px4-firmware/apps/sensors/sensors.cpp

1469 lines
41 KiB
C++

/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file sensors.cpp
* Sensor readout process.
*
* @author Lorenz Meier <lm@inf.ethz.ch>
*/
#include <nuttx/config.h>
#include <fcntl.h>
#include <poll.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>
#include <errno.h>
#include <math.h>
#include <nuttx/analog/adc.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_accel.h>
#include <drivers/drv_gyro.h>
#include <drivers/drv_mag.h>
#include <drivers/drv_baro.h>
#include <drivers/drv_rc_input.h>
#include <drivers/drv_adc.h>
#include <systemlib/systemlib.h>
#include <systemlib/param/param.h>
#include <systemlib/err.h>
#include <systemlib/perf_counter.h>
#include <systemlib/ppm_decode.h>
#include <systemlib/airspeed.h>
#include <uORB/uORB.h>
#include <uORB/topics/sensor_combined.h>
#include <uORB/topics/rc_channels.h>
#include <uORB/topics/manual_control_setpoint.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/parameter_update.h>
#include <uORB/topics/battery_status.h>
#include <uORB/topics/differential_pressure.h>
#define GYRO_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */
#define ACC_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */
#define MAGN_HEALTH_COUNTER_LIMIT_ERROR 100 /* 1000 ms downtime at 100 Hz update rate */
#define BARO_HEALTH_COUNTER_LIMIT_ERROR 50 /* 500 ms downtime at 100 Hz update rate */
#define ADC_HEALTH_COUNTER_LIMIT_ERROR 10 /* 100 ms downtime at 100 Hz update rate */
#define GYRO_HEALTH_COUNTER_LIMIT_OK 5
#define ACC_HEALTH_COUNTER_LIMIT_OK 5
#define MAGN_HEALTH_COUNTER_LIMIT_OK 5
#define BARO_HEALTH_COUNTER_LIMIT_OK 5
#define ADC_HEALTH_COUNTER_LIMIT_OK 5
#define ADC_BATTERY_VOLTAGE_CHANNEL 10
#define ADC_AIRSPEED_VOLTAGE_CHANNEL 11
#define BAT_VOL_INITIAL 0.f
#define BAT_VOL_LOWPASS_1 0.99f
#define BAT_VOL_LOWPASS_2 0.01f
#define VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS 3.5f
#define PPM_INPUT_TIMEOUT_INTERVAL 50000 /**< 50 ms timeout / 20 Hz */
#define limit_minus_one_to_one(arg) (arg < -1.0f) ? -1.0f : ((arg > 1.0f) ? 1.0f : arg)
/**
* Sensor app start / stop handling function
*
* @ingroup apps
*/
extern "C" __EXPORT int sensors_main(int argc, char *argv[]);
class Sensors
{
public:
/**
* Constructor
*/
Sensors();
/**
* Destructor, also kills the sensors task.
*/
~Sensors();
/**
* Start the sensors task.
*
* @return OK on success.
*/
int start();
private:
static const unsigned _rc_max_chan_count = RC_CHANNELS_MAX; /**< maximum number of r/c channels we handle */
#if CONFIG_HRT_PPM
hrt_abstime _ppm_last_valid; /**< last time we got a valid ppm signal */
/**
* Gather and publish PPM input data.
*/
void ppm_poll();
#endif
/* XXX should not be here - should be own driver */
int _fd_adc; /**< ADC driver handle */
hrt_abstime _last_adc; /**< last time we took input from the ADC */
bool _task_should_exit; /**< if true, sensor task should exit */
int _sensors_task; /**< task handle for sensor task */
bool _hil_enabled; /**< if true, HIL is active */
bool _publishing; /**< if true, we are publishing sensor data */
int _gyro_sub; /**< raw gyro data subscription */
int _accel_sub; /**< raw accel data subscription */
int _mag_sub; /**< raw mag data subscription */
int _rc_sub; /**< raw rc channels data subscription */
int _baro_sub; /**< raw baro data subscription */
int _vstatus_sub; /**< vehicle status subscription */
int _params_sub; /**< notification of parameter updates */
int _manual_control_sub; /**< notification of manual control updates */
orb_advert_t _sensor_pub; /**< combined sensor data topic */
orb_advert_t _manual_control_pub; /**< manual control signal topic */
orb_advert_t _rc_pub; /**< raw r/c control topic */
orb_advert_t _battery_pub; /**< battery status */
orb_advert_t _airspeed_pub; /**< airspeed */
perf_counter_t _loop_perf; /**< loop performance counter */
struct rc_channels_s _rc; /**< r/c channel data */
struct battery_status_s _battery_status; /**< battery status */
struct baro_report _barometer; /**< barometer data */
struct differential_pressure_s _differential_pressure;
struct {
float min[_rc_max_chan_count];
float trim[_rc_max_chan_count];
float max[_rc_max_chan_count];
float rev[_rc_max_chan_count];
float dz[_rc_max_chan_count];
// float ex[_rc_max_chan_count];
float scaling_factor[_rc_max_chan_count];
float gyro_offset[3];
float mag_offset[3];
float mag_scale[3];
float accel_offset[3];
float accel_scale[3];
float airspeed_offset;
int rc_type;
int rc_map_roll;
int rc_map_pitch;
int rc_map_yaw;
int rc_map_throttle;
int rc_map_manual_override_sw;
int rc_map_auto_mode_sw;
int rc_map_manual_mode_sw;
int rc_map_sas_mode_sw;
int rc_map_rtl_sw;
int rc_map_offboard_ctrl_mode_sw;
int rc_map_flaps;
int rc_map_aux1;
int rc_map_aux2;
int rc_map_aux3;
int rc_map_aux4;
int rc_map_aux5;
float rc_scale_roll;
float rc_scale_pitch;
float rc_scale_yaw;
float rc_scale_flaps;
float battery_voltage_scaling;
} _parameters; /**< local copies of interesting parameters */
struct {
param_t min[_rc_max_chan_count];
param_t trim[_rc_max_chan_count];
param_t max[_rc_max_chan_count];
param_t rev[_rc_max_chan_count];
param_t dz[_rc_max_chan_count];
// param_t ex[_rc_max_chan_count];
param_t rc_type;
param_t rc_demix;
param_t gyro_offset[3];
param_t accel_offset[3];
param_t accel_scale[3];
param_t mag_offset[3];
param_t mag_scale[3];
param_t airspeed_offset;
param_t rc_map_roll;
param_t rc_map_pitch;
param_t rc_map_yaw;
param_t rc_map_throttle;
param_t rc_map_manual_override_sw;
param_t rc_map_auto_mode_sw;
param_t rc_map_manual_mode_sw;
param_t rc_map_sas_mode_sw;
param_t rc_map_rtl_sw;
param_t rc_map_offboard_ctrl_mode_sw;
param_t rc_map_flaps;
param_t rc_map_aux1;
param_t rc_map_aux2;
param_t rc_map_aux3;
param_t rc_map_aux4;
param_t rc_map_aux5;
param_t rc_scale_roll;
param_t rc_scale_pitch;
param_t rc_scale_yaw;
param_t rc_scale_flaps;
param_t battery_voltage_scaling;
} _parameter_handles; /**< handles for interesting parameters */
/**
* Update our local parameter cache.
*/
int parameters_update();
/**
* Do accel-related initialisation.
*/
void accel_init();
/**
* Do gyro-related initialisation.
*/
void gyro_init();
/**
* Do mag-related initialisation.
*/
void mag_init();
/**
* Do baro-related initialisation.
*/
void baro_init();
/**
* Do adc-related initialisation.
*/
void adc_init();
/**
* Poll the accelerometer for updated data.
*
* @param raw Combined sensor data structure into which
* data should be returned.
*/
void accel_poll(struct sensor_combined_s &raw);
/**
* Poll the gyro for updated data.
*
* @param raw Combined sensor data structure into which
* data should be returned.
*/
void gyro_poll(struct sensor_combined_s &raw);
/**
* Poll the magnetometer for updated data.
*
* @param raw Combined sensor data structure into which
* data should be returned.
*/
void mag_poll(struct sensor_combined_s &raw);
/**
* Poll the barometer for updated data.
*
* @param raw Combined sensor data structure into which
* data should be returned.
*/
void baro_poll(struct sensor_combined_s &raw);
/**
* Check for changes in vehicle status.
*/
void vehicle_status_poll();
/**
* Check for changes in parameters.
*/
void parameter_update_poll(bool forced = false);
/**
* Poll the ADC and update readings to suit.
*
* @param raw Combined sensor data structure into which
* data should be returned.
*/
void adc_poll(struct sensor_combined_s &raw);
/**
* Shim for calling task_main from task_create.
*/
static void task_main_trampoline(int argc, char *argv[]);
/**
* Main sensor collection task.
*/
void task_main() __attribute__((noreturn));
};
namespace sensors
{
/* oddly, ERROR is not defined for c++ */
#ifdef ERROR
# undef ERROR
#endif
static const int ERROR = -1;
Sensors *g_sensors;
}
Sensors::Sensors() :
_ppm_last_valid(0),
_fd_adc(-1),
_last_adc(0),
_task_should_exit(false),
_sensors_task(-1),
_hil_enabled(false),
_publishing(true),
/* subscriptions */
_gyro_sub(-1),
_accel_sub(-1),
_mag_sub(-1),
_rc_sub(-1),
_baro_sub(-1),
_vstatus_sub(-1),
_params_sub(-1),
_manual_control_sub(-1),
/* publications */
_sensor_pub(-1),
_manual_control_pub(-1),
_rc_pub(-1),
_battery_pub(-1),
_airspeed_pub(-1),
/* performance counters */
_loop_perf(perf_alloc(PC_ELAPSED, "sensor task update"))
{
/* basic r/c parameters */
for (unsigned i = 0; i < _rc_max_chan_count; i++) {
char nbuf[16];
/* min values */
sprintf(nbuf, "RC%d_MIN", i + 1);
_parameter_handles.min[i] = param_find(nbuf);
/* trim values */
sprintf(nbuf, "RC%d_TRIM", i + 1);
_parameter_handles.trim[i] = param_find(nbuf);
/* max values */
sprintf(nbuf, "RC%d_MAX", i + 1);
_parameter_handles.max[i] = param_find(nbuf);
/* channel reverse */
sprintf(nbuf, "RC%d_REV", i + 1);
_parameter_handles.rev[i] = param_find(nbuf);
/* channel deadzone */
sprintf(nbuf, "RC%d_DZ", i + 1);
_parameter_handles.dz[i] = param_find(nbuf);
}
_parameter_handles.rc_type = param_find("RC_TYPE");
/* mandatory input switched, mapped to channels 1-4 per default */
_parameter_handles.rc_map_roll = param_find("RC_MAP_ROLL");
_parameter_handles.rc_map_pitch = param_find("RC_MAP_PITCH");
_parameter_handles.rc_map_yaw = param_find("RC_MAP_YAW");
_parameter_handles.rc_map_throttle = param_find("RC_MAP_THROTTLE");
/* mandatory mode switches, mapped to channel 5 and 6 per default */
_parameter_handles.rc_map_manual_override_sw = param_find("RC_MAP_OVER_SW");
_parameter_handles.rc_map_auto_mode_sw = param_find("RC_MAP_MODE_SW");
_parameter_handles.rc_map_flaps = param_find("RC_MAP_FLAPS");
/* optional mode switches, not mapped per default */
_parameter_handles.rc_map_manual_mode_sw = param_find("RC_MAP_MAN_SW");
_parameter_handles.rc_map_sas_mode_sw = param_find("RC_MAP_SAS_SW");
_parameter_handles.rc_map_rtl_sw = param_find("RC_MAP_RTL_SW");
_parameter_handles.rc_map_offboard_ctrl_mode_sw = param_find("RC_MAP_OFFB_SW");
_parameter_handles.rc_map_aux1 = param_find("RC_MAP_AUX1");
_parameter_handles.rc_map_aux2 = param_find("RC_MAP_AUX2");
_parameter_handles.rc_map_aux3 = param_find("RC_MAP_AUX3");
_parameter_handles.rc_map_aux4 = param_find("RC_MAP_AUX4");
_parameter_handles.rc_map_aux5 = param_find("RC_MAP_AUX5");
_parameter_handles.rc_scale_roll = param_find("RC_SCALE_ROLL");
_parameter_handles.rc_scale_pitch = param_find("RC_SCALE_PITCH");
_parameter_handles.rc_scale_yaw = param_find("RC_SCALE_YAW");
_parameter_handles.rc_scale_flaps = param_find("RC_SCALE_FLAPS");
/* gyro offsets */
_parameter_handles.gyro_offset[0] = param_find("SENS_GYRO_XOFF");
_parameter_handles.gyro_offset[1] = param_find("SENS_GYRO_YOFF");
_parameter_handles.gyro_offset[2] = param_find("SENS_GYRO_ZOFF");
/* accel offsets */
_parameter_handles.accel_offset[0] = param_find("SENS_ACC_XOFF");
_parameter_handles.accel_offset[1] = param_find("SENS_ACC_YOFF");
_parameter_handles.accel_offset[2] = param_find("SENS_ACC_ZOFF");
_parameter_handles.accel_scale[0] = param_find("SENS_ACC_XSCALE");
_parameter_handles.accel_scale[1] = param_find("SENS_ACC_YSCALE");
_parameter_handles.accel_scale[2] = param_find("SENS_ACC_ZSCALE");
/* mag offsets */
_parameter_handles.mag_offset[0] = param_find("SENS_MAG_XOFF");
_parameter_handles.mag_offset[1] = param_find("SENS_MAG_YOFF");
_parameter_handles.mag_offset[2] = param_find("SENS_MAG_ZOFF");
_parameter_handles.mag_scale[0] = param_find("SENS_MAG_XSCALE");
_parameter_handles.mag_scale[1] = param_find("SENS_MAG_YSCALE");
_parameter_handles.mag_scale[2] = param_find("SENS_MAG_ZSCALE");
/*Airspeed offset */
_parameter_handles.airspeed_offset = param_find("SENS_VAIR_OFF");
_parameter_handles.battery_voltage_scaling = param_find("BAT_V_SCALING");
/* fetch initial parameter values */
parameters_update();
}
Sensors::~Sensors()
{
if (_sensors_task != -1) {
/* task wakes up every 100ms or so at the longest */
_task_should_exit = true;
/* wait for a second for the task to quit at our request */
unsigned i = 0;
do {
/* wait 20ms */
usleep(20000);
/* if we have given up, kill it */
if (++i > 50) {
task_delete(_sensors_task);
break;
}
} while (_sensors_task != -1);
}
sensors::g_sensors = nullptr;
}
int
Sensors::parameters_update()
{
bool rc_valid = true;
/* rc values */
for (unsigned int i = 0; i < RC_CHANNELS_MAX; i++) {
if (param_get(_parameter_handles.min[i], &(_parameters.min[i])) != OK) {
warnx("Failed getting min for chan %d", i);
}
if (param_get(_parameter_handles.trim[i], &(_parameters.trim[i])) != OK) {
warnx("Failed getting trim for chan %d", i);
}
if (param_get(_parameter_handles.max[i], &(_parameters.max[i])) != OK) {
warnx("Failed getting max for chan %d", i);
}
if (param_get(_parameter_handles.rev[i], &(_parameters.rev[i])) != OK) {
warnx("Failed getting rev for chan %d", i);
}
if (param_get(_parameter_handles.dz[i], &(_parameters.dz[i])) != OK) {
warnx("Failed getting dead zone for chan %d", i);
}
_parameters.scaling_factor[i] = (1.0f / ((_parameters.max[i] - _parameters.min[i]) / 2.0f) * _parameters.rev[i]);
/* handle blowup in the scaling factor calculation */
if (!isfinite(_parameters.scaling_factor[i]) ||
_parameters.scaling_factor[i] * _parameters.rev[i] < 0.000001f ||
_parameters.scaling_factor[i] * _parameters.rev[i] > 0.2f) {
/* scaling factors do not make sense, lock them down */
_parameters.scaling_factor[i] = 0;
rc_valid = false;
}
}
/* handle wrong values */
if (!rc_valid)
warnx("WARNING WARNING WARNING\n\nRC CALIBRATION NOT SANE!\n\n");
/* remote control type */
if (param_get(_parameter_handles.rc_type, &(_parameters.rc_type)) != OK) {
warnx("Failed getting remote control type");
}
/* channel mapping */
if (param_get(_parameter_handles.rc_map_roll, &(_parameters.rc_map_roll)) != OK) {
warnx("Failed getting roll chan index");
}
if (param_get(_parameter_handles.rc_map_pitch, &(_parameters.rc_map_pitch)) != OK) {
warnx("Failed getting pitch chan index");
}
if (param_get(_parameter_handles.rc_map_yaw, &(_parameters.rc_map_yaw)) != OK) {
warnx("Failed getting yaw chan index");
}
if (param_get(_parameter_handles.rc_map_throttle, &(_parameters.rc_map_throttle)) != OK) {
warnx("Failed getting throttle chan index");
}
if (param_get(_parameter_handles.rc_map_manual_override_sw, &(_parameters.rc_map_manual_override_sw)) != OK) {
warnx("Failed getting override sw chan index");
}
if (param_get(_parameter_handles.rc_map_auto_mode_sw, &(_parameters.rc_map_auto_mode_sw)) != OK) {
warnx("Failed getting auto mode sw chan index");
}
if (param_get(_parameter_handles.rc_map_flaps, &(_parameters.rc_map_flaps)) != OK) {
warnx("Failed getting flaps chan index");
}
if (param_get(_parameter_handles.rc_map_manual_mode_sw, &(_parameters.rc_map_manual_mode_sw)) != OK) {
warnx("Failed getting manual mode sw chan index");
}
if (param_get(_parameter_handles.rc_map_rtl_sw, &(_parameters.rc_map_rtl_sw)) != OK) {
warnx("Failed getting rtl sw chan index");
}
if (param_get(_parameter_handles.rc_map_sas_mode_sw, &(_parameters.rc_map_sas_mode_sw)) != OK) {
warnx("Failed getting sas mode sw chan index");
}
if (param_get(_parameter_handles.rc_map_offboard_ctrl_mode_sw, &(_parameters.rc_map_offboard_ctrl_mode_sw)) != OK) {
warnx("Failed getting offboard control mode sw chan index");
}
if (param_get(_parameter_handles.rc_map_aux1, &(_parameters.rc_map_aux1)) != OK) {
warnx("Failed getting mode aux 1 index");
}
if (param_get(_parameter_handles.rc_map_aux2, &(_parameters.rc_map_aux2)) != OK) {
warnx("Failed getting mode aux 2 index");
}
if (param_get(_parameter_handles.rc_map_aux3, &(_parameters.rc_map_aux3)) != OK) {
warnx("Failed getting mode aux 3 index");
}
if (param_get(_parameter_handles.rc_map_aux4, &(_parameters.rc_map_aux4)) != OK) {
warnx("Failed getting mode aux 4 index");
}
if (param_get(_parameter_handles.rc_map_aux5, &(_parameters.rc_map_aux5)) != OK) {
warnx("Failed getting mode aux 5 index");
}
if (param_get(_parameter_handles.rc_scale_roll, &(_parameters.rc_scale_roll)) != OK) {
warnx("Failed getting rc scaling for roll");
}
if (param_get(_parameter_handles.rc_scale_pitch, &(_parameters.rc_scale_pitch)) != OK) {
warnx("Failed getting rc scaling for pitch");
}
if (param_get(_parameter_handles.rc_scale_yaw, &(_parameters.rc_scale_yaw)) != OK) {
warnx("Failed getting rc scaling for yaw");
}
if (param_get(_parameter_handles.rc_scale_flaps, &(_parameters.rc_scale_flaps)) != OK) {
warnx("Failed getting rc scaling for flaps");
}
/* update RC function mappings */
_rc.function[THROTTLE] = _parameters.rc_map_throttle - 1;
_rc.function[ROLL] = _parameters.rc_map_roll - 1;
_rc.function[PITCH] = _parameters.rc_map_pitch - 1;
_rc.function[YAW] = _parameters.rc_map_yaw - 1;
_rc.function[OVERRIDE] = _parameters.rc_map_manual_override_sw - 1;
_rc.function[AUTO_MODE] = _parameters.rc_map_auto_mode_sw - 1;
_rc.function[FLAPS] = _parameters.rc_map_flaps - 1;
_rc.function[MANUAL_MODE] = _parameters.rc_map_manual_mode_sw - 1;
_rc.function[RTL] = _parameters.rc_map_rtl_sw - 1;
_rc.function[SAS_MODE] = _parameters.rc_map_sas_mode_sw - 1;
_rc.function[OFFBOARD_MODE] = _parameters.rc_map_offboard_ctrl_mode_sw - 1;
_rc.function[AUX_1] = _parameters.rc_map_aux1 - 1;
_rc.function[AUX_2] = _parameters.rc_map_aux2 - 1;
_rc.function[AUX_3] = _parameters.rc_map_aux3 - 1;
_rc.function[AUX_4] = _parameters.rc_map_aux4 - 1;
_rc.function[AUX_5] = _parameters.rc_map_aux5 - 1;
/* gyro offsets */
param_get(_parameter_handles.gyro_offset[0], &(_parameters.gyro_offset[0]));
param_get(_parameter_handles.gyro_offset[1], &(_parameters.gyro_offset[1]));
param_get(_parameter_handles.gyro_offset[2], &(_parameters.gyro_offset[2]));
/* accel offsets */
param_get(_parameter_handles.accel_offset[0], &(_parameters.accel_offset[0]));
param_get(_parameter_handles.accel_offset[1], &(_parameters.accel_offset[1]));
param_get(_parameter_handles.accel_offset[2], &(_parameters.accel_offset[2]));
param_get(_parameter_handles.accel_scale[0], &(_parameters.accel_scale[0]));
param_get(_parameter_handles.accel_scale[1], &(_parameters.accel_scale[1]));
param_get(_parameter_handles.accel_scale[2], &(_parameters.accel_scale[2]));
/* mag offsets */
param_get(_parameter_handles.mag_offset[0], &(_parameters.mag_offset[0]));
param_get(_parameter_handles.mag_offset[1], &(_parameters.mag_offset[1]));
param_get(_parameter_handles.mag_offset[2], &(_parameters.mag_offset[2]));
/* mag scaling */
param_get(_parameter_handles.mag_scale[0], &(_parameters.mag_scale[0]));
param_get(_parameter_handles.mag_scale[1], &(_parameters.mag_scale[1]));
param_get(_parameter_handles.mag_scale[2], &(_parameters.mag_scale[2]));
/* Airspeed offset */
param_get(_parameter_handles.airspeed_offset, &(_parameters.airspeed_offset));
/* scaling of ADC ticks to battery voltage */
if (param_get(_parameter_handles.battery_voltage_scaling, &(_parameters.battery_voltage_scaling)) != OK) {
warnx("Failed updating voltage scaling param");
}
return OK;
}
void
Sensors::accel_init()
{
int fd;
fd = open(ACCEL_DEVICE_PATH, 0);
if (fd < 0) {
warn("%s", ACCEL_DEVICE_PATH);
errx(1, "FATAL: no accelerometer found");
} else {
/* set the accel internal sampling rate up to at leat 500Hz */
ioctl(fd, ACCELIOCSSAMPLERATE, 500);
/* set the driver to poll at 500Hz */
ioctl(fd, SENSORIOCSPOLLRATE, 500);
warnx("using system accel");
close(fd);
}
}
void
Sensors::gyro_init()
{
int fd;
fd = open(GYRO_DEVICE_PATH, 0);
if (fd < 0) {
warn("%s", GYRO_DEVICE_PATH);
errx(1, "FATAL: no gyro found");
} else {
/* set the gyro internal sampling rate up to at leat 500Hz */
ioctl(fd, GYROIOCSSAMPLERATE, 500);
/* set the driver to poll at 500Hz */
ioctl(fd, SENSORIOCSPOLLRATE, 500);
warnx("using system gyro");
close(fd);
}
}
void
Sensors::mag_init()
{
int fd;
fd = open(MAG_DEVICE_PATH, 0);
if (fd < 0) {
warn("%s", MAG_DEVICE_PATH);
errx(1, "FATAL: no magnetometer found");
}
/* set the mag internal poll rate to at least 150Hz */
ioctl(fd, MAGIOCSSAMPLERATE, 150);
/* set the driver to poll at 150Hz */
ioctl(fd, SENSORIOCSPOLLRATE, 150);
close(fd);
}
void
Sensors::baro_init()
{
int fd;
fd = open(BARO_DEVICE_PATH, 0);
if (fd < 0) {
warn("%s", BARO_DEVICE_PATH);
warnx("No barometer found, ignoring");
}
/* set the driver to poll at 150Hz */
ioctl(fd, SENSORIOCSPOLLRATE, 150);
close(fd);
}
void
Sensors::adc_init()
{
_fd_adc = open(ADC_DEVICE_PATH, O_RDONLY | O_NONBLOCK);
if (_fd_adc < 0) {
warn(ADC_DEVICE_PATH);
warnx("FATAL: no ADC found");
}
}
void
Sensors::accel_poll(struct sensor_combined_s &raw)
{
bool accel_updated;
orb_check(_accel_sub, &accel_updated);
if (accel_updated) {
struct accel_report accel_report;
orb_copy(ORB_ID(sensor_accel), _accel_sub, &accel_report);
raw.accelerometer_m_s2[0] = accel_report.x;
raw.accelerometer_m_s2[1] = accel_report.y;
raw.accelerometer_m_s2[2] = accel_report.z;
raw.accelerometer_raw[0] = accel_report.x_raw;
raw.accelerometer_raw[1] = accel_report.y_raw;
raw.accelerometer_raw[2] = accel_report.z_raw;
raw.accelerometer_counter++;
}
}
void
Sensors::gyro_poll(struct sensor_combined_s &raw)
{
bool gyro_updated;
orb_check(_gyro_sub, &gyro_updated);
if (gyro_updated) {
struct gyro_report gyro_report;
orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &gyro_report);
raw.gyro_rad_s[0] = gyro_report.x;
raw.gyro_rad_s[1] = gyro_report.y;
raw.gyro_rad_s[2] = gyro_report.z;
raw.gyro_raw[0] = gyro_report.x_raw;
raw.gyro_raw[1] = gyro_report.y_raw;
raw.gyro_raw[2] = gyro_report.z_raw;
raw.gyro_counter++;
}
}
void
Sensors::mag_poll(struct sensor_combined_s &raw)
{
bool mag_updated;
orb_check(_mag_sub, &mag_updated);
if (mag_updated) {
struct mag_report mag_report;
orb_copy(ORB_ID(sensor_mag), _mag_sub, &mag_report);
raw.magnetometer_ga[0] = mag_report.x;
raw.magnetometer_ga[1] = mag_report.y;
raw.magnetometer_ga[2] = mag_report.z;
raw.magnetometer_raw[0] = mag_report.x_raw;
raw.magnetometer_raw[1] = mag_report.y_raw;
raw.magnetometer_raw[2] = mag_report.z_raw;
raw.magnetometer_counter++;
}
}
void
Sensors::baro_poll(struct sensor_combined_s &raw)
{
bool baro_updated;
orb_check(_baro_sub, &baro_updated);
if (baro_updated) {
orb_copy(ORB_ID(sensor_baro), _baro_sub, &_barometer);
raw.baro_pres_mbar = _barometer.pressure; // Pressure in mbar
raw.baro_alt_meter = _barometer.altitude; // Altitude in meters
raw.baro_temp_celcius = _barometer.temperature; // Temperature in degrees celcius
raw.baro_counter++;
}
}
void
Sensors::vehicle_status_poll()
{
struct vehicle_status_s vstatus;
bool vstatus_updated;
/* Check HIL state if vehicle status has changed */
orb_check(_vstatus_sub, &vstatus_updated);
if (vstatus_updated) {
orb_copy(ORB_ID(vehicle_status), _vstatus_sub, &vstatus);
/* switching from non-HIL to HIL mode */
//printf("[sensors] Vehicle mode: %i \t AND: %i, HIL: %i\n", vstatus.mode, vstatus.mode & VEHICLE_MODE_FLAG_HIL_ENABLED, hil_enabled);
if (vstatus.flag_hil_enabled && !_hil_enabled) {
_hil_enabled = true;
_publishing = false;
/* switching from HIL to non-HIL mode */
} else if (!_publishing && !_hil_enabled) {
_hil_enabled = false;
_publishing = true;
}
}
}
void
Sensors::parameter_update_poll(bool forced)
{
bool param_updated;
/* Check if any parameter has changed */
orb_check(_params_sub, &param_updated);
if (param_updated || forced) {
/* read from param to clear updated flag */
struct parameter_update_s update;
orb_copy(ORB_ID(parameter_update), _params_sub, &update);
/* update parameters */
parameters_update();
/* update sensor offsets */
int fd = open(GYRO_DEVICE_PATH, 0);
struct gyro_scale gscale = {
_parameters.gyro_offset[0],
1.0f,
_parameters.gyro_offset[1],
1.0f,
_parameters.gyro_offset[2],
1.0f,
};
if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale))
warn("WARNING: failed to set scale / offsets for gyro");
close(fd);
fd = open(ACCEL_DEVICE_PATH, 0);
struct accel_scale ascale = {
_parameters.accel_offset[0],
_parameters.accel_scale[0],
_parameters.accel_offset[1],
_parameters.accel_scale[1],
_parameters.accel_offset[2],
_parameters.accel_scale[2],
};
if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale))
warn("WARNING: failed to set scale / offsets for accel");
close(fd);
fd = open(MAG_DEVICE_PATH, 0);
struct mag_scale mscale = {
_parameters.mag_offset[0],
_parameters.mag_scale[0],
_parameters.mag_offset[1],
_parameters.mag_scale[1],
_parameters.mag_offset[2],
_parameters.mag_scale[2],
};
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale))
warn("WARNING: failed to set scale / offsets for mag");
close(fd);
#if 0
printf("CH0: RAW MAX: %d MIN %d S: %d MID: %d FUNC: %d\n", (int)_parameters.max[0], (int)_parameters.min[0], (int)(_rc.chan[0].scaling_factor * 10000), (int)(_rc.chan[0].mid), (int)_rc.function[0]);
printf("CH1: RAW MAX: %d MIN %d S: %d MID: %d FUNC: %d\n", (int)_parameters.max[1], (int)_parameters.min[1], (int)(_rc.chan[1].scaling_factor * 10000), (int)(_rc.chan[1].mid), (int)_rc.function[1]);
printf("MAN: %d %d\n", (int)(_rc.chan[0].scaled * 100), (int)(_rc.chan[1].scaled * 100));
fflush(stdout);
usleep(5000);
#endif
}
}
void
Sensors::adc_poll(struct sensor_combined_s &raw)
{
/* rate limit to 100 Hz */
if (hrt_absolute_time() - _last_adc >= 10000) {
/* make space for a maximum of eight channels */
struct adc_msg_s buf_adc[8];
/* read all channels available */
int ret = read(_fd_adc, &buf_adc, sizeof(buf_adc));
for (unsigned i = 0; i < sizeof(buf_adc) / sizeof(buf_adc[0]); i++) {
if (ret >= (int)sizeof(buf_adc[0])) {
/* Save raw voltage values */
if (i < (sizeof(raw.adc_voltage_v)) / sizeof(raw.adc_voltage_v[0])) {
raw.adc_voltage_v[i] = buf_adc[i].am_data / (4096.0f / 3.3f);
}
/* look for specific channels and process the raw voltage to measurement data */
if (ADC_BATTERY_VOLTAGE_CHANNEL == buf_adc[i].am_channel) {
/* Voltage in volts */
float voltage = (buf_adc[i].am_data * _parameters.battery_voltage_scaling);
if (voltage > VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS) {
/* one-time initialization of low-pass value to avoid long init delays */
if (_battery_status.voltage_v < 3.0f) {
_battery_status.voltage_v = voltage;
}
_battery_status.timestamp = hrt_absolute_time();
_battery_status.voltage_v = (BAT_VOL_LOWPASS_1 * (_battery_status.voltage_v + BAT_VOL_LOWPASS_2 * voltage));;
/* current and discharge are unknown */
_battery_status.current_a = -1.0f;
_battery_status.discharged_mah = -1.0f;
/* announce the battery voltage if needed, just publish else */
if (_battery_pub > 0) {
orb_publish(ORB_ID(battery_status), _battery_pub, &_battery_status);
} else {
_battery_pub = orb_advertise(ORB_ID(battery_status), &_battery_status);
}
}
} else if (ADC_AIRSPEED_VOLTAGE_CHANNEL == buf_adc[i].am_channel) {
/* calculate airspeed, raw is the difference from */
float voltage = (float)(buf_adc[i].am_data ) * 3.3f / 4096.0f * 2.0f; //V_ref/4096 * (voltage divider factor)
/**
* The voltage divider pulls the signal down, only act on
* a valid voltage from a connected sensor
*/
if (voltage > 0.4f) {
float diff_pres_pa = (voltage - _parameters.airspeed_offset) * 1000.0f; //for MPXV7002DP sensor
float airspeed_true = calc_true_airspeed(diff_pres_pa + _barometer.pressure*1e2f,
_barometer.pressure*1e2f, _barometer.temperature - 5.0f); //factor 1e2 for conversion from mBar to Pa
// XXX HACK - true temperature is much less than indicated temperature in baro,
// subtract 5 degrees in an attempt to account for the electrical upheating of the PCB
float airspeed_indicated = calc_indicated_airspeed(diff_pres_pa);
//printf("voltage: %.4f, diff_pres_pa %.4f, baro press %.4f Pa, v_ind %.4f, v_true %.4f\n", (double)voltage, (double)diff_pres_pa, (double)_barometer.pressure*1e2f, (double)airspeed_indicated, (double)airspeed_true);
_differential_pressure.timestamp = hrt_absolute_time();
_differential_pressure.static_pressure_mbar = _barometer.pressure;
_differential_pressure.differential_pressure_mbar = diff_pres_pa*1e-2f;
_differential_pressure.temperature_celcius = _barometer.temperature;
_differential_pressure.indicated_airspeed_m_s = airspeed_indicated;
_differential_pressure.true_airspeed_m_s = airspeed_true;
_differential_pressure.voltage = voltage;
/* announce the airspeed if needed, just publish else */
if (_airspeed_pub > 0) {
orb_publish(ORB_ID(differential_pressure), _airspeed_pub, &_differential_pressure);
} else {
_airspeed_pub = orb_advertise(ORB_ID(differential_pressure), &_differential_pressure);
}
}
}
_last_adc = hrt_absolute_time();
}
}
}
}
#if CONFIG_HRT_PPM
void
Sensors::ppm_poll()
{
/* read low-level values from FMU or IO RC inputs (PPM, Spektrum, S.Bus) */
bool rc_updated;
orb_check(_rc_sub, &rc_updated);
if (rc_updated) {
struct rc_input_values rc_input;
orb_copy(ORB_ID(input_rc), _rc_sub, &rc_input);
struct manual_control_setpoint_s manual_control;
/* initialize to default values */
manual_control.roll = NAN;
manual_control.pitch = NAN;
manual_control.yaw = NAN;
manual_control.throttle = NAN;
manual_control.manual_mode_switch = NAN;
manual_control.manual_sas_switch = NAN;
manual_control.return_to_launch_switch = NAN;
manual_control.auto_offboard_input_switch = NAN;
manual_control.flaps = NAN;
manual_control.aux1 = NAN;
manual_control.aux2 = NAN;
manual_control.aux3 = NAN;
manual_control.aux4 = NAN;
manual_control.aux5 = NAN;
/* require at least four channels to consider the signal valid */
if (rc_input.channel_count < 4)
return;
unsigned channel_limit = rc_input.channel_count;
if (channel_limit > _rc_max_chan_count)
channel_limit = _rc_max_chan_count;
/* we are accepting this message */
_ppm_last_valid = rc_input.timestamp;
/* Read out values from raw message */
for (unsigned int i = 0; i < channel_limit; i++) {
/*
* 1) Constrain to min/max values, as later processing depends on bounds.
*/
if (rc_input.values[i] < _parameters.min[i])
rc_input.values[i] = _parameters.min[i];
if (rc_input.values[i] > _parameters.max[i])
rc_input.values[i] = _parameters.max[i];
/*
* 2) Scale around the mid point differently for lower and upper range.
*
* This is necessary as they don't share the same endpoints and slope.
*
* First normalize to 0..1 range with correct sign (below or above center),
* the total range is 2 (-1..1).
* If center (trim) == min, scale to 0..1, if center (trim) == max,
* scale to -1..0.
*
* As the min and max bounds were enforced in step 1), division by zero
* cannot occur, as for the case of center == min or center == max the if
* statement is mutually exclusive with the arithmetic NaN case.
*
* DO NOT REMOVE OR ALTER STEP 1!
*/
if (rc_input.values[i] > (_parameters.trim[i] + _parameters.dz[i])) {
_rc.chan[i].scaled = (rc_input.values[i] - _parameters.trim[i] - _parameters.dz[i]) / (float)(_parameters.max[i] - _parameters.trim[i] - _parameters.dz[i]);
} else if (rc_input.values[i] < (_parameters.trim[i] - _parameters.dz[i])) {
_rc.chan[i].scaled = (rc_input.values[i] - _parameters.trim[i] - _parameters.dz[i]) / (float)(_parameters.trim[i] - _parameters.min[i] - _parameters.dz[i]);
} else {
/* in the configured dead zone, output zero */
_rc.chan[i].scaled = 0.0f;
}
_rc.chan[i].scaled *= _parameters.rev[i];
/* handle any parameter-induced blowups */
if (!isfinite(_rc.chan[i].scaled))
_rc.chan[i].scaled = 0.0f;
}
_rc.chan_count = rc_input.channel_count;
_rc.timestamp = rc_input.timestamp;
manual_control.timestamp = rc_input.timestamp;
/* roll input - rolling right is stick-wise and rotation-wise positive */
manual_control.roll = limit_minus_one_to_one(_rc.chan[_rc.function[ROLL]].scaled);
/*
* pitch input - stick down is negative, but stick down is pitching up (pos) in NED,
* so reverse sign.
*/
manual_control.pitch = limit_minus_one_to_one(-1.0f * _rc.chan[_rc.function[PITCH]].scaled);
/* yaw input - stick right is positive and positive rotation */
manual_control.yaw = limit_minus_one_to_one(_rc.chan[_rc.function[YAW]].scaled);
/* throttle input */
manual_control.throttle = _rc.chan[_rc.function[THROTTLE]].scaled;
if (manual_control.throttle < 0.0f) manual_control.throttle = 0.0f;
if (manual_control.throttle > 1.0f) manual_control.throttle = 1.0f;
/* scale output */
if (isfinite(_parameters.rc_scale_roll) && _parameters.rc_scale_roll > 0.0f) {
manual_control.roll *= _parameters.rc_scale_roll;
}
if (isfinite(_parameters.rc_scale_pitch) && _parameters.rc_scale_pitch > 0.0f) {
manual_control.pitch *= _parameters.rc_scale_pitch;
}
if (isfinite(_parameters.rc_scale_yaw) && _parameters.rc_scale_yaw > 0.0f) {
manual_control.yaw *= _parameters.rc_scale_yaw;
}
/* override switch input */
manual_control.manual_override_switch = limit_minus_one_to_one(_rc.chan[_rc.function[OVERRIDE]].scaled);
/* mode switch input */
manual_control.auto_mode_switch = limit_minus_one_to_one(_rc.chan[_rc.function[AUTO_MODE]].scaled);
/* flaps */
if (_rc.function[FLAPS] >= 0) {
manual_control.flaps = limit_minus_one_to_one(_rc.chan[_rc.function[FLAPS]].scaled);
if (isfinite(_parameters.rc_scale_flaps) && _parameters.rc_scale_flaps > 0.0f) {
manual_control.flaps *= _parameters.rc_scale_flaps;
}
}
if (_rc.function[MANUAL_MODE] >= 0) {
manual_control.manual_mode_switch = limit_minus_one_to_one(_rc.chan[_rc.function[MANUAL_MODE]].scaled);
}
if (_rc.function[SAS_MODE] >= 0) {
manual_control.manual_sas_switch = limit_minus_one_to_one(_rc.chan[_rc.function[SAS_MODE]].scaled);
}
if (_rc.function[RTL] >= 0) {
manual_control.return_to_launch_switch = limit_minus_one_to_one(_rc.chan[_rc.function[RTL]].scaled);
}
if (_rc.function[OFFBOARD_MODE] >= 0) {
manual_control.auto_offboard_input_switch = limit_minus_one_to_one(_rc.chan[_rc.function[OFFBOARD_MODE]].scaled);
}
/* aux functions, only assign if valid mapping is present */
if (_rc.function[AUX_1] >= 0) {
manual_control.aux1 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_1]].scaled);
}
if (_rc.function[AUX_2] >= 0) {
manual_control.aux2 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_2]].scaled);
}
if (_rc.function[AUX_3] >= 0) {
manual_control.aux3 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_3]].scaled);
}
if (_rc.function[AUX_4] >= 0) {
manual_control.aux4 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_4]].scaled);
}
if (_rc.function[AUX_5] >= 0) {
manual_control.aux5 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_5]].scaled);
}
/* check if ready for publishing */
if (_rc_pub > 0) {
orb_publish(ORB_ID(rc_channels), _rc_pub, &_rc);
} else {
/* advertise the rc topic */
_rc_pub = orb_advertise(ORB_ID(rc_channels), &_rc);
}
/* check if ready for publishing */
if (_manual_control_pub > 0) {
orb_publish(ORB_ID(manual_control_setpoint), _manual_control_pub, &manual_control);
} else {
_manual_control_pub = orb_advertise(ORB_ID(manual_control_setpoint), &manual_control);
}
}
}
#endif
void
Sensors::task_main_trampoline(int argc, char *argv[])
{
sensors::g_sensors->task_main();
}
void
Sensors::task_main()
{
/* inform about start */
printf("[sensors] Initializing..\n");
fflush(stdout);
/* start individual sensors */
accel_init();
gyro_init();
mag_init();
baro_init();
adc_init();
/*
* do subscriptions
*/
_gyro_sub = orb_subscribe(ORB_ID(sensor_gyro));
_accel_sub = orb_subscribe(ORB_ID(sensor_accel));
_mag_sub = orb_subscribe(ORB_ID(sensor_mag));
_rc_sub = orb_subscribe(ORB_ID(input_rc));
_baro_sub = orb_subscribe(ORB_ID(sensor_baro));
_vstatus_sub = orb_subscribe(ORB_ID(vehicle_status));
_params_sub = orb_subscribe(ORB_ID(parameter_update));
_manual_control_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
/* rate limit vehicle status updates to 5Hz */
orb_set_interval(_vstatus_sub, 200);
/*
* do advertisements
*/
struct sensor_combined_s raw;
memset(&raw, 0, sizeof(raw));
raw.timestamp = hrt_absolute_time();
raw.adc_voltage_v[0] = 0.0f;
raw.adc_voltage_v[1] = 0.0f;
raw.adc_voltage_v[2] = 0.0f;
raw.adc_voltage_v[3] = 0.0f;
memset(&_battery_status, 0, sizeof(_battery_status));
_battery_status.voltage_v = BAT_VOL_INITIAL;
/* get a set of initial values */
accel_poll(raw);
gyro_poll(raw);
mag_poll(raw);
baro_poll(raw);
parameter_update_poll(true /* forced */);
/* advertise the sensor_combined topic and make the initial publication */
_sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw);
/* wakeup source(s) */
struct pollfd fds[1];
/* use the gyro to pace output - XXX BROKEN if we are using the L3GD20 */
fds[0].fd = _gyro_sub;
fds[0].events = POLLIN;
while (!_task_should_exit) {
/* wait for up to 500ms for data */
int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);
/* timed out - periodic check for _task_should_exit, etc. */
if (pret == 0)
continue;
/* this is undesirable but not much we can do - might want to flag unhappy status */
if (pret < 0) {
warn("poll error %d, %d", pret, errno);
continue;
}
perf_begin(_loop_perf);
/* check vehicle status for changes to publication state */
vehicle_status_poll();
/* check parameters for updates */
parameter_update_poll();
/* store the time closest to all measurements (this is bogus, sensor timestamps should be propagated...) */
raw.timestamp = hrt_absolute_time();
/* copy most recent sensor data */
gyro_poll(raw);
accel_poll(raw);
mag_poll(raw);
baro_poll(raw);
/* check battery voltage */
adc_poll(raw);
/* Inform other processes that new data is available to copy */
if (_publishing)
orb_publish(ORB_ID(sensor_combined), _sensor_pub, &raw);
#ifdef CONFIG_HRT_PPM
/* Look for new r/c input data */
ppm_poll();
#endif
perf_end(_loop_perf);
}
printf("[sensors] exiting.\n");
_sensors_task = -1;
_exit(0);
}
int
Sensors::start()
{
ASSERT(_sensors_task == -1);
/* start the task */
_sensors_task = task_spawn("sensors_task",
SCHED_DEFAULT,
SCHED_PRIORITY_MAX - 5,
2048,
(main_t)&Sensors::task_main_trampoline,
nullptr);
if (_sensors_task < 0) {
warn("task start failed");
return -errno;
}
return OK;
}
int sensors_main(int argc, char *argv[])
{
if (argc < 1)
errx(1, "usage: sensors {start|stop|status}");
if (!strcmp(argv[1], "start")) {
if (sensors::g_sensors != nullptr)
errx(1, "sensors task already running");
sensors::g_sensors = new Sensors;
if (sensors::g_sensors == nullptr)
errx(1, "sensors task alloc failed");
if (OK != sensors::g_sensors->start()) {
delete sensors::g_sensors;
sensors::g_sensors = nullptr;
err(1, "sensors task start failed");
}
exit(0);
}
if (!strcmp(argv[1], "stop")) {
if (sensors::g_sensors == nullptr)
errx(1, "sensors task not running");
delete sensors::g_sensors;
sensors::g_sensors = nullptr;
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (sensors::g_sensors) {
errx(0, "task is running");
} else {
errx(1, "task is not running");
}
}
errx(1, "unrecognized command");
}