_params['TC_A3_TMAX'])
|
|
temp_rel = sensor_accel_3['temperature'] - accel_3_params['TC_A3_TREF']
|
|
temp_rel_resample = np.linspace(accel_3_params['TC_A3_TMIN']-accel_3_params['TC_A3_TREF'], accel_3_params['TC_A3_TMAX']-accel_3_params['TC_A3_TREF'], 100)
|
|
temp_resample = temp_rel_resample + accel_3_params['TC_A3_TREF']
|
|
|
|
# fit X axis
|
|
correction_x = sensor_accel_3['x']-np.median(sensor_accel_3['x'])
|
|
coef_accel_3_x = np.polyfit(temp_rel,correction_x,3)
|
|
accel_3_params['TC_A3_X3_0'] = coef_accel_3_x[0]
|
|
accel_3_params['TC_A3_X2_0'] = coef_accel_3_x[1]
|
|
accel_3_params['TC_A3_X1_0'] = coef_accel_3_x[2]
|
|
accel_3_params['TC_A3_X0_0'] = coef_accel_3_x[3]
|
|
fit_coef_accel_3_x = np.poly1d(coef_accel_3_x)
|
|
correction_x_resample = fit_coef_accel_3_x(temp_rel_resample)
|
|
|
|
# fit Y axis
|
|
correction_y = sensor_accel_3['y']-np.median(sensor_accel_3['y'])
|
|
coef_accel_3_y = np.polyfit(temp_rel,correction_y,3)
|
|
accel_3_params['TC_A3_X3_1'] = coef_accel_3_y[0]
|
|
accel_3_params['TC_A3_X2_1'] = coef_accel_3_y[1]
|
|
accel_3_params['TC_A3_X1_1'] = coef_accel_3_y[2]
|
|
accel_3_params['TC_A3_X0_1'] = coef_accel_3_y[3]
|
|
fit_coef_accel_3_y = np.poly1d(coef_accel_3_y)
|
|
correction_y_resample = fit_coef_accel_3_y(temp_rel_resample)
|
|
|
|
# fit Z axis
|
|
correction_z = sensor_accel_3['z']-np.median(sensor_accel_3['z'])
|
|
coef_accel_3_z = np.polyfit(temp_rel,correction_z,3)
|
|
accel_3_params['TC_A3_X3_2'] = coef_accel_3_z[0]
|
|
accel_3_params['TC_A3_X2_2'] = coef_accel_3_z[1]
|
|
accel_3_params['TC_A3_X1_2'] = coef_accel_3_z[2]
|
|
accel_3_params['TC_A3_X0_2'] = coef_accel_3_z[3]
|
|
fit_coef_accel_3_z = np.poly1d(coef_accel_3_z)
|
|
correction_z_resample = fit_coef_accel_3_z(temp_rel_resample)
|
|
|
|
# accel 3 vs temperature
|
|
plt.figure(8,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,1)
|
|
plt.plot(sensor_accel_3['temperature'],correction_x,'b')
|
|
plt.plot(temp_resample,correction_x_resample,'r')
|
|
plt.title('Accel 3 ({}) Bias vs Temperature'.format(accel_3_params['TC_A3_ID']))
|
|
plt.ylabel('X bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,2)
|
|
plt.plot(sensor_accel_3['temperature'],correction_y,'b')
|
|
plt.plot(temp_resample,correction_y_resample,'r')
|
|
plt.ylabel('Y bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
# draw plots
|
|
plt.subplot(3,1,3)
|
|
plt.plot(sensor_accel_3['temperature'],correction_z,'b')
|
|
plt.plot(temp_resample,correction_z_resample,'r')
|
|
plt.ylabel('Z bias (m/s/s)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
#################################################################################
|
|
|
|
#################################################################################
|
|
|
|
# define data dictionary of baro 0 thermal correction parameters
|
|
baro_0_params = {
|
|
'TC_B0_ID':0,
|
|
'TC_B0_TMIN':0.0,
|
|
'TC_B0_TMAX':0.0,
|
|
'TC_B0_TREF':0.0,
|
|
'TC_B0_X0':0.0,
|
|
'TC_B0_X1':0.0,
|
|
'TC_B0_X2':0.0,
|
|
'TC_B0_X3':0.0,
|
|
'TC_B0_X4':0.0,
|
|
'TC_B0_X5':0.0
|
|
}
|
|
|
|
# curve fit the data for baro 0 corrections
|
|
baro_0_params['TC_B0_ID'] = int(np.median(sensor_baro_0['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
baro_0_params['TC_B0_TMIN'] = np.amin(sensor_baro_0['temperature'])
|
|
baro_0_params['TC_B0_TMAX'] = np.amax(sensor_baro_0['temperature'])
|
|
baro_0_params['TC_B0_TREF'] = 0.5 * (baro_0_params['TC_B0_TMIN'] + baro_0_params['TC_B0_TMAX'])
|
|
temp_rel = sensor_baro_0['temperature'] - baro_0_params['TC_B0_TREF']
|
|
temp_rel_resample = np.linspace(baro_0_params['TC_B0_TMIN']-baro_0_params['TC_B0_TREF'], baro_0_params['TC_B0_TMAX']-baro_0_params['TC_B0_TREF'], 100)
|
|
temp_resample = temp_rel_resample + baro_0_params['TC_B0_TREF']
|
|
|
|
# fit data
|
|
median_pressure = np.median(sensor_baro_0['pressure']);
|
|
if noResample:
|
|
coef_baro_0_x = np.polyfit(temp_rel,100*(sensor_baro_0['pressure']-median_pressure),5) # convert from hPa to Pa
|
|
else:
|
|
temperature, baro = resampleWithDeltaX(temp_rel,100*(sensor_baro_0['pressure']-median_pressure)) # convert from hPa to Pa
|
|
coef_baro_0_x = np.polyfit(temperature,baro,5)
|
|
|
|
baro_0_params['TC_B0_X5'] = coef_baro_0_x[0]
|
|
baro_0_params['TC_B0_X4'] = coef_baro_0_x[1]
|
|
baro_0_params['TC_B0_X3'] = coef_baro_0_x[2]
|
|
baro_0_params['TC_B0_X2'] = coef_baro_0_x[3]
|
|
baro_0_params['TC_B0_X1'] = coef_baro_0_x[4]
|
|
baro_0_params['TC_B0_X0'] = coef_baro_0_x[5]
|
|
fit_coef_baro_0_x = np.poly1d(coef_baro_0_x)
|
|
baro_0_x_resample = fit_coef_baro_0_x(temp_rel_resample)
|
|
|
|
# baro 0 vs temperature
|
|
plt.figure(9,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.plot(sensor_baro_0['temperature'],100*sensor_baro_0['pressure']-100*median_pressure,'b')
|
|
plt.plot(temp_resample,baro_0_x_resample,'r')
|
|
plt.title('Baro 0 ({}) Bias vs Temperature'.format(baro_0_params['TC_B0_ID']))
|
|
plt.ylabel('Z bias (Pa)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
# define data dictionary of baro 1 thermal correction parameters
|
|
baro_1_params = {
|
|
'TC_B1_ID':0,
|
|
'TC_B1_TMIN':0.0,
|
|
'TC_B1_TMAX':0.0,
|
|
'TC_B1_TREF':0.0,
|
|
'TC_B1_X0':0.0,
|
|
'TC_B1_X1':0.0,
|
|
'TC_B1_X2':0.0,
|
|
'TC_B1_X3':0.0,
|
|
'TC_B1_X4':0.0,
|
|
'TC_B1_X5':0.0,
|
|
}
|
|
|
|
if num_baros >= 2:
|
|
|
|
# curve fit the data for baro 1 corrections
|
|
baro_1_params['TC_B1_ID'] = int(np.median(sensor_baro_1['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
baro_1_params['TC_B1_TMIN'] = np.amin(sensor_baro_1['temperature'])
|
|
baro_1_params['TC_B1_TMAX'] = np.amax(sensor_baro_1['temperature'])
|
|
baro_1_params['TC_B1_TREF'] = 0.5 * (baro_1_params['TC_B1_TMIN'] + baro_1_params['TC_B1_TMAX'])
|
|
temp_rel = sensor_baro_1['temperature'] - baro_1_params['TC_B1_TREF']
|
|
temp_rel_resample = np.linspace(baro_1_params['TC_B1_TMIN']-baro_1_params['TC_B1_TREF'], baro_1_params['TC_B1_TMAX']-baro_1_params['TC_B1_TREF'], 100)
|
|
temp_resample = temp_rel_resample + baro_1_params['TC_B1_TREF']
|
|
|
|
# fit data
|
|
median_pressure = np.median(sensor_baro_1['pressure']);
|
|
if noResample:
|
|
coef_baro_1_x = np.polyfit(temp_rel,100*(sensor_baro_1['pressure']-median_pressure),5) # convert from hPa to Pa
|
|
else:
|
|
temperature, baro = resampleWithDeltaX(temp_rel,100*(sensor_baro_1['pressure']-median_pressure)) # convert from hPa to Pa
|
|
coef_baro_1_x = np.polyfit(temperature,baro,5)
|
|
|
|
baro_1_params['TC_B1_X5'] = coef_baro_1_x[0]
|
|
baro_1_params['TC_B1_X4'] = coef_baro_1_x[1]
|
|
baro_1_params['TC_B1_X3'] = coef_baro_1_x[2]
|
|
baro_1_params['TC_B1_X2'] = coef_baro_1_x[3]
|
|
baro_1_params['TC_B1_X1'] = coef_baro_1_x[4]
|
|
baro_1_params['TC_B1_X0'] = coef_baro_1_x[5]
|
|
fit_coef_baro_1_x = np.poly1d(coef_baro_1_x)
|
|
baro_1_x_resample = fit_coef_baro_1_x(temp_rel_resample)
|
|
|
|
# baro 2 vs temperature
|
|
plt.figure(9,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.plot(sensor_baro_1['temperature'],100*sensor_baro_1['pressure']-100*median_pressure,'b')
|
|
plt.plot(temp_resample,baro_1_x_resample,'r')
|
|
plt.title('Baro 1 ({}) Bias vs Temperature'.format(baro_1_params['TC_B1_ID']))
|
|
plt.ylabel('Z bias (Pa)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
# define data dictionary of baro 2 thermal correction parameters
|
|
baro_2_params = {
|
|
'TC_B2_ID':0,
|
|
'TC_B2_TMIN':0.0,
|
|
'TC_B2_TMAX':0.0,
|
|
'TC_B2_TREF':0.0,
|
|
'TC_B2_X0':0.0,
|
|
'TC_B2_X1':0.0,
|
|
'TC_B2_X2':0.0,
|
|
'TC_B2_X3':0.0,
|
|
'TC_B2_X4':0.0,
|
|
'TC_B2_X5':0.0,
|
|
'TC_B2_SCL':1.0,
|
|
}
|
|
|
|
if num_baros >= 3:
|
|
|
|
# curve fit the data for baro 2 corrections
|
|
baro_2_params['TC_B2_ID'] = int(np.median(sensor_baro_2['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
baro_2_params['TC_B2_TMIN'] = np.amin(sensor_baro_2['temperature'])
|
|
baro_2_params['TC_B2_TMAX'] = np.amax(sensor_baro_2['temperature'])
|
|
baro_2_params['TC_B2_TREF'] = 0.5 * (baro_2_params['TC_B2_TMIN'] + baro_2_params['TC_B2_TMAX'])
|
|
temp_rel = sensor_baro_2['temperature'] - baro_2_params['TC_B2_TREF']
|
|
temp_rel_resample = np.linspace(baro_2_params['TC_B2_TMIN']-baro_2_params['TC_B2_TREF'], baro_2_params['TC_B2_TMAX']-baro_2_params['TC_B2_TREF'], 100)
|
|
temp_resample = temp_rel_resample + baro_2_params['TC_B2_TREF']
|
|
|
|
# fit data
|
|
median_pressure = np.median(sensor_baro_2['pressure']);
|
|
if noResample:
|
|
coef_baro_2_x = np.polyfit(temp_rel,100*(sensor_baro_2['pressure']-median_pressure),5) # convert from hPa to Pa
|
|
else:
|
|
temperature, baro = resampleWithDeltaX(temp_rel,100*(sensor_baro_2['pressure']-median_pressure)) # convert from hPa to Pa
|
|
coef_baro_2_x = np.polyfit(temperature,baro,5)
|
|
|
|
baro_2_params['TC_B2_X5'] = coef_baro_2_x[0]
|
|
baro_2_params['TC_B2_X4'] = coef_baro_2_x[1]
|
|
baro_2_params['TC_B2_X3'] = coef_baro_2_x[2]
|
|
baro_2_params['TC_B2_X2'] = coef_baro_2_x[3]
|
|
baro_2_params['TC_B2_X1'] = coef_baro_2_x[4]
|
|
baro_2_params['TC_B2_X0'] = coef_baro_2_x[5]
|
|
fit_coef_baro_2_x = np.poly1d(coef_baro_2_x)
|
|
baro_2_x_resample = fit_coef_baro_2_x(temp_rel_resample)
|
|
|
|
# baro 2 vs temperature
|
|
plt.figure(10,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.plot(sensor_baro_2['temperature'],100*sensor_baro_2['pressure']-100*median_pressure,'b')
|
|
plt.plot(temp_resample,baro_2_x_resample,'r')
|
|
plt.title('Baro 2 ({}) Bias vs Temperature'.format(baro_2_params['TC_B2_ID']))
|
|
plt.ylabel('Z bias (Pa)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
# define data dictionary of baro 3 thermal correction parameters
|
|
baro_3_params = {
|
|
'TC_B3_ID':0,
|
|
'TC_B3_TMIN':0.0,
|
|
'TC_B3_TMAX':0.0,
|
|
'TC_B3_TREF':0.0,
|
|
'TC_B3_X0':0.0,
|
|
'TC_B3_X1':0.0,
|
|
'TC_B3_X2':0.0,
|
|
'TC_B3_X3':0.0,
|
|
'TC_B3_X4':0.0,
|
|
'TC_B3_X5':0.0,
|
|
'TC_B3_SCL':1.0,
|
|
}
|
|
|
|
if num_baros >= 4:
|
|
|
|
# curve fit the data for baro 2 corrections
|
|
baro_3_params['TC_B3_ID'] = int(np.median(sensor_baro_3['device_id']))
|
|
|
|
# find the min, max and reference temperature
|
|
baro_3_params['TC_B3_TMIN'] = np.amin(sensor_baro_3['temperature'])
|
|
baro_3_params['TC_B3_TMAX'] = np.amax(sensor_baro_3['temperature'])
|
|
baro_3_params['TC_B3_TREF'] = 0.5 * (baro_3_params['TC_B3_TMIN'] + baro_3_params['TC_B3_TMAX'])
|
|
temp_rel = sensor_baro_3['temperature'] - baro_3_params['TC_B3_TREF']
|
|
temp_rel_resample = np.linspace(baro_3_params['TC_B3_TMIN']-baro_3_params['TC_B3_TREF'], baro_3_params['TC_B3_TMAX']-baro_3_params['TC_B3_TREF'], 100)
|
|
temp_resample = temp_rel_resample + baro_3_params['TC_B3_TREF']
|
|
|
|
# fit data
|
|
median_pressure = np.median(sensor_baro_3['pressure'])
|
|
coef_baro_3_x = np.polyfit(temp_rel,100*(sensor_baro_3['pressure']-median_pressure),5) # convert from hPa to Pa
|
|
baro_3_params['TC_B3_X5'] = coef_baro_3_x[0]
|
|
baro_3_params['TC_B3_X4'] = coef_baro_3_x[1]
|
|
baro_3_params['TC_B3_X3'] = coef_baro_3_x[2]
|
|
baro_3_params['TC_B3_X2'] = coef_baro_3_x[3]
|
|
baro_3_params['TC_B3_X1'] = coef_baro_3_x[4]
|
|
baro_3_params['TC_B3_X0'] = coef_baro_3_x[5]
|
|
fit_coef_baro_3_x = np.poly1d(coef_baro_3_x)
|
|
baro_3_x_resample = fit_coef_baro_3_x(temp_rel_resample)
|
|
|
|
# baro 3 vs temperature
|
|
plt.figure(11,figsize=(20,13))
|
|
|
|
# draw plots
|
|
plt.plot(sensor_baro_3['temperature'],100*sensor_baro_3['pressure']-100*median_pressure,'b')
|
|
plt.plot(temp_resample,baro_3_x_resample,'r')
|
|
plt.title('Baro 3 ({}) Bias vs Temperature'.format(baro_3_params['TC_B3_ID']))
|
|
plt.ylabel('Z bias (Pa)')
|
|
plt.xlabel('temperature (degC)')
|
|
plt.grid()
|
|
|
|
pp.savefig()
|
|
|
|
#################################################################################
|
|
|
|
# close the pdf file
|
|
pp.close()
|
|
|
|
# clase all figures
|
|
plt.close("all")
|
|
|
|
# write correction parameters to file
|
|
test_results_filename = ulog_file_name + ".params"
|
|
file = open(test_results_filename,"w")
|
|
file.write("# Sensor thermal compensation parameters\n")
|
|
file.write("#\n")
|
|
file.write("# Vehicle-Id Component-Id Name Value Type\n")
|
|
|
|
# accel 0 corrections
|
|
key_list_accel = list(accel_0_params.keys())
|
|
key_list_accel.sort
|
|
for key in key_list_accel:
|
|
if key == 'TC_A0_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_0_params[key])+"\t"+type+"\n")
|
|
|
|
# accel 1 corrections
|
|
key_list_accel = list(accel_1_params.keys())
|
|
key_list_accel.sort
|
|
for key in key_list_accel:
|
|
if key == 'TC_A1_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_1_params[key])+"\t"+type+"\n")
|
|
|
|
# accel 2 corrections
|
|
key_list_accel = list(accel_2_params.keys())
|
|
key_list_accel.sort
|
|
for key in key_list_accel:
|
|
if key == 'TC_A2_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_2_params[key])+"\t"+type+"\n")
|
|
|
|
# accel 3 corrections
|
|
key_list_accel = list(accel_3_params.keys())
|
|
key_list_accel.sort
|
|
for key in key_list_accel:
|
|
if key == 'TC_A3_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_3_params[key])+"\t"+type+"\n")
|
|
|
|
# baro 0 corrections
|
|
key_list_baro = list(baro_0_params.keys())
|
|
key_list_baro.sort
|
|
for key in key_list_baro:
|
|
if key == 'TC_B0_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_0_params[key])+"\t"+type+"\n")
|
|
|
|
# baro 1 corrections
|
|
key_list_baro = list(baro_1_params.keys())
|
|
key_list_baro.sort
|
|
for key in key_list_baro:
|
|
if key == 'TC_B1_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_1_params[key])+"\t"+type+"\n")
|
|
|
|
# baro 2 corrections
|
|
key_list_baro = list(baro_2_params.keys())
|
|
key_list_baro.sort
|
|
for key in key_list_baro:
|
|
if key == 'TC_B2_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_2_params[key])+"\t"+type+"\n")
|
|
|
|
# baro 3 corrections
|
|
key_list_baro = list(baro_3_params.keys())
|
|
key_list_baro.sort
|
|
for key in key_list_baro:
|
|
if key == 'TC_B3_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_3_params[key])+"\t"+type+"\n")
|
|
|
|
|
|
# gyro 0 corrections
|
|
key_list_gyro = list(gyro_0_params.keys())
|
|
key_list_gyro.sort()
|
|
for key in key_list_gyro:
|
|
if key == 'TC_G0_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_0_params[key])+"\t"+type+"\n")
|
|
|
|
# gyro 1 corrections
|
|
key_list_gyro = list(gyro_1_params.keys())
|
|
key_list_gyro.sort()
|
|
for key in key_list_gyro:
|
|
if key == 'TC_G1_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_1_params[key])+"\t"+type+"\n")
|
|
|
|
# gyro 2 corrections
|
|
key_list_gyro = list(gyro_2_params.keys())
|
|
key_list_gyro.sort()
|
|
for key in key_list_gyro:
|
|
if key == 'TC_G2_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_2_params[key])+"\t"+type+"\n")
|
|
|
|
# gyro 3 corrections
|
|
key_list_gyro = list(gyro_3_params.keys())
|
|
key_list_gyro.sort()
|
|
for key in key_list_gyro:
|
|
if key == 'TC_G3_ID':
|
|
type = "6"
|
|
else:
|
|
type = "9"
|
|
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_3_params[key])+"\t"+type+"\n")
|
|
|
|
file.close()
|
|
|
|
print('Correction parameters written to ' + test_results_filename)
|
|
print('Plots saved to ' + output_plot_filename)
|