forked from Archive/PX4-Autopilot
178 lines
4.5 KiB
C++
178 lines
4.5 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name ECL nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file ekf.cpp
|
|
* Core functions for ekf attitude and position estimator.
|
|
*
|
|
* @author Roman Bast <bapstroman@gmail.com>
|
|
*
|
|
*/
|
|
|
|
#include "ekf.h"
|
|
#include <drivers/drv_hrt.h>
|
|
|
|
Ekf::Ekf()
|
|
{
|
|
|
|
}
|
|
|
|
|
|
Ekf::~Ekf()
|
|
{
|
|
|
|
}
|
|
|
|
void Ekf::update()
|
|
{
|
|
if (!_filter_initialised) {
|
|
_filter_initialised = initialiseFilter();
|
|
}
|
|
|
|
// prediction
|
|
if (_imu_updated) {
|
|
predictState();
|
|
predictCovariance();
|
|
_imu_updated = false;
|
|
}
|
|
|
|
// measurement updates
|
|
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) {
|
|
fuseMag();
|
|
}
|
|
|
|
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) {
|
|
_fuse_height = true;
|
|
}
|
|
|
|
if (_gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed)) {
|
|
_fuse_pos = true;
|
|
_fuse_vel = true;
|
|
}
|
|
|
|
if (_fuse_height || _fuse_pos || _fuse_vel) {
|
|
fusePosVel();
|
|
}
|
|
|
|
if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)) {
|
|
fuseRange();
|
|
}
|
|
|
|
if (_airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed)) {
|
|
fuseAirspeed();
|
|
}
|
|
|
|
}
|
|
|
|
bool Ekf::initialiseFilter(void)
|
|
{
|
|
|
|
_state.ang_error.setZero();
|
|
_state.vel.setZero();
|
|
_state.pos.setZero();
|
|
_state.gyro_bias.setZero();
|
|
_state.gyro_scale(0) = _state.gyro_scale(1) = _state.gyro_scale(2) = 1.0f;
|
|
_state.accel_z_bias = 0.0f;
|
|
_state.mag_I.setZero();
|
|
_state.mag_B.setZero();
|
|
_state.wind_vel.setZero();
|
|
|
|
// get initial attitude estimate from accel vector, assuming vehicle is static
|
|
Vector3f accel_init = _imu_down_sampled.delta_vel / _imu_down_sampled.delta_vel_dt;
|
|
|
|
float pitch = 0.0f;
|
|
float roll = 0.0f;
|
|
|
|
if (accel_init.norm() > 0.001f) {
|
|
accel_init.normalize();
|
|
|
|
pitch = asinf(accel_init(0));
|
|
roll = -asinf(accel_init(1) / cosf(pitch));
|
|
}
|
|
|
|
matrix::Euler<float> euler_init(0, pitch, roll);
|
|
_state.quat_nominal = Quaternion(euler_init);
|
|
|
|
resetVelocity();
|
|
resetPosition();
|
|
|
|
initialiseCovariance();
|
|
|
|
return true;
|
|
}
|
|
|
|
void Ekf::predictState()
|
|
{
|
|
// compute transformation matrix from body to world frame
|
|
matrix::Dcm<float> R(_state.quat_nominal);
|
|
R.transpose();
|
|
|
|
// attitude error state prediciton
|
|
Quaternion dq;
|
|
dq.from_axis_angle(_imu_sample_delayed.delta_ang);
|
|
_state.quat_nominal = dq * _state.quat_nominal;
|
|
_state.quat_nominal.normalize();
|
|
|
|
Vector3f vel_last = _state.vel;
|
|
|
|
// predict velocity states
|
|
_state.vel += R * _imu_sample_delayed.delta_vel;
|
|
_state.vel(2) += 9.81f * _imu_sample_delayed.delta_vel_dt;
|
|
|
|
// predict position states via trapezoidal integration of velocity
|
|
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f;
|
|
|
|
//matrix::Euler<float> euler(_state.quat_nominal);
|
|
//printf("roll pitch yaw %.5f %.5f %.5f\n", (double)euler(2), (double)euler(1), (double)euler(0));
|
|
}
|
|
|
|
|
|
void Ekf::fusePosVel()
|
|
{
|
|
|
|
}
|
|
|
|
void Ekf::fuseMag()
|
|
{
|
|
}
|
|
|
|
void Ekf::fuseAirspeed()
|
|
{
|
|
|
|
}
|
|
|
|
void Ekf::fuseRange()
|
|
{
|
|
|
|
}
|