forked from Archive/PX4-Autopilot
382 lines
9.4 KiB
C
382 lines
9.4 KiB
C
/****************************************************************************
|
|
*
|
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file Control channel input/output mixer and failsafe.
|
|
*/
|
|
|
|
#include <nuttx/config.h>
|
|
#include <nuttx/arch.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <termios.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include <drivers/drv_pwm_output.h>
|
|
#include <drivers/drv_hrt.h>
|
|
|
|
#include <systemlib/ppm_decode.h>
|
|
|
|
#include "px4io.h"
|
|
|
|
/*
|
|
* Count of periodic calls in which we have no data.
|
|
*/
|
|
static unsigned mixer_input_drops;
|
|
#define MIXER_INPUT_DROP_LIMIT 10
|
|
|
|
/*
|
|
* Count of periodic calls in which we have no FMU input.
|
|
*/
|
|
static unsigned fmu_input_drops;
|
|
#define FMU_INPUT_DROP_LIMIT 20
|
|
|
|
/*
|
|
* Serial port fd for serial RX protocols
|
|
*/
|
|
static int rx_port = -1;
|
|
|
|
/*
|
|
* HRT periodic call used to check for control input data.
|
|
*/
|
|
static struct hrt_call mixer_input_call;
|
|
|
|
/*
|
|
* Mixer periodic tick.
|
|
*/
|
|
static void mixer_tick(void *arg);
|
|
|
|
/*
|
|
* Collect RC input data from the controller source(s).
|
|
*/
|
|
static void mixer_get_rc_input(void);
|
|
|
|
/*
|
|
* Update a mixer based on the current control signals.
|
|
*/
|
|
static void mixer_update(int mixer, uint16_t *inputs, int input_count);
|
|
|
|
/* current servo arm/disarm state */
|
|
bool mixer_servos_armed;
|
|
|
|
/*
|
|
* Each mixer consumes a set of inputs and produces a single output.
|
|
*/
|
|
struct mixer {
|
|
uint16_t current_value;
|
|
/* XXX more config here */
|
|
} mixers[IO_SERVO_COUNT];
|
|
|
|
int
|
|
mixer_init(void)
|
|
{
|
|
/* open the serial port */
|
|
rx_port = open("/dev/ttyS0", O_RDONLY | O_NONBLOCK);
|
|
|
|
/* look for control data at 50Hz */
|
|
hrt_call_every(&mixer_input_call, 1000, 20000, mixer_tick, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
mixer_set_serial_mode(uint8_t serial_mode)
|
|
{
|
|
|
|
if (serial_mode == system_state.serial_rx_mode)
|
|
return;
|
|
|
|
struct termios t;
|
|
tcgetattr(rx_port, &t);
|
|
|
|
switch (serial_mode) {
|
|
case RX_MODE_PPM_ONLY:
|
|
break;
|
|
case RX_MODE_SPEKTRUM_6:
|
|
case RX_MODE_SPEKTRUM_7:
|
|
/* 115200, no parity, one stop bit */
|
|
cfsetspeed(&t, 115200);
|
|
t.c_cflag &= ~(CSTOPB | PARENB);
|
|
break;
|
|
case RX_MODE_FUTABA_SBUS:
|
|
/* 100000, even parity, two stop bits */
|
|
cfsetspeed(&t, 100000);
|
|
t.c_cflag |= (CSTOPB | PARENB);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
tcsetattr(rx_port, TCSANOW, &t);
|
|
system_state.serial_rx_mode = serial_mode;
|
|
}
|
|
|
|
static void
|
|
mixer_tick(void *arg)
|
|
{
|
|
uint16_t *control_values;
|
|
int control_count;
|
|
int i;
|
|
bool should_arm;
|
|
|
|
/*
|
|
* Start by looking for R/C control inputs.
|
|
* This updates system_state with any control inputs received.
|
|
*/
|
|
mixer_get_rc_input();
|
|
|
|
/*
|
|
* Decide which set of inputs we're using.
|
|
*/
|
|
if (system_state.mixer_use_fmu) {
|
|
/* we have recent control data from the FMU */
|
|
control_count = PX4IO_OUTPUT_CHANNELS;
|
|
control_values = &system_state.fmu_channel_data[0];
|
|
|
|
/* check that we are receiving fresh data from the FMU */
|
|
if (!system_state.fmu_data_received) {
|
|
fmu_input_drops++;
|
|
|
|
/* too many frames without FMU input, time to go to failsafe */
|
|
if (fmu_input_drops >= FMU_INPUT_DROP_LIMIT) {
|
|
system_state.mixer_use_fmu = false;
|
|
}
|
|
} else {
|
|
fmu_input_drops = 0;
|
|
system_state.fmu_data_received = false;
|
|
}
|
|
|
|
} else if (system_state.rc_channels > 0) {
|
|
/* we have control data from an R/C input */
|
|
control_count = system_state.rc_channels;
|
|
control_values = &system_state.rc_channel_data[0];
|
|
|
|
} else {
|
|
/* we have no control input */
|
|
control_count = 0;
|
|
}
|
|
|
|
/*
|
|
* Tickle each mixer, if we have control data.
|
|
*/
|
|
if (control_count > 0) {
|
|
for (i = 0; i < PX4IO_OUTPUT_CHANNELS; i++) {
|
|
mixer_update(i, control_values, control_count);
|
|
|
|
/*
|
|
* If we are armed, update the servo output.
|
|
*/
|
|
if (system_state.armed)
|
|
up_pwm_servo_set(i, mixers[i].current_value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decide whether the servos should be armed right now.
|
|
*/
|
|
should_arm = system_state.armed && (control_count > 0);
|
|
if (should_arm && !mixer_servos_armed) {
|
|
/* need to arm, but not armed */
|
|
up_pwm_servo_arm(true);
|
|
mixer_servos_armed = true;
|
|
|
|
} else if (!should_arm && mixer_servos_armed) {
|
|
/* armed but need to disarm */
|
|
up_pwm_servo_arm(false);
|
|
mixer_servos_armed = false;
|
|
}
|
|
}
|
|
|
|
static void
|
|
mixer_update(int mixer, uint16_t *inputs, int input_count)
|
|
{
|
|
/* simple passthrough for now */
|
|
if (mixer < input_count) {
|
|
mixers[mixer].current_value = inputs[mixer];
|
|
} else {
|
|
mixers[mixer].current_value = 0;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
mixer_get_spektrum_input(void)
|
|
{
|
|
static uint8_t buf[16];
|
|
static unsigned count;
|
|
|
|
/* always read as much data as we can into the buffer */
|
|
if (count >= sizeof(buf))
|
|
count = 0;
|
|
ssize_t result = read(rx_port, buf, sizeof(buf) - count);
|
|
/* no data or an error */
|
|
if (result <= 0)
|
|
return false;
|
|
count += result;
|
|
|
|
/* if there are more than two bytes in the buffer, check for sync */
|
|
if (count >= 2) {
|
|
if ((buf[0] != 0x3) || (buf[1] != 0x1)) {
|
|
/* not in sync; look for a possible sync marker */
|
|
for (unsigned i = 1; i < count; i++) {
|
|
if (buf[i] == 0x3) {
|
|
/* could be a frame marker; move buffer bytes */
|
|
count -= i;
|
|
memmove(buf, buf + i, count);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (count < sizeof(buf))
|
|
return false;
|
|
|
|
/* we got a frame; decode it */
|
|
const uint16_t *channels = (const uint16_t *)&buf[2];
|
|
|
|
/*
|
|
* Channel assignment for DX6i vs. DX7 is different.
|
|
*
|
|
* DX7 etc. is:
|
|
*
|
|
* 0: Aileron
|
|
* 1: Flaps
|
|
* 2: Gear
|
|
* 3: Elevator
|
|
* 4: Aux2
|
|
* 5: Throttle
|
|
* 6: Rudder
|
|
*
|
|
* DX6i is:
|
|
*
|
|
* 0: Aileron
|
|
* 1: Flaps
|
|
* 2: Elevator
|
|
* 3: Rudder
|
|
* 4: Throttle
|
|
* 5: Gear
|
|
* 6: <notused>
|
|
*
|
|
* We convert these to our standard Futaba-style assignment:
|
|
*
|
|
* 0: Throttle (Throttle)
|
|
* 1: Roll (Aileron)
|
|
* 2: Pitch (Elevator)
|
|
* 3: Yaw (Rudder)
|
|
* 4: Override (Flaps)
|
|
* 5: FUNC_0 (Gear)
|
|
* 6: FUNC_1 (Aux2)
|
|
*/
|
|
if (system_state.serial_rx_mode == RX_MODE_SPEKTRUM_7) {
|
|
system_state.rc_channel_data[0] = channels[5]; /* Throttle */
|
|
system_state.rc_channel_data[1] = channels[0]; /* Roll */
|
|
system_state.rc_channel_data[2] = channels[3]; /* Pitch */
|
|
system_state.rc_channel_data[3] = channels[6]; /* Yaw */
|
|
system_state.rc_channel_data[4] = channels[1]; /* Override */
|
|
system_state.rc_channel_data[5] = channels[2]; /* FUNC_0 */
|
|
system_state.rc_channel_data[6] = channels[4]; /* FUNC_1 */
|
|
system_state.rc_channels = 7;
|
|
} else {
|
|
system_state.rc_channel_data[0] = channels[4]; /* Throttle */
|
|
system_state.rc_channel_data[1] = channels[0]; /* Roll */
|
|
system_state.rc_channel_data[2] = channels[2]; /* Pitch */
|
|
system_state.rc_channel_data[3] = channels[3]; /* Yaw */
|
|
system_state.rc_channel_data[4] = channels[1]; /* Override */
|
|
system_state.rc_channel_data[5] = channels[5]; /* FUNC_0 */
|
|
system_state.rc_channels = 6;
|
|
}
|
|
count = 0;
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
mixer_get_sbus_input(void)
|
|
{
|
|
/* XXX not implemented yet */
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
mixer_get_rc_input(void)
|
|
{
|
|
bool got_input = false;
|
|
|
|
switch (system_state.serial_rx_mode) {
|
|
case RX_MODE_PPM_ONLY:
|
|
if (ppm_decoded_channels > 0) {
|
|
/* copy channel data */
|
|
system_state.rc_channels = ppm_decoded_channels;
|
|
for (unsigned i = 0; i < ppm_decoded_channels; i++)
|
|
system_state.rc_channel_data[i] = ppm_buffer[i];
|
|
got_input = true;
|
|
}
|
|
break;
|
|
|
|
case RX_MODE_SPEKTRUM_6:
|
|
case RX_MODE_SPEKTRUM_7:
|
|
got_input = mixer_get_spektrum_input();
|
|
break;
|
|
|
|
case RX_MODE_FUTABA_SBUS:
|
|
got_input = mixer_get_sbus_input();
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (got_input) {
|
|
mixer_input_drops = 0;
|
|
system_state.fmu_report_due = true;
|
|
} else {
|
|
/*
|
|
* No data; count the 'frame drops' and once we hit the limit
|
|
* assume that we have lost input.
|
|
*/
|
|
if (mixer_input_drops < MIXER_INPUT_DROP_LIMIT) {
|
|
mixer_input_drops++;
|
|
|
|
/* if we hit the limit, stop pretending we have input and let the FMU know */
|
|
if (mixer_input_drops == MIXER_INPUT_DROP_LIMIT) {
|
|
system_state.rc_channels = 0;
|
|
system_state.fmu_report_due = true;
|
|
}
|
|
}
|
|
}
|
|
}
|