px4-firmware/apps/controllib/fixedwing.cpp

362 lines
12 KiB
C++

/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file fixedwing.cpp
*
* Controller library code
*/
#include "fixedwing.hpp"
namespace control
{
namespace fixedwing
{
BlockYawDamper::BlockYawDamper(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_rLowPass(this, "R_LP"),
_rWashout(this, "R_HP"),
_r2Rdr(this, "R2RDR"),
_rudder(0)
{
}
BlockYawDamper::~BlockYawDamper() {};
void BlockYawDamper::update(float rCmd, float r)
{
_rudder = _r2Rdr.update(rCmd -
_rWashout.update(_rLowPass.update(r)));
}
BlockStabilization::BlockStabilization(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_yawDamper(this, ""),
_pLowPass(this, "P_LP"),
_qLowPass(this, "Q_LP"),
_p2Ail(this, "P2AIL"),
_q2Elv(this, "Q2ELV"),
_aileron(0),
_elevator(0)
{
}
BlockStabilization::~BlockStabilization() {};
void BlockStabilization::update(float pCmd, float qCmd, float rCmd,
float p, float q, float r)
{
_aileron = _p2Ail.update(
pCmd - _pLowPass.update(p));
_elevator = _q2Elv.update(
qCmd - _qLowPass.update(q));
_yawDamper.update(rCmd, r);
}
BlockWaypointGuidance::BlockWaypointGuidance(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_xtYawLimit(this, "XT2YAW"),
_xt2Yaw(this, "XT2YAW"),
_psiCmd(0)
{
}
BlockWaypointGuidance::~BlockWaypointGuidance() {};
void BlockWaypointGuidance::update(vehicle_global_position_s &pos,
vehicle_attitude_s &att,
vehicle_global_position_setpoint_s &posCmd,
vehicle_global_position_setpoint_s &lastPosCmd)
{
// heading to waypoint
float psiTrack = get_bearing_to_next_waypoint(
(double)pos.lat / (double)1e7d,
(double)pos.lon / (double)1e7d,
(double)posCmd.lat / (double)1e7d,
(double)posCmd.lon / (double)1e7d);
// cross track
struct crosstrack_error_s xtrackError;
get_distance_to_line(&xtrackError,
(double)pos.lat / (double)1e7d,
(double)pos.lon / (double)1e7d,
(double)lastPosCmd.lat / (double)1e7d,
(double)lastPosCmd.lon / (double)1e7d,
(double)posCmd.lat / (double)1e7d,
(double)posCmd.lon / (double)1e7d);
_psiCmd = _wrap_2pi(psiTrack -
_xtYawLimit.update(_xt2Yaw.update(xtrackError.distance)));
}
BlockUorbEnabledAutopilot::BlockUorbEnabledAutopilot(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
// subscriptions
_att(&getSubscriptions(), ORB_ID(vehicle_attitude), 20),
_attCmd(&getSubscriptions(), ORB_ID(vehicle_attitude_setpoint), 20),
_ratesCmd(&getSubscriptions(), ORB_ID(vehicle_rates_setpoint), 20),
_pos(&getSubscriptions() , ORB_ID(vehicle_global_position), 20),
_posCmd(&getSubscriptions(), ORB_ID(vehicle_global_position_setpoint), 20),
_manual(&getSubscriptions(), ORB_ID(manual_control_setpoint), 20),
_status(&getSubscriptions(), ORB_ID(vehicle_status), 20),
_param_update(&getSubscriptions(), ORB_ID(parameter_update), 1000), // limit to 1 Hz
// publications
_actuators(&getPublications(), ORB_ID(actuator_controls_0))
{
}
BlockUorbEnabledAutopilot::~BlockUorbEnabledAutopilot() {};
BlockMultiModeBacksideAutopilot::BlockMultiModeBacksideAutopilot(SuperBlock *parent, const char *name) :
BlockUorbEnabledAutopilot(parent, name),
_stabilization(this, ""), // no name needed, already unique
// heading hold
_psi2Phi(this, "PSI2PHI"),
_phi2P(this, "PHI2P"),
_phiLimit(this, "PHI_LIM"),
// velocity hold
_v2Theta(this, "V2THE"),
_theta2Q(this, "THE2Q"),
_theLimit(this, "THE"),
_vLimit(this, "V"),
// altitude/roc hold
_h2Thr(this, "H2THR"),
_roc2Thr(this, "ROC2THR"),
// guidance block
_guide(this, ""),
// block params
_trimAil(this, "TRIM_ROLL", false), /* general roll trim (full name: TRIM_ROLL) */
_trimElv(this, "TRIM_PITCH", false), /* general pitch trim */
_trimRdr(this, "TRIM_YAW", false), /* general yaw trim */
_trimThr(this, "TRIM_THR", true), /* FWB_ specific throttle trim (full name: FWB_TRIM_THR) */
_vCmd(this, "V_CMD"),
_rocMax(this, "ROC_MAX"),
_attPoll(),
_lastPosCmd(),
_timeStamp(0)
{
_attPoll.fd = _att.getHandle();
_attPoll.events = POLLIN;
}
void BlockMultiModeBacksideAutopilot::update()
{
// wait for a sensor update, check for exit condition every 100 ms
if (poll(&_attPoll, 1, 100) < 0) return; // poll error
uint64_t newTimeStamp = hrt_absolute_time();
float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
_timeStamp = newTimeStamp;
// check for sane values of dt
// to prevent large control responses
if (dt > 1.0f || dt < 0) return;
// set dt for all child blocks
setDt(dt);
// store old position command before update if new command sent
if (_posCmd.updated()) {
_lastPosCmd = _posCmd.getData();
}
// check for new updates
if (_param_update.updated()) updateParams();
// get new information from subscriptions
updateSubscriptions();
// default all output to zero unless handled by mode
for (unsigned i = 4; i < NUM_ACTUATOR_CONTROLS; i++)
_actuators.control[i] = 0.0f;
// only update guidance in auto mode
if (_status.state_machine == SYSTEM_STATE_AUTO) {
// update guidance
_guide.update(_pos, _att, _posCmd, _lastPosCmd);
}
// XXX handle STABILIZED (loiter on spot) as well
// once the system switches from manual or auto to stabilized
// the setpoint should update to loitering around this position
// handle autopilot modes
if (_status.state_machine == SYSTEM_STATE_AUTO ||
_status.state_machine == SYSTEM_STATE_STABILIZED) {
// update guidance
_guide.update(_pos, _att, _posCmd, _lastPosCmd);
// calculate velocity, XXX should be airspeed, but using ground speed for now
float v = sqrtf(_pos.vx * _pos.vx + _pos.vy * _pos.vy + _pos.vz * _pos.vz);
// altitude hold
float dThrottle = _h2Thr.update(_posCmd.altitude - _pos.alt);
// heading hold
float psiError = _wrap_pi(_guide.getPsiCmd() - _att.yaw);
float phiCmd = _phiLimit.update(_psi2Phi.update(psiError));
float pCmd = _phi2P.update(phiCmd - _att.roll);
// velocity hold
// negative sign because nose over to increase speed
float thetaCmd = _theLimit.update(-_v2Theta.update(
_vLimit.update(_vCmd.get()) - v));
float qCmd = _theta2Q.update(thetaCmd - _att.pitch);
// yaw rate cmd
float rCmd = 0;
// stabilization
_stabilization.update(pCmd, qCmd, rCmd,
_att.rollspeed, _att.pitchspeed, _att.yawspeed);
// output
_actuators.control[CH_AIL] = _stabilization.getAileron() + _trimAil.get();
_actuators.control[CH_ELV] = _stabilization.getElevator() + _trimElv.get();
_actuators.control[CH_RDR] = _stabilization.getRudder() + _trimRdr.get();
_actuators.control[CH_THR] = dThrottle + _trimThr.get();
// XXX limit throttle to manual setting (safety) for now.
// If it turns out to be confusing, it can be removed later once
// a first binary release can be targeted.
// This is not a hack, but a design choice.
/* do not limit in HIL */
if (!_status.flag_hil_enabled) {
/* limit to value of manual throttle */
_actuators.control[CH_THR] = (_actuators.control[CH_THR] < _manual.throttle) ?
_actuators.control[CH_THR] : _manual.throttle;
}
} else if (_status.state_machine == SYSTEM_STATE_MANUAL) {
if (_status.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_DIRECT) {
_actuators.control[CH_AIL] = _manual.roll;
_actuators.control[CH_ELV] = _manual.pitch;
_actuators.control[CH_RDR] = _manual.yaw;
_actuators.control[CH_THR] = _manual.throttle;
} else if (_status.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_SAS) {
// calculate velocity, XXX should be airspeed, but using ground speed for now
float v = sqrtf(_pos.vx * _pos.vx + _pos.vy * _pos.vy + _pos.vz * _pos.vz);
// pitch channel -> rate of climb
// TODO, might want to put a gain on this, otherwise commanding
// from +1 -> -1 m/s for rate of climb
//float dThrottle = _roc2Thr.update(
//_rocMax.get()*_manual.pitch - _pos.vz);
// roll channel -> bank angle
float phiCmd = _phiLimit.update(_manual.roll * _phiLimit.getMax());
float pCmd = _phi2P.update(phiCmd - _att.roll);
// throttle channel -> velocity
// negative sign because nose over to increase speed
float vCmd = _manual.throttle * (_vLimit.getMax() - _vLimit.getMin()) + _vLimit.getMin();
float thetaCmd = _theLimit.update(-_v2Theta.update(_vLimit.update(vCmd) - v));
float qCmd = _theta2Q.update(thetaCmd - _att.pitch);
// yaw rate cmd
float rCmd = 0;
// stabilization
_stabilization.update(pCmd, qCmd, rCmd,
_att.rollspeed, _att.pitchspeed, _att.yawspeed);
// output
_actuators.control[CH_AIL] = _stabilization.getAileron() + _trimAil.get();
_actuators.control[CH_ELV] = _stabilization.getElevator() + _trimElv.get();
_actuators.control[CH_RDR] = _stabilization.getRudder() + _trimRdr.get();
// currenlty using manual throttle
// XXX if you enable this watch out, vz might be very noisy
//_actuators.control[CH_THR] = dThrottle + _trimThr.get();
_actuators.control[CH_THR] = _manual.throttle;
// XXX limit throttle to manual setting (safety) for now.
// If it turns out to be confusing, it can be removed later once
// a first binary release can be targeted.
// This is not a hack, but a design choice.
/* do not limit in HIL */
if (!_status.flag_hil_enabled) {
/* limit to value of manual throttle */
_actuators.control[CH_THR] = (_actuators.control[CH_THR] < _manual.throttle) ?
_actuators.control[CH_THR] : _manual.throttle;
}
}
// body rates controller, disabled for now
else if (0 /*_status.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_SAS*/) {
_stabilization.update(_manual.roll, _manual.pitch, _manual.yaw,
_att.rollspeed, _att.pitchspeed, _att.yawspeed);
_actuators.control[CH_AIL] = _stabilization.getAileron();
_actuators.control[CH_ELV] = _stabilization.getElevator();
_actuators.control[CH_RDR] = _stabilization.getRudder();
_actuators.control[CH_THR] = _manual.throttle;
}
}
// update all publications
updatePublications();
}
BlockMultiModeBacksideAutopilot::~BlockMultiModeBacksideAutopilot()
{
// send one last publication when destroyed, setting
// all output to zero
for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++)
_actuators.control[i] = 0.0f;
updatePublications();
}
} // namespace fixedwing
} // namespace control