px4-firmware/apps/multirotor_att_control/multirotor_attitude_control.c

224 lines
8.5 KiB
C

/****************************************************************************
*
* Copyright (C) 2008-2012 PX4 Development Team. All rights reserved.
* Author: @author Thomas Gubler <thomasgubler@student.ethz.ch>
* @author Julian Oes <joes@student.ethz.ch>
* @author Laurens Mackay <mackayl@student.ethz.ch>
* @author Tobias Naegeli <naegelit@student.ethz.ch>
* @author Martin Rutschmann <rutmarti@student.ethz.ch>
* @author Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/*
* @file multirotor_attitude_control.c
* Implementation of attitude controller
*/
#include "multirotor_attitude_control.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <float.h>
#include <math.h>
#include <systemlib/pid/pid.h>
#include <arch/board/up_hrt.h>
void multirotor_control_attitude(const struct vehicle_attitude_setpoint_s *att_sp,
const struct vehicle_attitude_s *att, const struct vehicle_status_s *status,
struct actuator_controls_s *actuators, bool verbose)
{
static uint64_t last_run = 0;
const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
last_run = hrt_absolute_time();
static int motor_skip_counter = 0;
static PID_t yaw_pos_controller;
static PID_t yaw_speed_controller;
static PID_t pitch_controller;
static PID_t roll_controller;
static float pid_yawpos_lim;
static float pid_yawspeed_lim;
static float pid_att_lim;
static bool initialized = false;
/* initialize the pid controllers when the function is called for the first time */
if (initialized == false) {
pid_init(&yaw_pos_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU],
PID_MODE_DERIVATIV_CALC, 154);
pid_init(&yaw_speed_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU],
PID_MODE_DERIVATIV_CALC, 155);
pid_init(&pitch_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU],
PID_MODE_DERIVATIV_SET, 156);
pid_init(&roll_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU],
PID_MODE_DERIVATIV_SET, 157);
pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM];
pid_yawspeed_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM];
pid_att_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM];
initialized = true;
}
/* load new parameters with lower rate */
if (motor_skip_counter % 50 == 0) {
pid_set_parameters(&yaw_pos_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU]);
pid_set_parameters(&yaw_speed_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU]);
pid_set_parameters(&pitch_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]);
pid_set_parameters(&roll_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]);
pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM];
pid_yawspeed_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM];
pid_att_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM];
}
/*Calculate Controllers*/
//control Nick
float pitch_control = pid_calculate(&pitch_controller, att_sp->pitch_body + global_data_parameter_storage->pm.param_values[PARAM_ATT_YOFFSET],
att->pitch, att->pitchspeed, deltaT);
//control Roll
float roll_control = pid_calculate(&roll_controller, att_sp->roll_body + global_data_parameter_storage->pm.param_values[PARAM_ATT_XOFFSET],
att->roll, att->rollspeed, deltaT);
//control Yaw Speed
float yaw_rate_control = pid_calculate(&yaw_speed_controller, att_sp->yaw_body, att->yawspeed, 0.0f, deltaT); //attitude_setpoint_bodyframe.z is yaw speed!
/*
* compensate the vertical loss of thrust
* when thrust plane has an angle.
* start with a factor of 1.0 (no change)
*/
float zcompensation = 1.0f;
if (fabsf(att->roll) > 1.0f) {
zcompensation *= 1.85081571768f;
} else {
zcompensation *= 1.0f / cosf(att->roll);
}
if (fabsf(att->pitch) > 1.0f) {
zcompensation *= 1.85081571768f;
} else {
zcompensation *= 1.0f / cosf(att->pitch);
}
float motor_thrust = 0.0f;
// FLYING MODES
motor_thrust = att_sp->thrust;
//printf("mot0: %3.1f\n", motor_thrust);
/* compensate thrust vector for roll / pitch contributions */
motor_thrust *= zcompensation;
/* limit yaw rate output */
if (yaw_rate_control > pid_yawspeed_lim) {
yaw_rate_control = pid_yawspeed_lim;
yaw_speed_controller.saturated = 1;
}
if (yaw_rate_control < -pid_yawspeed_lim) {
yaw_rate_control = -pid_yawspeed_lim;
yaw_speed_controller.saturated = 1;
}
if (pitch_control > pid_att_lim) {
pitch_control = pid_att_lim;
pitch_controller.saturated = 1;
}
if (pitch_control < -pid_att_lim) {
pitch_control = -pid_att_lim;
pitch_controller.saturated = 1;
}
if (roll_control > pid_att_lim) {
roll_control = pid_att_lim;
roll_controller.saturated = 1;
}
if (roll_control < -pid_att_lim) {
roll_control = -pid_att_lim;
roll_controller.saturated = 1;
}
actuators->control[0] = roll_control;
actuators->control[1] = pitch_control;
actuators->control[2] = yaw_rate_control;
actuators->control[3] = motor_thrust;
}