px4-firmware/apps/multirotor_pos_control/position_control.c

236 lines
8.9 KiB
C

// /****************************************************************************
// *
// * Copyright (C) 2008-2012 PX4 Development Team. All rights reserved.
// * Author: @author Lorenz Meier <lm@inf.ethz.ch>
// * @author Laurens Mackay <mackayl@student.ethz.ch>
// * @author Tobias Naegeli <naegelit@student.ethz.ch>
// * @author Martin Rutschmann <rutmarti@student.ethz.ch>
// *
// * Redistribution and use in source and binary forms, with or without
// * modification, are permitted provided that the following conditions
// * are met:
// *
// * 1. Redistributions of source code must retain the above copyright
// * notice, this list of conditions and the following disclaimer.
// * 2. Redistributions in binary form must reproduce the above copyright
// * notice, this list of conditions and the following disclaimer in
// * the documentation and/or other materials provided with the
// * distribution.
// * 3. Neither the name PX4 nor the names of its contributors may be
// * used to endorse or promote products derived from this software
// * without specific prior written permission.
// *
// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
// * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
// * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// * POSSIBILITY OF SUCH DAMAGE.
// *
// ****************************************************************************/
// /**
// * @file multirotor_position_control.c
// * Implementation of the position control for a multirotor VTOL
// */
// #include <stdio.h>
// #include <stdlib.h>
// #include <stdio.h>
// #include <stdint.h>
// #include <math.h>
// #include <stdbool.h>
// #include <float.h>
// #include <systemlib/pid/pid.h>
// #include "multirotor_position_control.h"
// void control_multirotor_position(const struct vehicle_state_s *vstatus, const struct vehicle_manual_control_s *manual,
// const struct vehicle_attitude_s *att, const struct vehicle_local_position_s *local_pos,
// const struct vehicle_local_position_setpoint_s *local_pos_sp, struct vehicle_attitude_setpoint_s *att_sp)
// {
// static PID_t distance_controller;
// static int read_ret;
// static global_data_position_t position_estimated;
// static uint16_t counter;
// static bool initialized;
// static uint16_t pm_counter;
// static float lat_next;
// static float lon_next;
// static float pitch_current;
// static float thrust_total;
// if (initialized == false) {
// pid_init(&distance_controller,
// global_data_parameter_storage->pm.param_values[PARAM_PID_POS_P],
// global_data_parameter_storage->pm.param_values[PARAM_PID_POS_I],
// global_data_parameter_storage->pm.param_values[PARAM_PID_POS_D],
// global_data_parameter_storage->pm.param_values[PARAM_PID_POS_AWU],
// PID_MODE_DERIVATIV_CALC, 150);//150
// // pid_pos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_POS_LIM];
// // pid_pos_z_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_POS_Z_LIM];
// thrust_total = 0.0f;
// /* Position initialization */
// /* Wait for new position estimate */
// do {
// read_ret = read_lock_position(&position_estimated);
// } while (read_ret != 0);
// lat_next = position_estimated.lat;
// lon_next = position_estimated.lon;
// /* attitude initialization */
// global_data_lock(&global_data_attitude->access_conf);
// pitch_current = global_data_attitude->pitch;
// global_data_unlock(&global_data_attitude->access_conf);
// initialized = true;
// }
// /* load new parameters with 10Hz */
// if (counter % 50 == 0) {
// if (global_data_trylock(&global_data_parameter_storage->access_conf) == 0) {
// /* check whether new parameters are available */
// if (global_data_parameter_storage->counter > pm_counter) {
// pid_set_parameters(&distance_controller,
// global_data_parameter_storage->pm.param_values[PARAM_PID_POS_P],
// global_data_parameter_storage->pm.param_values[PARAM_PID_POS_I],
// global_data_parameter_storage->pm.param_values[PARAM_PID_POS_D],
// global_data_parameter_storage->pm.param_values[PARAM_PID_POS_AWU]);
// //
// // pid_pos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_POS_LIM];
// // pid_pos_z_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_POS_Z_LIM];
// pm_counter = global_data_parameter_storage->counter;
// printf("Position controller changed pid parameters\n");
// }
// }
// global_data_unlock(&global_data_parameter_storage->access_conf);
// }
// /* Wait for new position estimate */
// do {
// read_ret = read_lock_position(&position_estimated);
// } while (read_ret != 0);
// /* Get next waypoint */ //TODO: add local copy
// if (0 == global_data_trylock(&global_data_position_setpoint->access_conf)) {
// lat_next = global_data_position_setpoint->x;
// lon_next = global_data_position_setpoint->y;
// global_data_unlock(&global_data_position_setpoint->access_conf);
// }
// /* Get distance to waypoint */
// float distance_to_waypoint = get_distance_to_next_waypoint(position_estimated.lat , position_estimated.lon, lat_next, lon_next);
// // if(counter % 5 == 0)
// // printf("distance_to_waypoint: %.4f\n", distance_to_waypoint);
// /* Get bearing to waypoint (direction on earth surface to next waypoint) */
// float bearing = get_bearing_to_next_waypoint(position_estimated.lat, position_estimated.lon, lat_next, lon_next);
// if (counter % 5 == 0)
// printf("bearing: %.4f\n", bearing);
// /* Calculate speed in direction of bearing (needed for controller) */
// float speed_norm = sqrtf(position_estimated.vx * position_estimated.vx + position_estimated.vy * position_estimated.vy);
// // if(counter % 5 == 0)
// // printf("speed_norm: %.4f\n", speed_norm);
// float speed_to_waypoint = 0; //(position_estimated.vx * cosf(bearing) + position_estimated.vy * sinf(bearing))/speed_norm; //FIXME, TODO: re-enable this once we have a full estimate of the speed, then we can do a PID for the distance controller
// /* Control Thrust in bearing direction */
// float horizontal_thrust = -pid_calculate(&distance_controller, 0, distance_to_waypoint, speed_to_waypoint,
// CONTROL_PID_POSITION_INTERVAL); //TODO: maybe this "-" sign is an error somewhere else
// // if(counter % 5 == 0)
// // printf("horizontal thrust: %.4f\n", horizontal_thrust);
// /* Get total thrust (from remote for now) */
// if (0 == global_data_trylock(&global_data_rc_channels->access_conf)) {
// thrust_total = (float)global_data_rc_channels->chan[THROTTLE].scale; //TODO: how should we use the RC_CHANNELS_FUNCTION enum?
// global_data_unlock(&global_data_rc_channels->access_conf);
// }
// const float max_gas = 500.0f;
// thrust_total *= max_gas / 20000.0f; //TODO: check this
// thrust_total += max_gas / 2.0f;
// if (horizontal_thrust > thrust_total) {
// horizontal_thrust = thrust_total;
// } else if (horizontal_thrust < -thrust_total) {
// horizontal_thrust = -thrust_total;
// }
// //TODO: maybe we want to add a speed controller later...
// /* Calclulate thrust in east and north direction */
// float thrust_north = cosf(bearing) * horizontal_thrust;
// float thrust_east = sinf(bearing) * horizontal_thrust;
// if (counter % 10 == 0) {
// printf("thrust north: %.4f\n", thrust_north);
// printf("thrust east: %.4f\n", thrust_east);
// fflush(stdout);
// }
// /* Get current attitude */
// if (0 == global_data_trylock(&global_data_attitude->access_conf)) {
// pitch_current = global_data_attitude->pitch;
// global_data_unlock(&global_data_attitude->access_conf);
// }
// /* Get desired pitch & roll */
// float pitch_desired = 0.0f;
// float roll_desired = 0.0f;
// if (thrust_total != 0) {
// float pitch_fraction = -thrust_north / thrust_total;
// float roll_fraction = thrust_east / (cosf(pitch_current) * thrust_total);
// if (roll_fraction < -1) {
// roll_fraction = -1;
// } else if (roll_fraction > 1) {
// roll_fraction = 1;
// }
// // if(counter % 5 == 0)
// // {
// // printf("pitch_fraction: %.4f, roll_fraction: %.4f\n",pitch_fraction, roll_fraction);
// // fflush(stdout);
// // }
// pitch_desired = asinf(pitch_fraction);
// roll_desired = asinf(roll_fraction);
// }
// att_sp.roll = roll_desired;
// att_sp.pitch = pitch_desired;
// counter++;
// }