px4-firmware/attitude_fw/ecl_pitch_controller.cpp

199 lines
7.1 KiB
C++

/****************************************************************************
*
* Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ecl_pitch_controller.cpp
* Implementation of a simple orthogonal pitch PID controller.
*
* Authors and acknowledgements in header.
*/
#include "ecl_pitch_controller.h"
#include <math.h>
#include <stdint.h>
#include <float.h>
#include <geo/geo.h>
#include <ecl/ecl.h>
#include <mathlib/mathlib.h>
#include <systemlib/err.h>
ECL_PitchController::ECL_PitchController() :
ECL_Controller("pitch"),
_max_rate_neg(0.0f),
_roll_ff(0.0f)
{
}
ECL_PitchController::~ECL_PitchController()
{
}
float ECL_PitchController::control_attitude(const struct ECL_ControlData &ctl_data)
{
/* Do not calculate control signal with bad inputs */
if (!(PX4_ISFINITE(ctl_data.pitch_setpoint) &&
PX4_ISFINITE(ctl_data.roll) &&
PX4_ISFINITE(ctl_data.pitch) &&
PX4_ISFINITE(ctl_data.airspeed))) {
perf_count(_nonfinite_input_perf);
warnx("not controlling pitch");
return _rate_setpoint;
}
/* Calculate the error */
float pitch_error = ctl_data.pitch_setpoint - ctl_data.pitch;
/* Apply P controller: rate setpoint from current error and time constant */
_rate_setpoint = pitch_error / _tc;
/* limit the rate */
if (_max_rate > 0.01f && _max_rate_neg > 0.01f) {
if (_rate_setpoint > 0.0f) {
_rate_setpoint = (_rate_setpoint > _max_rate) ? _max_rate : _rate_setpoint;
} else {
_rate_setpoint = (_rate_setpoint < -_max_rate_neg) ? -_max_rate_neg : _rate_setpoint;
}
}
return _rate_setpoint;
}
float ECL_PitchController::control_bodyrate(const struct ECL_ControlData &ctl_data)
{
/* Do not calculate control signal with bad inputs */
if (!(PX4_ISFINITE(ctl_data.roll) &&
PX4_ISFINITE(ctl_data.pitch) &&
PX4_ISFINITE(ctl_data.pitch_rate) &&
PX4_ISFINITE(ctl_data.yaw_rate) &&
PX4_ISFINITE(ctl_data.yaw_rate_setpoint) &&
PX4_ISFINITE(ctl_data.airspeed_min) &&
PX4_ISFINITE(ctl_data.airspeed_max) &&
PX4_ISFINITE(ctl_data.scaler))) {
perf_count(_nonfinite_input_perf);
return math::constrain(_last_output, -1.0f, 1.0f);
}
/* get the usual dt estimate */
uint64_t dt_micros = ecl_elapsed_time(&_last_run);
_last_run = ecl_absolute_time();
float dt = (float)dt_micros * 1e-6f;
/* lock integral for long intervals */
bool lock_integrator = ctl_data.lock_integrator;
if (dt_micros > 500000) {
lock_integrator = true;
}
/* Transform setpoint to body angular rates (jacobian) */
_bodyrate_setpoint = cosf(ctl_data.roll) * _rate_setpoint +
cosf(ctl_data.pitch) * sinf(ctl_data.roll) * ctl_data.yaw_rate_setpoint;
/* apply turning offset to desired bodyrate setpoint*/
/* flying inverted (wings upside down)*/
bool inverted = false;
float constrained_roll;
/* roll is used as feedforward term and inverted flight needs to be considered */
if (fabsf(ctl_data.roll) < math::radians(90.0f)) {
/* not inverted, but numerically still potentially close to infinity */
constrained_roll = math::constrain(ctl_data.roll, math::radians(-80.0f), math::radians(80.0f));
} else {
/* inverted flight, constrain on the two extremes of -pi..+pi to avoid infinity */
inverted = true;
/* note: the ranges are extended by 10 deg here to avoid numeric resolution effects */
if (ctl_data.roll > 0.0f) {
/* right hemisphere */
constrained_roll = math::constrain(ctl_data.roll, math::radians(100.0f), math::radians(180.0f));
} else {
/* left hemisphere */
constrained_roll = math::constrain(ctl_data.roll, math::radians(-100.0f), math::radians(-180.0f));
}
}
/* input conditioning */
float airspeed = constrain_airspeed(ctl_data.airspeed, ctl_data.airspeed_min, ctl_data.airspeed_max);
/* Calculate desired body fixed y-axis angular rate needed to compensate for roll angle.
For reference see Automatic Control of Aircraft and Missiles by John H. Blakelock, pg. 175
Availible on google books 8/11/2015:
https://books.google.com/books?id=ubcczZUDCsMC&pg=PA175#v=onepage&q&f=false*/
float body_fixed_turn_offset = (fabsf((CONSTANTS_ONE_G / airspeed) *
tanf(constrained_roll) * sinf(constrained_roll)));
if (inverted) {
body_fixed_turn_offset = -body_fixed_turn_offset;
}
/* Finally add the turn offset to your bodyrate setpoint*/
_bodyrate_setpoint += body_fixed_turn_offset;
_rate_error = _bodyrate_setpoint - ctl_data.pitch_rate;
if (!lock_integrator && _k_i > 0.0f) {
float id = _rate_error * dt * ctl_data.scaler;
/*
* anti-windup: do not allow integrator to increase if actuator is at limit
*/
if (_last_output < -1.0f) {
/* only allow motion to center: increase value */
id = math::max(id, 0.0f);
} else if (_last_output > 1.0f) {
/* only allow motion to center: decrease value */
id = math::min(id, 0.0f);
}
_integrator += id * _k_i;
}
/* integrator limit */
//xxx: until start detection is available: integral part in control signal is limited here
float integrator_constrained = math::constrain(_integrator, -_integrator_max, _integrator_max);
/* Apply PI rate controller and store non-limited output */
_last_output = _bodyrate_setpoint * _k_ff * ctl_data.scaler +
_rate_error * _k_p * ctl_data.scaler * ctl_data.scaler
+ integrator_constrained; //scaler is proportional to 1/airspeed
// warnx("pitch: _integrator: %.4f, _integrator_max: %.4f, airspeed %.4f, _k_i %.4f, _k_p: %.4f", (double)_integrator, (double)_integrator_max, (double)airspeed, (double)_k_i, (double)_k_p);
// warnx("roll: _last_output %.4f", (double)_last_output);
return math::constrain(_last_output, -1.0f, 1.0f);
}