forked from Archive/PX4-Autopilot
129 lines
4.9 KiB
C
129 lines
4.9 KiB
C
/****************************************************************************
|
|
* fs/nfs/xdr_subs.h
|
|
* Definitions for Sun RPC Version 2, from
|
|
* "RPC: Remote Procedure Call Protocol Specification" RFC1057
|
|
*
|
|
* Copyright (C) 2012 Gregory Nutt. All rights reserved.
|
|
* Copyright (C) 2012 Jose Pablo Rojas Vargas. All rights reserved.
|
|
* Author: Jose Pablo Rojas Vargas <jrojas@nx-engineering.com>
|
|
* Gregory Nutt <gnutt@nuttx.org>
|
|
*
|
|
* Leveraged from OpenBSD:
|
|
*
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Rick Macklem at The University of Guelph.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifndef __FS_NFS_XDR_SUBS_H
|
|
#define __FS_NFS_XDR_SUBS_H
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <arpa/inet.h>
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
/* Macros used for conversion to/from xdr representation by nfs...
|
|
* These use the MACHINE DEPENDENT routines ntohl, htonl
|
|
* As defined by "XDR: External Data Representation Standard" RFC1014
|
|
*
|
|
* To simplify the implementation, we use ntohl/htonl even on big-endian
|
|
* machines, and count on them being `#define'd away. Some of these
|
|
* might be slightly more efficient as int64_t copies on a big-endian,
|
|
* but we cannot count on their alignment anyway.
|
|
*/
|
|
|
|
#define fxdr_unsigned(t, v) ((t)ntohl(v))
|
|
#define txdr_unsigned(v) (htonl(v))
|
|
|
|
#define fxdr_nfsv2time(f, t) \
|
|
{ \
|
|
(t)->tv_sec = ntohl(((struct nfsv2_time *)(f))->nfsv2_sec); \
|
|
if (((struct nfsv2_time *)(f))->nfsv2_usec != 0xffffffff) \
|
|
(t)->tv_nsec = 1000 * ntohl(((struct nfsv2_time *)(f))->nfsv2_usec); \
|
|
else \
|
|
(t)->tv_nsec = 0; \
|
|
}
|
|
|
|
#define txdr_nfsv2time(f, t) \
|
|
{ \
|
|
((struct nfsv2_time *)(t))->nfsv2_sec = htonl((f)->tv_sec); \
|
|
if ((f)->tv_nsec != -1) \
|
|
((struct nfsv2_time *)(t))->nfsv2_usec = htonl((f)->tv_nsec / 1000); \
|
|
else \
|
|
((struct nfsv2_time *)(t))->nfsv2_usec = 0xffffffff; \
|
|
}
|
|
|
|
#define fxdr_nfsv3time(f, t) \
|
|
{ \
|
|
(t)->tv_sec = ntohl(((struct nfsv3_time *)(f))->nfsv3_sec); \
|
|
(t)->tv_nsec = ntohl(((struct nfsv3_time *)(f))->nfsv3_nsec); \
|
|
}
|
|
|
|
#define fxdr_nfsv3time2(f, t) { \
|
|
(t)->nfsv3_sec = ntohl(((struct nfsv3_time *)(f))->nfsv3_sec); \
|
|
(t)->nfsv3_nsec = ntohl(((struct nfsv3_time *)(f))->nfsv3_nsec); \
|
|
}
|
|
|
|
#define txdr_nfsv3time(f, t) \
|
|
{ \
|
|
((struct nfsv3_time *)(t))->nfsv3_sec = htonl((f)->tv_sec); \
|
|
((struct nfsv3_time *)(t))->nfsv3_nsec = htonl((f)->tv_nsec); \
|
|
}
|
|
|
|
#define txdr_nfsv3time2(f, t) \
|
|
{ \
|
|
((struct nfsv3_time *)(t))->nfsv3_sec = htonl((f)->nfsv3_sec); \
|
|
((struct nfsv3_time *)(t))->nfsv3_nsec = htonl((f)->nfsv3_nsec); \
|
|
}
|
|
|
|
#define fxdr_hyper(f) \
|
|
((((uint64_t)ntohl(((uint32_t *)(f))[0])) << 32) | \
|
|
(uint64_t)(ntohl(((uint32_t *)(f))[1])))
|
|
|
|
#define txdr_hyper(f, t) \
|
|
{ \
|
|
((uint32_t *)(t))[0] = htonl((uint32_t)((f) >> 32)); \
|
|
((uint32_t *)(t))[1] = htonl((uint32_t)((f) & 0xffffffff)); \
|
|
}
|
|
|
|
/* Macros for dealing with byte data saved in uint32_t aligned memory */
|
|
|
|
#define uint32_aligndown(b) ((b) & ~3)
|
|
#define uint32_alignup(b) (((b) + 3) & ~3)
|
|
#define uint32_increment(b) (((b) + 3) >> 2)
|
|
|
|
#endif /* __FS_NFS_XDR_SUBS_H */
|