px4-firmware/EKF/estimator_interface.h

362 lines
15 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file estimator_interface.h
* Definition of base class for attitude estimators
*
* @author Roman Bast <bapstroman@gmail.com>
*
*/
#include <stdint.h>
#include <matrix/matrix/math.hpp>
#include "RingBuffer.h"
#include "geo.h"
#include "common.h"
#include "mathlib.h"
using namespace estimator;
class EstimatorInterface
{
public:
EstimatorInterface();
~EstimatorInterface();
virtual bool init(uint64_t timestamp) = 0;
virtual bool update() = 0;
// gets the innovations of velocity and position measurements
// 0-2 vel, 3-5 pos
virtual void get_vel_pos_innov(float vel_pos_innov[6]) = 0;
// gets the innovations of the earth magnetic field measurements
virtual void get_mag_innov(float mag_innov[3]) = 0;
// gets the innovation of airspeed measurement
virtual void get_airspeed_innov(float *airspeed_innov) = 0;
// gets the innovations of the heading measurement
virtual void get_heading_innov(float *heading_innov) = 0;
// gets the innovation variances of velocity and position measurements
// 0-2 vel, 3-5 pos
virtual void get_vel_pos_innov_var(float vel_pos_innov_var[6]) = 0;
// gets the innovation variances of the earth magnetic field measurements
virtual void get_mag_innov_var(float mag_innov_var[3]) = 0;
// gets the innovation variance of the airspeed measurement
virtual void get_airspeed_innov_var(float *get_airspeed_innov_var) = 0;
// gets the innovation variance of the heading measurement
virtual void get_heading_innov_var(float *heading_innov_var) = 0;
virtual void get_state_delayed(float *state) = 0;
virtual void get_wind_velocity(float *wind) = 0;
virtual void get_covariances(float *covariances) = 0;
// gets the variances for the NED velocity states
virtual void get_vel_var(Vector3f &vel_var) = 0;
// gets the variances for the NED position states
virtual void get_pos_var(Vector3f &pos_var) = 0;
// gets the innovation variance of the flow measurement
virtual void get_flow_innov_var(float flow_innov_var[2]) = 0;
// gets the innovation of the flow measurement
virtual void get_flow_innov(float flow_innov[2]) = 0;
// gets the innovation variance of the HAGL measurement
virtual void get_hagl_innov_var(float *flow_innov_var) = 0;
// gets the innovation of the HAGL measurement
virtual void get_hagl_innov(float *flow_innov_var) = 0;
// return an array containing the output predictor angular, velocity and position tracking
// error magnitudes (rad), (m/s), (m)
virtual void get_output_tracking_error(float error[3]) = 0;
/*
Returns following IMU vibration metrics in the following array locations
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
*/
virtual void get_imu_vibe_metrics(float vibe[3]) = 0;
// get the ekf WGS-84 origin positoin and height and the system time it was last set
virtual void get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) = 0;
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
virtual void get_ekf_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning) = 0;
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined
virtual bool collect_gps(uint64_t time_usec, struct gps_message *gps) { return true; }
// accumulate and downsample IMU data to the EKF prediction rate
virtual bool collect_imu(imuSample &imu) { return true; }
// set delta angle imu data
void setIMUData(uint64_t time_usec, uint64_t delta_ang_dt, uint64_t delta_vel_dt, float *delta_ang, float *delta_vel);
// set magnetometer data
void setMagData(uint64_t time_usec, float *data);
//void setMagData(uint64_t time_usec, struct magSample *mag);
// set gps data
void setGpsData(uint64_t time_usec, struct gps_message *gps);
// set baro data
void setBaroData(uint64_t time_usec, float *data);
// set airspeed data
void setAirspeedData(uint64_t time_usec, float *true_airspeed, float *eas2tas);
// set range data
void setRangeData(uint64_t time_usec, float *data);
// set optical flow data
void setOpticalFlowData(uint64_t time_usec, flow_message *flow);
// set external vision position and attitude data
void setExtVisionData(uint64_t time_usec, ext_vision_message *evdata);
// return a address to the parameters struct
// in order to give access to the application
parameters *getParamHandle() {return &_params;}
// set vehicle landed status data
void set_in_air_status(bool in_air) {_control_status.flags.in_air = in_air;}
// return true if the global position estimate is valid
virtual bool global_position_is_valid() = 0;
// return true if the estimate is valid
// return the estimated terrain vertical position relative to the NED origin
virtual bool get_terrain_vert_pos(float *ret) = 0;
// return true if the local position estimate is valid
bool local_position_is_valid();
void copy_quaternion(float *quat)
{
for (unsigned i = 0; i < 4; i++) {
quat[i] = _output_new.quat_nominal(i);
}
}
// get the velocity of the body frame origin in local NED earth frame
void get_velocity(float *vel)
{
// calculate the average angular rate across the last IMU update
Vector3f ang_rate = _imu_sample_new.delta_ang * (1.0f/_imu_sample_new.delta_ang_dt);
// calculate the velocity of the relative to the body origin
// Note % operator has been overloaded to performa cross product
Vector3f vel_imu_rel_body = cross_product(ang_rate , _params.imu_pos_body);
// rotate the relative velocty into earth frame and subtract from the EKF velocity
// (which is at the IMU) to get velocity of the body origin
Vector3f vel_earth = _output_new.vel - _R_to_earth_now * vel_imu_rel_body;
// copy to output
for (unsigned i = 0; i < 3; i++) {
vel[i] = vel_earth(i);
}
}
// get the position of the body frame origin in local NED earth frame
void get_position(float *pos)
{
// rotate the position of the IMU relative to the boy origin into earth frame
Vector3f pos_offset_earth = _R_to_earth_now * _params.imu_pos_body;
// subtract from the EKF position (which is at the IMU) to get position at the body origin
for (unsigned i = 0; i < 3; i++) {
pos[i] = _output_new.pos(i) - pos_offset_earth(i);
}
}
void copy_timestamp(uint64_t *time_us)
{
*time_us = _time_last_imu;
}
// Copy the magnetic declination that we wish to save to the EKF2_MAG_DECL parameter for the next startup
void copy_mag_decl_deg(float *val)
{
*val = _mag_declination_to_save_deg;
}
virtual void get_accel_bias(float bias[3]) = 0;
virtual void get_gyro_bias(float bias[3]) = 0;
// get EKF mode status
void get_control_mode(uint16_t *val)
{
*val = _control_status.value;
}
// get EKF internal fault status
void get_filter_fault_status(uint16_t *val)
{
*val = _fault_status.value;
}
// get GPS check status
virtual void get_gps_check_status(uint16_t *val) = 0;
// return the amount the local vertical position changed in the last reset and the number of reset events
virtual void get_posD_reset(float *delta, uint8_t *counter) = 0;
// return the amount the local vertical velocity changed in the last reset and the number of reset events
virtual void get_velD_reset(float *delta, uint8_t *counter) = 0;
// return the amount the local horizontal position changed in the last reset and the number of reset events
virtual void get_posNE_reset(float delta[2], uint8_t *counter) = 0;
// return the amount the local horizontal velocity changed in the last reset and the number of reset events
virtual void get_velNE_reset(float delta[2], uint8_t *counter) = 0;
// return the amount the quaternion has changed in the last reset and the number of reset events
virtual void get_quat_reset(float delta_quat[4], uint8_t *counter) = 0;
// get EKF innovation consistency check status information comprising of:
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
// Where a measurement type is a vector quantity, eg magnetoemter, GPS position, etc, the maximum value is returned.
virtual void get_innovation_test_status(uint16_t *status, float *mag, float *vel, float *pos, float *hgt, float *tas, float *hagl) = 0;
// return a bitmask integer that describes which state estimates can be used for flight control
virtual void get_ekf_soln_status(uint16_t *status) = 0;
protected:
parameters _params; // filter parameters
static const uint8_t OBS_BUFFER_LENGTH = 10; // defines how many measurement samples we can buffer
static const uint8_t IMU_BUFFER_LENGTH = 30; // defines how many imu samples we can buffer
static const unsigned FILTER_UPDATE_PERIOD_MS = 10; // ekf prediction period in milliseconds
unsigned _min_obs_interval_us; // minimum time interval between observations that will guarantee data is not lost (usec)
float _dt_imu_avg; // average imu update period in s
imuSample _imu_sample_delayed; // captures the imu sample on the delayed time horizon
// measurement samples capturing measurements on the delayed time horizon
magSample _mag_sample_delayed;
baroSample _baro_sample_delayed;
gpsSample _gps_sample_delayed;
rangeSample _range_sample_delayed;
airspeedSample _airspeed_sample_delayed;
flowSample _flow_sample_delayed;
extVisionSample _ev_sample_delayed;
outputSample _output_sample_delayed; // filter output on the delayed time horizon
outputSample _output_new; // filter output on the non-delayed time horizon
imuSample _imu_sample_new; // imu sample capturing the newest imu data
Matrix3f _R_to_earth_now; // rotation matrix from body to earth frame at current time
uint64_t _imu_ticks; // counter for imu updates
bool _imu_updated; // true if the ekf should update (completed downsampling process)
bool _initialised; // true if the ekf interface instance (data buffering) is initialized
bool _NED_origin_initialised;
bool _gps_speed_valid;
float _gps_origin_eph; // horizontal position uncertainty of the GPS origin
float _gps_origin_epv; // vertical position uncertainty of the GPS origin
struct map_projection_reference_s _pos_ref; // Contains WGS-84 position latitude and longitude (radians)
// innovation consistency check monitoring ratios
float _yaw_test_ratio; // yaw innovation consistency check ratio
float _mag_test_ratio[3]; // magnetometer XYZ innovation consistency check ratios
float _vel_pos_test_ratio[6]; // velocity and position innovation consistency check ratios
float _tas_test_ratio; // tas innovation consistency check ratio
float _terr_test_ratio; // height above terrain measurement innovation consistency check ratio
innovation_fault_status_u _innov_check_fail_status;
// IMU vibration monitoring
Vector3f _delta_ang_prev; // delta angle from the previous IMU measurement
Vector3f _delta_vel_prev; // delta velocity from the previous IMU measurement
float _vibe_metrics[3]; // IMU vibration metrics
// [0] Level of coning vibration in the IMU delta angles (rad^2)
// [1] high frequency vibraton level in the IMU delta angle data (rad)
// [2] high frequency vibration level in the IMU delta velocity data (m/s)
// data buffer instances
RingBuffer<imuSample> _imu_buffer;
RingBuffer<gpsSample> _gps_buffer;
RingBuffer<magSample> _mag_buffer;
RingBuffer<baroSample> _baro_buffer;
RingBuffer<rangeSample> _range_buffer;
RingBuffer<airspeedSample> _airspeed_buffer;
RingBuffer<flowSample> _flow_buffer;
RingBuffer<extVisionSample> _ext_vision_buffer;
RingBuffer<outputSample> _output_buffer;
uint64_t _time_last_imu; // timestamp of last imu sample in microseconds
uint64_t _time_last_gps; // timestamp of last gps measurement in microseconds
uint64_t _time_last_mag; // timestamp of last magnetometer measurement in microseconds
uint64_t _time_last_baro; // timestamp of last barometer measurement in microseconds
uint64_t _time_last_range; // timestamp of last range measurement in microseconds
uint64_t _time_last_airspeed; // timestamp of last airspeed measurement in microseconds
uint64_t _time_last_ext_vision; // timestamp of last external vision measurement in microseconds
uint64_t _time_last_optflow;
fault_status_u _fault_status;
// allocate data buffers and intialise interface variables
bool initialise_interface(uint64_t timestamp);
// free buffer memory
void unallocate_buffers();
float _mag_declination_gps; // magnetic declination returned by the geo library using the last valid GPS position (rad)
float _mag_declination_to_save_deg; // magnetic declination to save to EKF2_MAG_DECL (deg)
// this is the current status of the filter control modes
filter_control_status_u _control_status;
// this is the previous status of the filter control modes - used to detect mode transitions
filter_control_status_u _control_status_prev;
// perform a vector cross product
Vector3f cross_product(const Vector3f &vecIn1, const Vector3f &vecIn2);
// calculate the inverse rotation matrix from a quaternion rotation
Matrix3f quat_to_invrotmat(const Quaternion quat);
};