px4-firmware/apps/px4io/mixer.c

382 lines
9.4 KiB
C

/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file Control channel input/output mixer and failsafe.
*/
#include <nuttx/config.h>
#include <nuttx/arch.h>
#include <sys/types.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <termios.h>
#include <unistd.h>
#include <fcntl.h>
#include <drivers/drv_pwm_output.h>
#include <drivers/drv_hrt.h>
#include <systemlib/ppm_decode.h>
#include "px4io.h"
/*
* Count of periodic calls in which we have no data.
*/
static unsigned mixer_input_drops;
#define MIXER_INPUT_DROP_LIMIT 10
/*
* Count of periodic calls in which we have no FMU input.
*/
static unsigned fmu_input_drops;
#define FMU_INPUT_DROP_LIMIT 20
/*
* Serial port fd for serial RX protocols
*/
static int rx_port = -1;
/*
* HRT periodic call used to check for control input data.
*/
static struct hrt_call mixer_input_call;
/*
* Mixer periodic tick.
*/
static void mixer_tick(void *arg);
/*
* Collect RC input data from the controller source(s).
*/
static void mixer_get_rc_input(void);
/*
* Update a mixer based on the current control signals.
*/
static void mixer_update(int mixer, uint16_t *inputs, int input_count);
/* current servo arm/disarm state */
bool mixer_servos_armed;
/*
* Each mixer consumes a set of inputs and produces a single output.
*/
struct mixer {
uint16_t current_value;
/* XXX more config here */
} mixers[IO_SERVO_COUNT];
int
mixer_init(void)
{
/* open the serial port */
rx_port = open("/dev/ttyS0", O_RDONLY | O_NONBLOCK);
/* look for control data at 50Hz */
hrt_call_every(&mixer_input_call, 1000, 20000, mixer_tick, NULL);
return 0;
}
void
mixer_set_serial_mode(uint8_t serial_mode)
{
if (serial_mode == system_state.serial_rx_mode)
return;
struct termios t;
tcgetattr(rx_port, &t);
switch (serial_mode) {
case RX_MODE_PPM_ONLY:
break;
case RX_MODE_SPEKTRUM_6:
case RX_MODE_SPEKTRUM_7:
/* 115200, no parity, one stop bit */
cfsetspeed(&t, 115200);
t.c_cflag &= ~(CSTOPB | PARENB);
break;
case RX_MODE_FUTABA_SBUS:
/* 100000, even parity, two stop bits */
cfsetspeed(&t, 100000);
t.c_cflag |= (CSTOPB | PARENB);
break;
default:
return;
}
tcsetattr(rx_port, TCSANOW, &t);
system_state.serial_rx_mode = serial_mode;
}
static void
mixer_tick(void *arg)
{
uint16_t *control_values;
int control_count;
int i;
bool should_arm;
/*
* Start by looking for R/C control inputs.
* This updates system_state with any control inputs received.
*/
mixer_get_rc_input();
/*
* Decide which set of inputs we're using.
*/
if (system_state.mixer_use_fmu) {
/* we have recent control data from the FMU */
control_count = PX4IO_OUTPUT_CHANNELS;
control_values = &system_state.fmu_channel_data[0];
/* check that we are receiving fresh data from the FMU */
if (!system_state.fmu_data_received) {
fmu_input_drops++;
/* too many frames without FMU input, time to go to failsafe */
if (fmu_input_drops >= FMU_INPUT_DROP_LIMIT) {
system_state.mixer_use_fmu = false;
}
} else {
fmu_input_drops = 0;
system_state.fmu_data_received = false;
}
} else if (system_state.rc_channels > 0) {
/* we have control data from an R/C input */
control_count = system_state.rc_channels;
control_values = &system_state.rc_channel_data[0];
} else {
/* we have no control input */
control_count = 0;
}
/*
* Tickle each mixer, if we have control data.
*/
if (control_count > 0) {
for (i = 0; i < PX4IO_OUTPUT_CHANNELS; i++) {
mixer_update(i, control_values, control_count);
/*
* If we are armed, update the servo output.
*/
if (system_state.armed)
up_pwm_servo_set(i, mixers[i].current_value);
}
}
/*
* Decide whether the servos should be armed right now.
*/
should_arm = system_state.armed && (control_count > 0);
if (should_arm && !mixer_servos_armed) {
/* need to arm, but not armed */
up_pwm_servo_arm(true);
mixer_servos_armed = true;
} else if (!should_arm && mixer_servos_armed) {
/* armed but need to disarm */
up_pwm_servo_arm(false);
mixer_servos_armed = false;
}
}
static void
mixer_update(int mixer, uint16_t *inputs, int input_count)
{
/* simple passthrough for now */
if (mixer < input_count) {
mixers[mixer].current_value = inputs[mixer];
} else {
mixers[mixer].current_value = 0;
}
}
static bool
mixer_get_spektrum_input(void)
{
static uint8_t buf[16];
static unsigned count;
/* always read as much data as we can into the buffer */
if (count >= sizeof(buf))
count = 0;
ssize_t result = read(rx_port, buf, sizeof(buf) - count);
/* no data or an error */
if (result <= 0)
return false;
count += result;
/* if there are more than two bytes in the buffer, check for sync */
if (count >= 2) {
if ((buf[0] != 0x3) || (buf[1] != 0x1)) {
/* not in sync; look for a possible sync marker */
for (unsigned i = 1; i < count; i++) {
if (buf[i] == 0x3) {
/* could be a frame marker; move buffer bytes */
count -= i;
memmove(buf, buf + i, count);
break;
}
}
}
}
if (count < sizeof(buf))
return false;
/* we got a frame; decode it */
const uint16_t *channels = (const uint16_t *)&buf[2];
/*
* Channel assignment for DX6i vs. DX7 is different.
*
* DX7 etc. is:
*
* 0: Aileron
* 1: Flaps
* 2: Gear
* 3: Elevator
* 4: Aux2
* 5: Throttle
* 6: Rudder
*
* DX6i is:
*
* 0: Aileron
* 1: Flaps
* 2: Elevator
* 3: Rudder
* 4: Throttle
* 5: Gear
* 6: <notused>
*
* We convert these to our standard Futaba-style assignment:
*
* 0: Throttle (Throttle)
* 1: Roll (Aileron)
* 2: Pitch (Elevator)
* 3: Yaw (Rudder)
* 4: Override (Flaps)
* 5: FUNC_0 (Gear)
* 6: FUNC_1 (Aux2)
*/
if (system_state.serial_rx_mode == RX_MODE_SPEKTRUM_7) {
system_state.rc_channel_data[0] = channels[5]; /* Throttle */
system_state.rc_channel_data[1] = channels[0]; /* Roll */
system_state.rc_channel_data[2] = channels[3]; /* Pitch */
system_state.rc_channel_data[3] = channels[6]; /* Yaw */
system_state.rc_channel_data[4] = channels[1]; /* Override */
system_state.rc_channel_data[5] = channels[2]; /* FUNC_0 */
system_state.rc_channel_data[6] = channels[4]; /* FUNC_1 */
system_state.rc_channels = 7;
} else {
system_state.rc_channel_data[0] = channels[4]; /* Throttle */
system_state.rc_channel_data[1] = channels[0]; /* Roll */
system_state.rc_channel_data[2] = channels[2]; /* Pitch */
system_state.rc_channel_data[3] = channels[3]; /* Yaw */
system_state.rc_channel_data[4] = channels[1]; /* Override */
system_state.rc_channel_data[5] = channels[5]; /* FUNC_0 */
system_state.rc_channels = 6;
}
count = 0;
return true;
}
static bool
mixer_get_sbus_input(void)
{
/* XXX not implemented yet */
return false;
}
static void
mixer_get_rc_input(void)
{
bool got_input = false;
switch (system_state.serial_rx_mode) {
case RX_MODE_PPM_ONLY:
if (ppm_decoded_channels > 0) {
/* copy channel data */
system_state.rc_channels = ppm_decoded_channels;
for (unsigned i = 0; i < ppm_decoded_channels; i++)
system_state.rc_channel_data[i] = ppm_buffer[i];
got_input = true;
}
break;
case RX_MODE_SPEKTRUM_6:
case RX_MODE_SPEKTRUM_7:
got_input = mixer_get_spektrum_input();
break;
case RX_MODE_FUTABA_SBUS:
got_input = mixer_get_sbus_input();
break;
default:
break;
}
if (got_input) {
mixer_input_drops = 0;
system_state.fmu_report_due = true;
} else {
/*
* No data; count the 'frame drops' and once we hit the limit
* assume that we have lost input.
*/
if (mixer_input_drops < MIXER_INPUT_DROP_LIMIT) {
mixer_input_drops++;
/* if we hit the limit, stop pretending we have input and let the FMU know */
if (mixer_input_drops == MIXER_INPUT_DROP_LIMIT) {
system_state.rc_channels = 0;
system_state.fmu_report_due = true;
}
}
}
}