forked from Archive/PX4-Autopilot
158 lines
4.5 KiB
C
158 lines
4.5 KiB
C
/****************************************************************************
|
|
*
|
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file mixer.c
|
|
*
|
|
* Control channel input/output mixer and failsafe.
|
|
*/
|
|
|
|
#include <nuttx/config.h>
|
|
#include <nuttx/arch.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include <drivers/drv_pwm_output.h>
|
|
|
|
#include "px4io.h"
|
|
|
|
/*
|
|
* Count of periodic calls in which we have no FMU input.
|
|
*/
|
|
static unsigned fmu_input_drops;
|
|
#define FMU_INPUT_DROP_LIMIT 20
|
|
|
|
/*
|
|
* Update a mixer based on the current control signals.
|
|
*/
|
|
static void mixer_update(int mixer, uint16_t *inputs, int input_count);
|
|
|
|
/* current servo arm/disarm state */
|
|
bool mixer_servos_armed = false;
|
|
|
|
/*
|
|
* Each mixer consumes a set of inputs and produces a single output.
|
|
*/
|
|
struct mixer {
|
|
uint16_t current_value;
|
|
/* XXX more config here */
|
|
} mixers[IO_SERVO_COUNT];
|
|
|
|
void
|
|
mixer_tick(void)
|
|
{
|
|
uint16_t *control_values;
|
|
int control_count;
|
|
int i;
|
|
bool should_arm;
|
|
|
|
/*
|
|
* Decide which set of inputs we're using.
|
|
*/
|
|
if (system_state.mixer_use_fmu) {
|
|
/* we have recent control data from the FMU */
|
|
control_count = PX4IO_OUTPUT_CHANNELS;
|
|
control_values = &system_state.fmu_channel_data[0];
|
|
|
|
/* check that we are receiving fresh data from the FMU */
|
|
if (!system_state.fmu_data_received) {
|
|
fmu_input_drops++;
|
|
|
|
/* too many frames without FMU input, time to go to failsafe */
|
|
if (fmu_input_drops >= FMU_INPUT_DROP_LIMIT) {
|
|
system_state.mixer_use_fmu = false;
|
|
}
|
|
} else {
|
|
fmu_input_drops = 0;
|
|
system_state.fmu_data_received = false;
|
|
}
|
|
|
|
} else if (system_state.rc_channels > 0) {
|
|
/* we have control data from an R/C input */
|
|
control_count = system_state.rc_channels;
|
|
control_values = &system_state.rc_channel_data[0];
|
|
|
|
} else {
|
|
/* we have no control input */
|
|
/* XXX builtin failsafe would activate here */
|
|
control_count = 0;
|
|
}
|
|
|
|
/*
|
|
* Tickle each mixer, if we have control data.
|
|
*/
|
|
if (control_count > 0) {
|
|
for (i = 0; i < IO_SERVO_COUNT; i++) {
|
|
mixer_update(i, control_values, control_count);
|
|
|
|
/*
|
|
* If we are armed, update the servo output.
|
|
*/
|
|
if (system_state.armed && system_state.arm_ok)
|
|
up_pwm_servo_set(i, mixers[i].current_value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decide whether the servos should be armed right now.
|
|
*/
|
|
should_arm = system_state.armed && system_state.arm_ok && (control_count > 0);
|
|
if (should_arm && !mixer_servos_armed) {
|
|
/* need to arm, but not armed */
|
|
up_pwm_servo_arm(true);
|
|
mixer_servos_armed = true;
|
|
|
|
} else if (!should_arm && mixer_servos_armed) {
|
|
/* armed but need to disarm */
|
|
up_pwm_servo_arm(false);
|
|
mixer_servos_armed = false;
|
|
}
|
|
}
|
|
|
|
static void
|
|
mixer_update(int mixer, uint16_t *inputs, int input_count)
|
|
{
|
|
/* simple passthrough for now */
|
|
if (mixer < input_count) {
|
|
mixers[mixer].current_value = inputs[mixer];
|
|
} else {
|
|
mixers[mixer].current_value = 0;
|
|
}
|
|
}
|