forked from Archive/PX4-Autopilot
225 lines
8.6 KiB
Matlab
Executable File
225 lines
8.6 KiB
Matlab
Executable File
% This Matlab Script can be used to import the binary logged values of the
|
|
% PX4FMU into data that can be plotted and analyzed.
|
|
|
|
% Clear everything
|
|
clc
|
|
clear all
|
|
close all
|
|
|
|
% Set the path to your sysvector.bin file here
|
|
filePath = 'sysvector.bin';
|
|
|
|
% Work around a Matlab bug (not related to PX4)
|
|
% where timestamps from 1.1.1970 do not allow to
|
|
% read the file's size
|
|
if ismac
|
|
system('touch -t 201212121212.12 sysvector.bin');
|
|
end
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%
|
|
% SYSTEM VECTOR
|
|
%
|
|
% //All measurements in NED frame
|
|
%
|
|
% uint64_t timestamp; //[us]
|
|
% float gyro[3]; //[rad/s]
|
|
% float accel[3]; //[m/s^2]
|
|
% float mag[3]; //[gauss]
|
|
% float baro; //pressure [millibar]
|
|
% float baro_alt; //altitude above MSL [meter]
|
|
% float baro_temp; //[degree celcius]
|
|
% float control[4]; //roll, pitch, yaw [-1..1], thrust [0..1]
|
|
% float actuators[8]; //motor 1-8, in motor units (PWM: 1000-2000,AR.Drone: 0-512)
|
|
% float vbat; //battery voltage in [volt]
|
|
% float bat_current - current drawn from battery at this time instant
|
|
% float bat_discharged - discharged energy in mAh
|
|
% float adc[4]; //ADC ports [volt]
|
|
% float local_position[3]; //tangent plane mapping into x,y,z [m]
|
|
% int32_t gps_raw_position[3]; //latitude [degrees] north, longitude [degrees] east, altitude above MSL [millimeter]
|
|
% float attitude[3]; //pitch, roll, yaw [rad]
|
|
% float rotMatrix[9]; //unitvectors
|
|
% float actuator_control[4]; //unitvector
|
|
% float optical_flow[4]; //roll, pitch, yaw [-1..1], thrust [0..1]
|
|
% float diff_pressure; - pressure difference in millibar
|
|
% float ind_airspeed;
|
|
% float true_airspeed;
|
|
|
|
% Definition of the logged values
|
|
logFormat{1} = struct('name', 'timestamp', 'bytes', 8, 'array', 1, 'precision', 'uint64', 'machineformat', 'ieee-le.l64');
|
|
logFormat{2} = struct('name', 'gyro', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{3} = struct('name', 'accel', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{4} = struct('name', 'mag', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{5} = struct('name', 'baro', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{6} = struct('name', 'baro_alt', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{7} = struct('name', 'baro_temp', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{8} = struct('name', 'control', 'bytes', 4, 'array', 4, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{9} = struct('name', 'actuators', 'bytes', 4, 'array', 8, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{10} = struct('name', 'vbat', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{11} = struct('name', 'bat_current', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{12} = struct('name', 'bat_discharged', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{13} = struct('name', 'adc', 'bytes', 4, 'array', 4, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{14} = struct('name', 'local_position', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{15} = struct('name', 'gps_raw_position', 'bytes', 4, 'array', 3, 'precision', 'uint32', 'machineformat', 'ieee-le');
|
|
logFormat{16} = struct('name', 'attitude', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{17} = struct('name', 'rot_matrix', 'bytes', 4, 'array', 9, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{18} = struct('name', 'vicon_position', 'bytes', 4, 'array', 6, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{19} = struct('name', 'actuator_control', 'bytes', 4, 'array', 4, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{20} = struct('name', 'optical_flow', 'bytes', 4, 'array', 6, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{21} = struct('name', 'diff_pressure', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{22} = struct('name', 'ind_airspeed', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
logFormat{23} = struct('name', 'true_airspeed', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le');
|
|
|
|
% First get length of one line
|
|
columns = length(logFormat);
|
|
lineLength = 0;
|
|
|
|
for i=1:columns
|
|
lineLength = lineLength + logFormat{i}.bytes * logFormat{i}.array;
|
|
end
|
|
|
|
|
|
if exist(filePath, 'file')
|
|
|
|
fileInfo = dir(filePath);
|
|
fileSize = fileInfo.bytes;
|
|
|
|
elements = int64(fileSize./(lineLength));
|
|
|
|
fid = fopen(filePath, 'r');
|
|
offset = 0;
|
|
for i=1:columns
|
|
% using fread with a skip speeds up the import drastically, do not
|
|
% import the values one after the other
|
|
sysvector.(genvarname(logFormat{i}.name)) = transpose(fread(...
|
|
fid, ...
|
|
[logFormat{i}.array, elements], [num2str(logFormat{i}.array),'*',logFormat{i}.precision,'=>',logFormat{i}.precision], ...
|
|
lineLength - logFormat{i}.bytes*logFormat{i}.array, ...
|
|
logFormat{i}.machineformat) ...
|
|
);
|
|
offset = offset + logFormat{i}.bytes*logFormat{i}.array;
|
|
fseek(fid, offset,'bof');
|
|
end
|
|
|
|
% shot the flight time
|
|
time_us = sysvector.timestamp(end) - sysvector.timestamp(1);
|
|
time_s = time_us*1e-6;
|
|
time_m = time_s/60;
|
|
|
|
% close the logfile
|
|
fclose(fid);
|
|
|
|
disp(['end log2matlab conversion' char(10)]);
|
|
else
|
|
disp(['file: ' filePath ' does not exist' char(10)]);
|
|
end
|
|
|
|
%% Plot GPS RAW measurements
|
|
|
|
% Only plot GPS data if available
|
|
if cumsum(double(sysvector.gps_raw_position(200:end,1))) > 0
|
|
figure('units','normalized','outerposition',[0 0 1 1])
|
|
plot3(sysvector.gps_raw_position(200:end,1), sysvector.gps_raw_position(200:end,2), sysvector.gps_raw_position(200:end,3));
|
|
end
|
|
|
|
|
|
%% Plot optical flow trajectory
|
|
|
|
flow_sz = size(sysvector.timestamp);
|
|
flow_elements = flow_sz(1);
|
|
|
|
xt(1:flow_elements,1) = sysvector.timestamp(:,1); % time column [ms]
|
|
|
|
|
|
%calc dt
|
|
dt = zeros(flow_elements,1);
|
|
for i = 1:flow_elements-1
|
|
dt(i+1,1) = double(xt(i+1,1)-xt(i,1)) * 10^(-6); % timestep [s]
|
|
end
|
|
dt(1,1) = mean(dt);
|
|
|
|
|
|
global_speed = zeros(flow_elements,3);
|
|
|
|
%calc global speed (with rot matrix)
|
|
for i = 1:flow_elements
|
|
rotM = [sysvector.rot_matrix(i,1:3);sysvector.rot_matrix(i,4:6);sysvector.rot_matrix(i,7:9)]';
|
|
speedX = sysvector.optical_flow(i,3);
|
|
speedY = sysvector.optical_flow(i,4);
|
|
|
|
relSpeed = [-speedY,speedX,0];
|
|
global_speed(i,:) = relSpeed * rotM;
|
|
end
|
|
|
|
|
|
|
|
px = zeros(flow_elements,1);
|
|
py = zeros(flow_elements,1);
|
|
distance = 0;
|
|
|
|
last_vx = 0;
|
|
last_vy = 0;
|
|
elem_cnt = 0;
|
|
|
|
% Very basic accumulation, stops on bad flow quality
|
|
for i = 1:flow_elements
|
|
if sysvector.optical_flow(i,6) > 5
|
|
px(i,1) = global_speed(i,1)*dt(i,1);
|
|
py(i,1) = global_speed(i,2)*dt(i,1);
|
|
distance = distance + norm([px(i,1) py(i,1)]);
|
|
last_vx = px(i,1);
|
|
last_vy = py(i,1);
|
|
else
|
|
px(i,1) = last_vx;
|
|
py(i,1) = last_vy;
|
|
last_vx = last_vx*0.95;
|
|
last_vy = last_vy*0.95;
|
|
end
|
|
end
|
|
|
|
px_sum = cumsum(px);
|
|
py_sum = cumsum(py);
|
|
time = cumsum(dt);
|
|
|
|
figure()
|
|
set(gca, 'Units','normal');
|
|
|
|
plot(py_sum, px_sum, '-blue', 'LineWidth',2);
|
|
axis equal;
|
|
% set title and axis captions
|
|
xlabel('X position (meters)','fontsize',14)
|
|
ylabel('Y position (meters)','fontsize',14)
|
|
% mark begin and end
|
|
hold on
|
|
plot(py_sum(1,1),px_sum(1,1),'ks','LineWidth',2,...
|
|
'MarkerEdgeColor','k',...
|
|
'MarkerFaceColor','g',...
|
|
'MarkerSize',10)
|
|
hold on
|
|
plot(py_sum(end,1),px_sum(end,1),'kv','LineWidth',2,...
|
|
'MarkerEdgeColor','k',...
|
|
'MarkerFaceColor','b',...
|
|
'MarkerSize',10)
|
|
% add total length as annotation
|
|
set(gca,'fontsize',13);
|
|
legend('Trajectory', 'START', sprintf('END\n(%.2f m, %.0f:%.0f s)', distance, time_m, time_s - time_m*60));
|
|
title('Optical Flow Position Integration', 'fontsize', 15);
|
|
|
|
figure()
|
|
plot(time, sysvector.optical_flow(:,5), 'blue');
|
|
axis([time(1,1) time(end,1) 0 (max(sysvector.optical_flow(i,5))+0.2)]);
|
|
xlabel('seconds','fontsize',14);
|
|
ylabel('m','fontsize',14);
|
|
set(gca,'fontsize',13);
|
|
title('Ultrasound Altitude', 'fontsize', 15);
|
|
|
|
|
|
figure()
|
|
plot(time, global_speed(:,2), 'red');
|
|
hold on;
|
|
plot(time, global_speed(:,1), 'blue');
|
|
legend('y velocity (m/s)', 'x velocity (m/s)');
|
|
xlabel('seconds','fontsize',14);
|
|
ylabel('m/s','fontsize',14);
|
|
set(gca,'fontsize',13);
|
|
title('Optical Flow Velocity', 'fontsize', 15);
|