forked from Archive/PX4-Autopilot
469 lines
14 KiB
C
469 lines
14 KiB
C
/****************************************************************************
|
|
*
|
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
|
|
* Author: Lorenz Meier <lm@inf.ethz.ch>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file ardrone_motor_control.c
|
|
* Implementation of AR.Drone 1.0 / 2.0 motor control interface
|
|
*/
|
|
|
|
#include <nuttx/config.h>
|
|
#include <stdio.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <drivers/drv_gpio.h>
|
|
#include <drivers/drv_hrt.h>
|
|
#include <uORB/uORB.h>
|
|
#include <uORB/topics/actuator_outputs.h>
|
|
#include <systemlib/err.h>
|
|
|
|
#include "ardrone_motor_control.h"
|
|
|
|
static unsigned long motor_gpios = GPIO_EXT_1 | GPIO_EXT_2 | GPIO_MULTI_1 | GPIO_MULTI_2;
|
|
static unsigned long motor_gpio[4] = { GPIO_EXT_1, GPIO_EXT_2, GPIO_MULTI_1, GPIO_MULTI_2 };
|
|
|
|
typedef union {
|
|
uint16_t motor_value;
|
|
uint8_t bytes[2];
|
|
} motor_union_t;
|
|
|
|
#define UART_TRANSFER_TIME_BYTE_US (9+50) /**< 9 us per byte at 115200k plus overhead */
|
|
|
|
/**
|
|
* @brief Generate the 8-byte motor set packet
|
|
*
|
|
* @return the number of bytes (8)
|
|
*/
|
|
void ar_get_motor_packet(uint8_t *motor_buf, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4)
|
|
{
|
|
motor_buf[0] = 0x20;
|
|
motor_buf[1] = 0x00;
|
|
motor_buf[2] = 0x00;
|
|
motor_buf[3] = 0x00;
|
|
motor_buf[4] = 0x00;
|
|
/*
|
|
* {0x20, 0x00, 0x00, 0x00, 0x00};
|
|
* 0x20 is start sign / motor command
|
|
*/
|
|
motor_union_t curr_motor;
|
|
uint16_t nineBitMask = 0x1FF;
|
|
|
|
/* Set motor 1 */
|
|
curr_motor.motor_value = (motor1 & nineBitMask) << 4;
|
|
motor_buf[0] |= curr_motor.bytes[1];
|
|
motor_buf[1] |= curr_motor.bytes[0];
|
|
|
|
/* Set motor 2 */
|
|
curr_motor.motor_value = (motor2 & nineBitMask) << 3;
|
|
motor_buf[1] |= curr_motor.bytes[1];
|
|
motor_buf[2] |= curr_motor.bytes[0];
|
|
|
|
/* Set motor 3 */
|
|
curr_motor.motor_value = (motor3 & nineBitMask) << 2;
|
|
motor_buf[2] |= curr_motor.bytes[1];
|
|
motor_buf[3] |= curr_motor.bytes[0];
|
|
|
|
/* Set motor 4 */
|
|
curr_motor.motor_value = (motor4 & nineBitMask) << 1;
|
|
motor_buf[3] |= curr_motor.bytes[1];
|
|
motor_buf[4] |= curr_motor.bytes[0];
|
|
}
|
|
|
|
void ar_enable_broadcast(int fd)
|
|
{
|
|
ar_select_motor(fd, 0);
|
|
}
|
|
|
|
int ar_multiplexing_init()
|
|
{
|
|
int fd;
|
|
|
|
fd = open(GPIO_DEVICE_PATH, 0);
|
|
|
|
if (fd < 0) {
|
|
warn("GPIO: open fail");
|
|
return fd;
|
|
}
|
|
|
|
/* deactivate all outputs */
|
|
if (ioctl(fd, GPIO_SET, motor_gpios)) {
|
|
warn("GPIO: clearing pins fail");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
/* configure all motor select GPIOs as outputs */
|
|
if (ioctl(fd, GPIO_SET_OUTPUT, motor_gpios) != 0) {
|
|
warn("GPIO: output set fail");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
int ar_multiplexing_deinit(int fd)
|
|
{
|
|
if (fd < 0) {
|
|
printf("GPIO: no valid descriptor\n");
|
|
return fd;
|
|
}
|
|
|
|
int ret = 0;
|
|
|
|
/* deselect motor 1-4 */
|
|
ret += ioctl(fd, GPIO_SET, motor_gpios);
|
|
|
|
if (ret != 0) {
|
|
printf("GPIO: clear failed %d times\n", ret);
|
|
}
|
|
|
|
if (ioctl(fd, GPIO_SET_INPUT, motor_gpios) != 0) {
|
|
printf("GPIO: input set fail\n");
|
|
return -1;
|
|
}
|
|
|
|
close(fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ar_select_motor(int fd, uint8_t motor)
|
|
{
|
|
int ret = 0;
|
|
/*
|
|
* Four GPIOS:
|
|
* GPIO_EXT1
|
|
* GPIO_EXT2
|
|
* GPIO_UART2_CTS
|
|
* GPIO_UART2_RTS
|
|
*/
|
|
|
|
/* select motor 0 to enable broadcast */
|
|
if (motor == 0) {
|
|
/* select motor 1-4 */
|
|
ret += ioctl(fd, GPIO_CLEAR, motor_gpios);
|
|
|
|
} else {
|
|
/* select reqested motor */
|
|
ret += ioctl(fd, GPIO_CLEAR, motor_gpio[motor - 1]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ar_deselect_motor(int fd, uint8_t motor)
|
|
{
|
|
int ret = 0;
|
|
/*
|
|
* Four GPIOS:
|
|
* GPIO_EXT1
|
|
* GPIO_EXT2
|
|
* GPIO_UART2_CTS
|
|
* GPIO_UART2_RTS
|
|
*/
|
|
|
|
if (motor == 0) {
|
|
/* deselect motor 1-4 */
|
|
ret += ioctl(fd, GPIO_SET, motor_gpios);
|
|
|
|
} else {
|
|
/* deselect reqested motor */
|
|
ret = ioctl(fd, GPIO_SET, motor_gpio[motor - 1]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ar_init_motors(int ardrone_uart, int gpios)
|
|
{
|
|
/* Write ARDrone commands on UART2 */
|
|
uint8_t initbuf[] = {0xE0, 0x91, 0xA1, 0x00, 0x40};
|
|
uint8_t multicastbuf[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA0};
|
|
|
|
/* deselect all motors */
|
|
ar_deselect_motor(gpios, 0);
|
|
|
|
/* initialize all motors
|
|
* - select one motor at a time
|
|
* - configure motor
|
|
*/
|
|
int i;
|
|
int errcounter = 0;
|
|
|
|
|
|
/* initial setup run */
|
|
for (i = 1; i < 5; ++i) {
|
|
/* Initialize motors 1-4 */
|
|
errcounter += ar_select_motor(gpios, i);
|
|
usleep(200);
|
|
|
|
/*
|
|
* write 0xE0 - request status
|
|
* receive one status byte
|
|
*/
|
|
write(ardrone_uart, &(initbuf[0]), 1);
|
|
fsync(ardrone_uart);
|
|
usleep(UART_TRANSFER_TIME_BYTE_US*1);
|
|
|
|
/*
|
|
* write 0x91 - request checksum
|
|
* receive 120 status bytes
|
|
*/
|
|
write(ardrone_uart, &(initbuf[1]), 1);
|
|
fsync(ardrone_uart);
|
|
usleep(UART_TRANSFER_TIME_BYTE_US*120);
|
|
|
|
/*
|
|
* write 0xA1 - set status OK
|
|
* receive one status byte - should be A0
|
|
* to confirm status is OK
|
|
*/
|
|
write(ardrone_uart, &(initbuf[2]), 1);
|
|
fsync(ardrone_uart);
|
|
usleep(UART_TRANSFER_TIME_BYTE_US*1);
|
|
|
|
/*
|
|
* set as motor i, where i = 1..4
|
|
* receive nothing
|
|
*/
|
|
initbuf[3] = (uint8_t)i;
|
|
write(ardrone_uart, &(initbuf[3]), 1);
|
|
fsync(ardrone_uart);
|
|
|
|
/*
|
|
* write 0x40 - check version
|
|
* receive 11 bytes encoding the version
|
|
*/
|
|
write(ardrone_uart, &(initbuf[4]), 1);
|
|
fsync(ardrone_uart);
|
|
usleep(UART_TRANSFER_TIME_BYTE_US*11);
|
|
|
|
ar_deselect_motor(gpios, i);
|
|
/* sleep 200 ms */
|
|
usleep(200000);
|
|
}
|
|
|
|
/* start the multicast part */
|
|
errcounter += ar_select_motor(gpios, 0);
|
|
usleep(200);
|
|
|
|
/*
|
|
* first round
|
|
* write six times A0 - enable broadcast
|
|
* receive nothing
|
|
*/
|
|
write(ardrone_uart, multicastbuf, sizeof(multicastbuf));
|
|
fsync(ardrone_uart);
|
|
usleep(UART_TRANSFER_TIME_BYTE_US * sizeof(multicastbuf));
|
|
|
|
/*
|
|
* second round
|
|
* write six times A0 - enable broadcast
|
|
* receive nothing
|
|
*/
|
|
write(ardrone_uart, multicastbuf, sizeof(multicastbuf));
|
|
fsync(ardrone_uart);
|
|
usleep(UART_TRANSFER_TIME_BYTE_US * sizeof(multicastbuf));
|
|
|
|
/* set motors to zero speed (fsync is part of the write command */
|
|
ardrone_write_motor_commands(ardrone_uart, 0, 0, 0, 0);
|
|
|
|
if (errcounter != 0) {
|
|
fprintf(stderr, "[ardrone_interface] init sequence incomplete, failed %d times", -errcounter);
|
|
fflush(stdout);
|
|
}
|
|
return errcounter;
|
|
}
|
|
|
|
/**
|
|
* Sets the leds on the motor controllers, 1 turns led on, 0 off.
|
|
*/
|
|
void ar_set_leds(int ardrone_uart, uint8_t led1_red, uint8_t led1_green, uint8_t led2_red, uint8_t led2_green, uint8_t led3_red, uint8_t led3_green, uint8_t led4_red, uint8_t led4_green)
|
|
{
|
|
/*
|
|
* 2 bytes are sent. The first 3 bits describe the command: 011 means led control
|
|
* the following 4 bits are the red leds for motor 4, 3, 2, 1
|
|
* then 4 bits with unknown function, then 4 bits for green leds for motor 4, 3, 2, 1
|
|
* the last bit is unknown.
|
|
*
|
|
* The packet is therefore:
|
|
* 011 rrrr 0000 gggg 0
|
|
*/
|
|
uint8_t leds[2];
|
|
leds[0] = 0x60 | ((led4_red & 0x01) << 4) | ((led3_red & 0x01) << 3) | ((led2_red & 0x01) << 2) | ((led1_red & 0x01) << 1);
|
|
leds[1] = ((led4_green & 0x01) << 4) | ((led3_green & 0x01) << 3) | ((led2_green & 0x01) << 2) | ((led1_green & 0x01) << 1);
|
|
write(ardrone_uart, leds, 2);
|
|
}
|
|
|
|
int ardrone_write_motor_commands(int ardrone_fd, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) {
|
|
const unsigned int min_motor_interval = 4900;
|
|
static uint64_t last_motor_time = 0;
|
|
|
|
static struct actuator_outputs_s outputs;
|
|
outputs.timestamp = hrt_absolute_time();
|
|
outputs.output[0] = motor1;
|
|
outputs.output[1] = motor2;
|
|
outputs.output[2] = motor3;
|
|
outputs.output[3] = motor4;
|
|
static orb_advert_t pub = 0;
|
|
if (pub == 0) {
|
|
pub = orb_advertise(ORB_ID_VEHICLE_CONTROLS, &outputs);
|
|
}
|
|
|
|
if (hrt_absolute_time() - last_motor_time > min_motor_interval) {
|
|
uint8_t buf[5] = {0};
|
|
ar_get_motor_packet(buf, motor1, motor2, motor3, motor4);
|
|
int ret;
|
|
ret = write(ardrone_fd, buf, sizeof(buf));
|
|
fsync(ardrone_fd);
|
|
|
|
/* publish just written values */
|
|
orb_publish(ORB_ID_VEHICLE_CONTROLS, pub, &outputs);
|
|
|
|
if (ret == sizeof(buf)) {
|
|
return OK;
|
|
} else {
|
|
return ret;
|
|
}
|
|
} else {
|
|
return -ERROR;
|
|
}
|
|
}
|
|
|
|
void ardrone_mixing_and_output(int ardrone_write, const struct actuator_controls_s *actuators) {
|
|
|
|
float roll_control = actuators->control[0];
|
|
float pitch_control = actuators->control[1];
|
|
float yaw_control = actuators->control[2];
|
|
float motor_thrust = actuators->control[3];
|
|
|
|
//printf("AMO: Roll: %4.4f, Pitch: %4.4f, Yaw: %4.4f, Thrust: %4.4f\n",roll_control, pitch_control, yaw_control, motor_thrust);
|
|
|
|
const float min_thrust = 0.02f; /**< 2% minimum thrust */
|
|
const float max_thrust = 1.0f; /**< 100% max thrust */
|
|
const float scaling = 500.0f; /**< 100% thrust equals a value of 500 which works, 512 leads to cutoff */
|
|
const float min_gas = min_thrust * scaling; /**< value range sent to motors, minimum */
|
|
const float max_gas = max_thrust * scaling; /**< value range sent to motors, maximum */
|
|
|
|
/* initialize all fields to zero */
|
|
uint16_t motor_pwm[4] = {0};
|
|
float motor_calc[4] = {0};
|
|
|
|
float output_band = 0.0f;
|
|
float band_factor = 0.75f;
|
|
const float startpoint_full_control = 0.25f; /**< start full control at 25% thrust */
|
|
float yaw_factor = 1.0f;
|
|
|
|
if (motor_thrust <= min_thrust) {
|
|
motor_thrust = min_thrust;
|
|
output_band = 0.0f;
|
|
} else if (motor_thrust < startpoint_full_control && motor_thrust > min_thrust) {
|
|
output_band = band_factor * (motor_thrust - min_thrust);
|
|
} else if (motor_thrust >= startpoint_full_control && motor_thrust < max_thrust - band_factor * startpoint_full_control) {
|
|
output_band = band_factor * startpoint_full_control;
|
|
} else if (motor_thrust >= max_thrust - band_factor * startpoint_full_control) {
|
|
output_band = band_factor * (max_thrust - motor_thrust);
|
|
}
|
|
|
|
//add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer
|
|
|
|
// FRONT (MOTOR 1)
|
|
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control);
|
|
|
|
// RIGHT (MOTOR 2)
|
|
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control);
|
|
|
|
// BACK (MOTOR 3)
|
|
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control);
|
|
|
|
// LEFT (MOTOR 4)
|
|
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control);
|
|
|
|
// if we are not in the output band
|
|
if (!(motor_calc[0] < motor_thrust + output_band && motor_calc[0] > motor_thrust - output_band
|
|
&& motor_calc[1] < motor_thrust + output_band && motor_calc[1] > motor_thrust - output_band
|
|
&& motor_calc[2] < motor_thrust + output_band && motor_calc[2] > motor_thrust - output_band
|
|
&& motor_calc[3] < motor_thrust + output_band && motor_calc[3] > motor_thrust - output_band)) {
|
|
|
|
yaw_factor = 0.5f;
|
|
// FRONT (MOTOR 1)
|
|
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control * yaw_factor);
|
|
|
|
// RIGHT (MOTOR 2)
|
|
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control * yaw_factor);
|
|
|
|
// BACK (MOTOR 3)
|
|
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control * yaw_factor);
|
|
|
|
// LEFT (MOTOR 4)
|
|
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control * yaw_factor);
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
//check for limits
|
|
if (motor_calc[i] < motor_thrust - output_band) {
|
|
motor_calc[i] = motor_thrust - output_band;
|
|
}
|
|
|
|
if (motor_calc[i] > motor_thrust + output_band) {
|
|
motor_calc[i] = motor_thrust + output_band;
|
|
}
|
|
}
|
|
|
|
/* set the motor values */
|
|
|
|
/* scale up from 0..1 to 10..512) */
|
|
motor_pwm[0] = (uint16_t) (motor_calc[0] * ((float)max_gas - min_gas) + min_gas);
|
|
motor_pwm[1] = (uint16_t) (motor_calc[1] * ((float)max_gas - min_gas) + min_gas);
|
|
motor_pwm[2] = (uint16_t) (motor_calc[2] * ((float)max_gas - min_gas) + min_gas);
|
|
motor_pwm[3] = (uint16_t) (motor_calc[3] * ((float)max_gas - min_gas) + min_gas);
|
|
|
|
/* Keep motors spinning while armed and prevent overflows */
|
|
|
|
/* Failsafe logic - should never be necessary */
|
|
motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : 10;
|
|
motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : 10;
|
|
motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : 10;
|
|
motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : 10;
|
|
|
|
/* Failsafe logic - should never be necessary */
|
|
motor_pwm[0] = (motor_pwm[0] <= 512) ? motor_pwm[0] : 512;
|
|
motor_pwm[1] = (motor_pwm[1] <= 512) ? motor_pwm[1] : 512;
|
|
motor_pwm[2] = (motor_pwm[2] <= 512) ? motor_pwm[2] : 512;
|
|
motor_pwm[3] = (motor_pwm[3] <= 512) ? motor_pwm[3] : 512;
|
|
|
|
/* send motors via UART */
|
|
ardrone_write_motor_commands(ardrone_write, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
|
|
}
|