forked from Archive/PX4-Autopilot
1684 lines
52 KiB
C
1684 lines
52 KiB
C
/****************************************************************************
|
|
*
|
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
|
|
* Author: Petri Tanskanen <petri.tanskanen@inf.ethz.ch>
|
|
* Lorenz Meier <lm@inf.ethz.ch>
|
|
* Thomas Gubler <thomasgubler@student.ethz.ch>
|
|
* Julian Oes <joes@student.ethz.ch>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file commander.c
|
|
* Main system state machine implementation.
|
|
*
|
|
* @author Petri Tanskanen <petri.tanskanen@inf.ethz.ch>
|
|
* @author Lorenz Meier <lm@inf.ethz.ch>
|
|
* @author Thomas Gubler <thomasgubler@student.ethz.ch>
|
|
* @author Julian Oes <joes@student.ethz.ch>
|
|
*
|
|
*/
|
|
|
|
#include "commander.h"
|
|
|
|
#include <nuttx/config.h>
|
|
#include <pthread.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <debug.h>
|
|
#include <sys/prctl.h>
|
|
#include <v1.0/common/mavlink.h>
|
|
#include <string.h>
|
|
#include <drivers/drv_led.h>
|
|
#include <drivers/drv_hrt.h>
|
|
#include <drivers/drv_tone_alarm.h>
|
|
#include "state_machine_helper.h"
|
|
#include "systemlib/systemlib.h"
|
|
#include <math.h>
|
|
#include <poll.h>
|
|
#include <uORB/uORB.h>
|
|
#include <uORB/topics/sensor_combined.h>
|
|
#include <uORB/topics/manual_control_setpoint.h>
|
|
#include <uORB/topics/offboard_control_setpoint.h>
|
|
#include <uORB/topics/vehicle_gps_position.h>
|
|
#include <uORB/topics/vehicle_command.h>
|
|
#include <uORB/topics/subsystem_info.h>
|
|
#include <uORB/topics/actuator_controls.h>
|
|
#include <mavlink/mavlink_log.h>
|
|
|
|
#include <systemlib/param/param.h>
|
|
#include <systemlib/systemlib.h>
|
|
#include <systemlib/err.h>
|
|
|
|
/* XXX MOVE CALIBRATION TO SENSORS APP THREAD */
|
|
#include <drivers/drv_accel.h>
|
|
#include <drivers/drv_gyro.h>
|
|
#include <drivers/drv_mag.h>
|
|
#include <drivers/drv_baro.h>
|
|
|
|
#include "calibration_routines.h"
|
|
|
|
|
|
PARAM_DEFINE_INT32(SYS_FAILSAVE_LL, 0); /**< Go into low-level failsafe after 0 ms */
|
|
//PARAM_DEFINE_INT32(SYS_FAILSAVE_HL, 0); /**< Go into high-level failsafe after 0 ms */
|
|
|
|
#include <systemlib/cpuload.h>
|
|
extern struct system_load_s system_load;
|
|
|
|
/* Decouple update interval and hysteris counters, all depends on intervals */
|
|
#define COMMANDER_MONITORING_INTERVAL 50000
|
|
#define COMMANDER_MONITORING_LOOPSPERMSEC (1/(COMMANDER_MONITORING_INTERVAL/1000.0f))
|
|
#define LOW_VOLTAGE_BATTERY_COUNTER_LIMIT (LOW_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC)
|
|
#define CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT (CRITICAL_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC)
|
|
|
|
#define STICK_ON_OFF_LIMIT 0.75f
|
|
#define STICK_THRUST_RANGE 1.0f
|
|
#define STICK_ON_OFF_HYSTERESIS_TIME_MS 1000
|
|
#define STICK_ON_OFF_COUNTER_LIMIT (STICK_ON_OFF_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC)
|
|
|
|
#define GPS_FIX_TYPE_2D 2
|
|
#define GPS_FIX_TYPE_3D 3
|
|
#define GPS_QUALITY_GOOD_HYSTERIS_TIME_MS 5000
|
|
#define GPS_QUALITY_GOOD_COUNTER_LIMIT (GPS_QUALITY_GOOD_HYSTERIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC)
|
|
|
|
/* File descriptors */
|
|
static int leds;
|
|
static int buzzer;
|
|
static int mavlink_fd;
|
|
static bool commander_initialized = false;
|
|
static struct vehicle_status_s current_status; /**< Main state machine */
|
|
static orb_advert_t stat_pub;
|
|
|
|
// static uint16_t nofix_counter = 0;
|
|
// static uint16_t gotfix_counter = 0;
|
|
|
|
static unsigned int failsafe_lowlevel_timeout_ms;
|
|
|
|
static bool thread_should_exit = false; /**< daemon exit flag */
|
|
static bool thread_running = false; /**< daemon status flag */
|
|
static int daemon_task; /**< Handle of daemon task / thread */
|
|
|
|
/* pthread loops */
|
|
static void *orb_receive_loop(void *arg);
|
|
|
|
__EXPORT int commander_main(int argc, char *argv[]);
|
|
|
|
/**
|
|
* Mainloop of commander.
|
|
*/
|
|
int commander_thread_main(int argc, char *argv[]);
|
|
|
|
static int buzzer_init(void);
|
|
static void buzzer_deinit(void);
|
|
static void tune_confirm(void);
|
|
static int led_init(void);
|
|
static void led_deinit(void);
|
|
static int led_toggle(int led);
|
|
static int led_on(int led);
|
|
static int led_off(int led);
|
|
static void do_gyro_calibration(int status_pub, struct vehicle_status_s *status);
|
|
static void do_mag_calibration(int status_pub, struct vehicle_status_s *status);
|
|
static void do_accel_calibration(int status_pub, struct vehicle_status_s *status);
|
|
static void handle_command(int status_pub, struct vehicle_status_s *current_status, struct vehicle_command_s *cmd);
|
|
|
|
int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state);
|
|
|
|
|
|
|
|
/**
|
|
* Print the correct usage.
|
|
*/
|
|
static void usage(const char *reason);
|
|
|
|
/**
|
|
* Sort calibration values.
|
|
*
|
|
* Sorts the calibration values with bubble sort.
|
|
*
|
|
* @param a The array to sort
|
|
* @param n The number of entries in the array
|
|
*/
|
|
// static void cal_bsort(float a[], int n);
|
|
|
|
static int buzzer_init()
|
|
{
|
|
buzzer = open("/dev/tone_alarm", O_WRONLY);
|
|
|
|
if (buzzer < 0) {
|
|
fprintf(stderr, "[commander] Buzzer: open fail\n");
|
|
return ERROR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void buzzer_deinit()
|
|
{
|
|
close(buzzer);
|
|
}
|
|
|
|
|
|
static int led_init()
|
|
{
|
|
leds = open(LED_DEVICE_PATH, 0);
|
|
|
|
if (leds < 0) {
|
|
fprintf(stderr, "[commander] LED: open fail\n");
|
|
return ERROR;
|
|
}
|
|
|
|
if (ioctl(leds, LED_ON, LED_BLUE) || ioctl(leds, LED_ON, LED_AMBER)) {
|
|
fprintf(stderr, "[commander] LED: ioctl fail\n");
|
|
return ERROR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void led_deinit()
|
|
{
|
|
close(leds);
|
|
}
|
|
|
|
static int led_toggle(int led)
|
|
{
|
|
static int last_blue = LED_ON;
|
|
static int last_amber = LED_ON;
|
|
|
|
if (led == LED_BLUE) last_blue = (last_blue == LED_ON) ? LED_OFF : LED_ON;
|
|
|
|
if (led == LED_AMBER) last_amber = (last_amber == LED_ON) ? LED_OFF : LED_ON;
|
|
|
|
return ioctl(leds, ((led == LED_BLUE) ? last_blue : last_amber), led);
|
|
}
|
|
|
|
static int led_on(int led)
|
|
{
|
|
return ioctl(leds, LED_ON, led);
|
|
}
|
|
|
|
static int led_off(int led)
|
|
{
|
|
return ioctl(leds, LED_OFF, led);
|
|
}
|
|
|
|
enum AUDIO_PATTERN {
|
|
AUDIO_PATTERN_ERROR = 1,
|
|
AUDIO_PATTERN_NOTIFY_POSITIVE = 2,
|
|
AUDIO_PATTERN_NOTIFY_NEUTRAL = 3,
|
|
AUDIO_PATTERN_NOTIFY_NEGATIVE = 4,
|
|
AUDIO_PATTERN_TETRIS = 5
|
|
};
|
|
|
|
int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state) {
|
|
|
|
/* Trigger alarm if going into any error state */
|
|
if (((new_state == SYSTEM_STATE_GROUND_ERROR) && (old_state != SYSTEM_STATE_GROUND_ERROR)) ||
|
|
((new_state == SYSTEM_STATE_MISSION_ABORT) && (old_state != SYSTEM_STATE_MISSION_ABORT))) {
|
|
ioctl(buzzer, TONE_SET_ALARM, 0);
|
|
ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_ERROR);
|
|
}
|
|
|
|
/* Trigger neutral on arming / disarming */
|
|
if (((new_state == SYSTEM_STATE_GROUND_READY) && (old_state != SYSTEM_STATE_GROUND_READY))) {
|
|
ioctl(buzzer, TONE_SET_ALARM, 0);
|
|
ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_NOTIFY_NEUTRAL);
|
|
}
|
|
|
|
/* Trigger Tetris on being bored */
|
|
|
|
return 0;
|
|
}
|
|
|
|
void tune_confirm(void) {
|
|
ioctl(buzzer, TONE_SET_ALARM, 3);
|
|
}
|
|
|
|
void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
|
|
{
|
|
|
|
/* set to mag calibration mode */
|
|
status->flag_preflight_mag_calibration = true;
|
|
state_machine_publish(status_pub, status, mavlink_fd);
|
|
|
|
int sub_mag = orb_subscribe(ORB_ID(sensor_mag));
|
|
struct mag_report mag;
|
|
|
|
/* 45 seconds */
|
|
uint64_t calibration_interval = 45 * 1000 * 1000;
|
|
|
|
/* maximum 2000 values */
|
|
const unsigned int calibration_maxcount = 500;
|
|
unsigned int calibration_counter = 0;
|
|
|
|
/* limit update rate to get equally spaced measurements over time (in ms) */
|
|
orb_set_interval(sub_mag, (calibration_interval / 1000) / calibration_maxcount);
|
|
|
|
// XXX old cal
|
|
// * FLT_MIN is not the most negative float number,
|
|
// * but the smallest number by magnitude float can
|
|
// * represent. Use -FLT_MAX to initialize the most
|
|
// * negative number
|
|
|
|
// float mag_max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
|
|
// float mag_min[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
|
|
|
|
int fd = open(MAG_DEVICE_PATH, O_RDONLY);
|
|
|
|
/* erase old calibration */
|
|
struct mag_scale mscale_null = {
|
|
0.0f,
|
|
1.0f,
|
|
0.0f,
|
|
1.0f,
|
|
0.0f,
|
|
1.0f,
|
|
};
|
|
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale_null)) {
|
|
warn("WARNING: failed to set scale / offsets for mag");
|
|
mavlink_log_info(mavlink_fd, "[commander] failed to set scale / offsets for mag");
|
|
}
|
|
|
|
/* calibrate range */
|
|
if (OK != ioctl(fd, MAGIOCCALIBRATE, fd)) {
|
|
warnx("failed to calibrate scale");
|
|
}
|
|
|
|
close(fd);
|
|
|
|
/* calibrate offsets */
|
|
|
|
// uint64_t calibration_start = hrt_absolute_time();
|
|
|
|
uint64_t axis_deadline = hrt_absolute_time();
|
|
uint64_t calibration_deadline = hrt_absolute_time() + calibration_interval;
|
|
|
|
const char axislabels[3] = { 'X', 'Y', 'Z'};
|
|
int axis_index = -1;
|
|
|
|
float *x = (float*)malloc(sizeof(float) * calibration_maxcount);
|
|
float *y = (float*)malloc(sizeof(float) * calibration_maxcount);
|
|
float *z = (float*)malloc(sizeof(float) * calibration_maxcount);
|
|
|
|
if (x == NULL || y == NULL || z == NULL) {
|
|
warnx("mag cal failed: out of memory");
|
|
mavlink_log_info(mavlink_fd, "mag cal failed: out of memory");
|
|
printf("x:%p y:%p z:%p\n", x, y, z);
|
|
return;
|
|
}
|
|
|
|
tune_confirm();
|
|
sleep(2);
|
|
tune_confirm();
|
|
|
|
while (hrt_absolute_time() < calibration_deadline &&
|
|
calibration_counter < calibration_maxcount) {
|
|
|
|
/* wait blocking for new data */
|
|
struct pollfd fds[1] = { { .fd = sub_mag, .events = POLLIN } };
|
|
|
|
/* user guidance */
|
|
if (hrt_absolute_time() >= axis_deadline &&
|
|
axis_index < 3) {
|
|
|
|
axis_index++;
|
|
|
|
char buf[50];
|
|
sprintf(buf, "[commander] Please rotate around %c", axislabels[axis_index]);
|
|
mavlink_log_info(mavlink_fd, buf);
|
|
tune_confirm();
|
|
|
|
axis_deadline += calibration_interval / 3;
|
|
}
|
|
|
|
if (!(axis_index < 3)) {
|
|
break;
|
|
}
|
|
|
|
// int axis_left = (int64_t)axis_deadline - (int64_t)hrt_absolute_time();
|
|
|
|
// if ((axis_left / 1000) == 0 && axis_left > 0) {
|
|
// char buf[50];
|
|
// sprintf(buf, "[commander] %d seconds left for axis %c", axis_left, axislabels[axis_index]);
|
|
// mavlink_log_info(mavlink_fd, buf);
|
|
// }
|
|
|
|
if (poll(fds, 1, 1000)) {
|
|
orb_copy(ORB_ID(sensor_mag), sub_mag, &mag);
|
|
|
|
x[calibration_counter] = mag.x;
|
|
y[calibration_counter] = mag.y;
|
|
z[calibration_counter] = mag.z;
|
|
|
|
/* get min/max values */
|
|
|
|
// if (mag.x < mag_min[0]) {
|
|
// mag_min[0] = mag.x;
|
|
// }
|
|
// else if (mag.x > mag_max[0]) {
|
|
// mag_max[0] = mag.x;
|
|
// }
|
|
|
|
// if (raw.magnetometer_ga[1] < mag_min[1]) {
|
|
// mag_min[1] = raw.magnetometer_ga[1];
|
|
// }
|
|
// else if (raw.magnetometer_ga[1] > mag_max[1]) {
|
|
// mag_max[1] = raw.magnetometer_ga[1];
|
|
// }
|
|
|
|
// if (raw.magnetometer_ga[2] < mag_min[2]) {
|
|
// mag_min[2] = raw.magnetometer_ga[2];
|
|
// }
|
|
// else if (raw.magnetometer_ga[2] > mag_max[2]) {
|
|
// mag_max[2] = raw.magnetometer_ga[2];
|
|
// }
|
|
|
|
calibration_counter++;
|
|
} else {
|
|
/* any poll failure for 1s is a reason to abort */
|
|
mavlink_log_info(mavlink_fd, "[commander] mag cal canceled");
|
|
break;
|
|
}
|
|
}
|
|
|
|
float sphere_x;
|
|
float sphere_y;
|
|
float sphere_z;
|
|
float sphere_radius;
|
|
|
|
sphere_fit_least_squares(x, y, z, calibration_counter, 100, 0.0f, &sphere_x, &sphere_y, &sphere_z, &sphere_radius);
|
|
|
|
free(x);
|
|
free(y);
|
|
free(z);
|
|
|
|
if (isfinite(sphere_x) && isfinite(sphere_y) && isfinite(sphere_z)) {
|
|
|
|
fd = open(MAG_DEVICE_PATH, 0);
|
|
|
|
struct mag_scale mscale;
|
|
|
|
if (OK != ioctl(fd, MAGIOCGSCALE, (long unsigned int)&mscale))
|
|
warn("WARNING: failed to get scale / offsets for mag");
|
|
|
|
mscale.x_offset = sphere_x;
|
|
mscale.y_offset = sphere_y;
|
|
mscale.z_offset = sphere_z;
|
|
|
|
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale))
|
|
warn("WARNING: failed to set scale / offsets for mag");
|
|
close(fd);
|
|
|
|
/* announce and set new offset */
|
|
|
|
if (param_set(param_find("SENS_MAG_XOFF"), &(mscale.x_offset))) {
|
|
fprintf(stderr, "[commander] Setting X mag offset failed!\n");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_MAG_YOFF"), &(mscale.y_offset))) {
|
|
fprintf(stderr, "[commander] Setting Y mag offset failed!\n");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_MAG_ZOFF"), &(mscale.z_offset))) {
|
|
fprintf(stderr, "[commander] Setting Z mag offset failed!\n");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_MAG_XSCALE"), &(mscale.x_scale))) {
|
|
fprintf(stderr, "[commander] Setting X mag scale failed!\n");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_MAG_YSCALE"), &(mscale.y_scale))) {
|
|
fprintf(stderr, "[commander] Setting Y mag scale failed!\n");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_MAG_ZSCALE"), &(mscale.z_scale))) {
|
|
fprintf(stderr, "[commander] Setting Z mag scale failed!\n");
|
|
}
|
|
|
|
/* auto-save to EEPROM */
|
|
int save_ret = param_save_default();
|
|
if(save_ret != 0) {
|
|
warn("WARNING: auto-save of params to storage failed");
|
|
mavlink_log_info(mavlink_fd, "[cmd] FAILED storing calibration");
|
|
}
|
|
|
|
printf("[mag cal]\tscale: %.6f %.6f %.6f\n \toffset: %.6f %.6f %.6f\nradius: %.6f GA\n",
|
|
(double)mscale.x_scale, (double)mscale.y_scale, (double)mscale.z_scale,
|
|
(double)mscale.x_offset, (double)mscale.y_offset, (double)mscale.z_offset, (double)sphere_radius);
|
|
|
|
char buf[52];
|
|
sprintf(buf, "mag off: x:%.2f y:%.2f z:%.2f Ga", (double)mscale.x_offset,
|
|
(double)mscale.y_offset, (double)mscale.z_offset);
|
|
mavlink_log_info(mavlink_fd, buf);
|
|
|
|
sprintf(buf, "mag scale: x:%.2f y:%.2f z:%.2f", (double)mscale.x_scale,
|
|
(double)mscale.y_scale, (double)mscale.z_scale);
|
|
mavlink_log_info(mavlink_fd, buf);
|
|
|
|
mavlink_log_info(mavlink_fd, "[commander] mag calibration done");
|
|
|
|
tune_confirm();
|
|
sleep(2);
|
|
tune_confirm();
|
|
sleep(2);
|
|
/* third beep by cal end routine */
|
|
|
|
} else {
|
|
mavlink_log_info(mavlink_fd, "[commander] mag calibration FAILED (NaN)");
|
|
}
|
|
|
|
/* disable calibration mode */
|
|
status->flag_preflight_mag_calibration = false;
|
|
state_machine_publish(status_pub, status, mavlink_fd);
|
|
|
|
close(sub_mag);
|
|
}
|
|
|
|
void do_gyro_calibration(int status_pub, struct vehicle_status_s *status)
|
|
{
|
|
/* set to gyro calibration mode */
|
|
status->flag_preflight_gyro_calibration = true;
|
|
state_machine_publish(status_pub, status, mavlink_fd);
|
|
|
|
const int calibration_count = 5000;
|
|
|
|
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined));
|
|
struct sensor_combined_s raw;
|
|
|
|
int calibration_counter = 0;
|
|
float gyro_offset[3] = {0.0f, 0.0f, 0.0f};
|
|
|
|
/* set offsets to zero */
|
|
int fd = open(GYRO_DEVICE_PATH, 0);
|
|
struct gyro_scale gscale_null = {
|
|
0.0f,
|
|
1.0f,
|
|
0.0f,
|
|
1.0f,
|
|
0.0f,
|
|
1.0f,
|
|
};
|
|
if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale_null))
|
|
warn("WARNING: failed to set scale / offsets for gyro");
|
|
close(fd);
|
|
|
|
while (calibration_counter < calibration_count) {
|
|
|
|
/* wait blocking for new data */
|
|
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } };
|
|
|
|
if (poll(fds, 1, 1000)) {
|
|
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw);
|
|
gyro_offset[0] += raw.gyro_rad_s[0];
|
|
gyro_offset[1] += raw.gyro_rad_s[1];
|
|
gyro_offset[2] += raw.gyro_rad_s[2];
|
|
calibration_counter++;
|
|
} else {
|
|
/* any poll failure for 1s is a reason to abort */
|
|
mavlink_log_info(mavlink_fd, "[commander] gyro calibration aborted, retry");
|
|
return;
|
|
}
|
|
}
|
|
|
|
gyro_offset[0] = gyro_offset[0] / calibration_count;
|
|
gyro_offset[1] = gyro_offset[1] / calibration_count;
|
|
gyro_offset[2] = gyro_offset[2] / calibration_count;
|
|
|
|
/* exit gyro calibration mode */
|
|
status->flag_preflight_gyro_calibration = false;
|
|
state_machine_publish(status_pub, status, mavlink_fd);
|
|
|
|
if (isfinite(gyro_offset[0]) && isfinite(gyro_offset[1]) && isfinite(gyro_offset[2])) {
|
|
|
|
if (param_set(param_find("SENS_GYRO_XOFF"), &(gyro_offset[0]))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X gyro offset failed!");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_GYRO_YOFF"), &(gyro_offset[1]))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y gyro offset failed!");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_GYRO_ZOFF"), &(gyro_offset[2]))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z gyro offset failed!");
|
|
}
|
|
|
|
/* set offsets to actual value */
|
|
fd = open(GYRO_DEVICE_PATH, 0);
|
|
struct gyro_scale gscale = {
|
|
gyro_offset[0],
|
|
1.0f,
|
|
gyro_offset[1],
|
|
1.0f,
|
|
gyro_offset[2],
|
|
1.0f,
|
|
};
|
|
if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale))
|
|
warn("WARNING: failed to set scale / offsets for gyro");
|
|
close(fd);
|
|
|
|
/* auto-save to EEPROM */
|
|
int save_ret = param_save_default();
|
|
if(save_ret != 0) {
|
|
warn("WARNING: auto-save of params to storage failed");
|
|
}
|
|
|
|
// char buf[50];
|
|
// sprintf(buf, "cal: x:%8.4f y:%8.4f z:%8.4f", (double)gyro_offset[0], (double)gyro_offset[1], (double)gyro_offset[2]);
|
|
// mavlink_log_info(mavlink_fd, buf);
|
|
mavlink_log_info(mavlink_fd, "[commander] gyro calibration done");
|
|
|
|
tune_confirm();
|
|
sleep(2);
|
|
tune_confirm();
|
|
sleep(2);
|
|
/* third beep by cal end routine */
|
|
} else {
|
|
mavlink_log_info(mavlink_fd, "[commander] gyro calibration FAILED (NaN)");
|
|
}
|
|
|
|
close(sub_sensor_combined);
|
|
}
|
|
|
|
void do_accel_calibration(int status_pub, struct vehicle_status_s *status)
|
|
{
|
|
/* announce change */
|
|
|
|
mavlink_log_info(mavlink_fd, "[commander] keep it level and still");
|
|
/* set to accel calibration mode */
|
|
status->flag_preflight_accel_calibration = true;
|
|
state_machine_publish(status_pub, status, mavlink_fd);
|
|
|
|
const int calibration_count = 2500;
|
|
|
|
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined));
|
|
struct sensor_combined_s raw;
|
|
|
|
int calibration_counter = 0;
|
|
float accel_offset[3] = {0.0f, 0.0f, 0.0f};
|
|
|
|
int fd = open(ACCEL_DEVICE_PATH, 0);
|
|
struct accel_scale ascale_null = {
|
|
0.0f,
|
|
1.0f,
|
|
0.0f,
|
|
1.0f,
|
|
0.0f,
|
|
1.0f,
|
|
};
|
|
if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale_null))
|
|
warn("WARNING: failed to set scale / offsets for accel");
|
|
close(fd);
|
|
while (calibration_counter < calibration_count) {
|
|
|
|
/* wait blocking for new data */
|
|
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } };
|
|
|
|
if (poll(fds, 1, 1000)) {
|
|
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw);
|
|
accel_offset[0] += raw.accelerometer_m_s2[0];
|
|
accel_offset[1] += raw.accelerometer_m_s2[1];
|
|
accel_offset[2] += raw.accelerometer_m_s2[2];
|
|
calibration_counter++;
|
|
} else {
|
|
/* any poll failure for 1s is a reason to abort */
|
|
mavlink_log_info(mavlink_fd, "[commander] acceleration calibration aborted");
|
|
return;
|
|
}
|
|
}
|
|
accel_offset[0] = accel_offset[0] / calibration_count;
|
|
accel_offset[1] = accel_offset[1] / calibration_count;
|
|
accel_offset[2] = accel_offset[2] / calibration_count;
|
|
|
|
if (isfinite(accel_offset[0]) && isfinite(accel_offset[1]) && isfinite(accel_offset[2])) {
|
|
|
|
/* add the removed length from x / y to z, since we induce a scaling issue else */
|
|
float total_len = sqrtf(accel_offset[0]*accel_offset[0] + accel_offset[1]*accel_offset[1] + accel_offset[2]*accel_offset[2]);
|
|
|
|
/* if length is correct, zero results here */
|
|
accel_offset[2] = accel_offset[2] + total_len;
|
|
|
|
float scale = 9.80665f / total_len;
|
|
|
|
if (param_set(param_find("SENS_ACC_XOFF"), &(accel_offset[0]))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X accel offset failed!");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_ACC_YOFF"), &(accel_offset[1]))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y accel offset failed!");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_ACC_ZOFF"), &(accel_offset[2]))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z accel offset failed!");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_ACC_XSCALE"), &(scale))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X accel offset failed!");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_ACC_YSCALE"), &(scale))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y accel offset failed!");
|
|
}
|
|
|
|
if (param_set(param_find("SENS_ACC_ZSCALE"), &(scale))) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z accel offset failed!");
|
|
}
|
|
|
|
fd = open(ACCEL_DEVICE_PATH, 0);
|
|
struct accel_scale ascale = {
|
|
accel_offset[0],
|
|
scale,
|
|
accel_offset[1],
|
|
scale,
|
|
accel_offset[2],
|
|
scale,
|
|
};
|
|
if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale))
|
|
warn("WARNING: failed to set scale / offsets for accel");
|
|
close(fd);
|
|
|
|
/* auto-save to EEPROM */
|
|
int save_ret = param_save_default();
|
|
if(save_ret != 0) {
|
|
warn("WARNING: auto-save of params to storage failed");
|
|
}
|
|
|
|
//char buf[50];
|
|
//sprintf(buf, "[commander] accel cal: x:%8.4f y:%8.4f z:%8.4f\n", (double)accel_offset[0], (double)accel_offset[1], (double)accel_offset[2]);
|
|
//mavlink_log_info(mavlink_fd, buf);
|
|
mavlink_log_info(mavlink_fd, "[commander] accel calibration done");
|
|
|
|
tune_confirm();
|
|
sleep(2);
|
|
tune_confirm();
|
|
sleep(2);
|
|
/* third beep by cal end routine */
|
|
} else {
|
|
mavlink_log_info(mavlink_fd, "[commander] accel calibration FAILED (NaN)");
|
|
}
|
|
|
|
/* exit accel calibration mode */
|
|
status->flag_preflight_accel_calibration = false;
|
|
state_machine_publish(status_pub, status, mavlink_fd);
|
|
|
|
close(sub_sensor_combined);
|
|
}
|
|
|
|
|
|
|
|
void handle_command(int status_pub, struct vehicle_status_s *current_vehicle_status, struct vehicle_command_s *cmd)
|
|
{
|
|
/* result of the command */
|
|
uint8_t result = MAV_RESULT_UNSUPPORTED;
|
|
|
|
/* announce command handling */
|
|
tune_confirm();
|
|
|
|
|
|
/* supported command handling start */
|
|
|
|
/* request to set different system mode */
|
|
switch (cmd->command) {
|
|
case MAV_CMD_DO_SET_MODE:
|
|
{
|
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, (uint8_t)cmd->param1)) {
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else {
|
|
result = MAV_RESULT_DENIED;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MAV_CMD_COMPONENT_ARM_DISARM: {
|
|
/* request to arm */
|
|
if ((int)cmd->param1 == 1) {
|
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) {
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else {
|
|
result = MAV_RESULT_DENIED;
|
|
}
|
|
/* request to disarm */
|
|
} else if ((int)cmd->param1 == 0) {
|
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) {
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else {
|
|
result = MAV_RESULT_DENIED;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* request for an autopilot reboot */
|
|
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: {
|
|
if ((int)cmd->param1 == 1) {
|
|
if (OK == do_state_update(status_pub, current_vehicle_status, mavlink_fd, SYSTEM_STATE_REBOOT)) {
|
|
/* SPECIAL CASE: SYSTEM WILL NEVER RETURN HERE */
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else {
|
|
/* system may return here */
|
|
result = MAV_RESULT_DENIED;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PX4_CMD_CONTROLLER_SELECTION: {
|
|
bool changed = false;
|
|
if ((int)cmd->param1 != (int)current_vehicle_status->flag_control_rates_enabled) {
|
|
current_vehicle_status->flag_control_rates_enabled = cmd->param1;
|
|
changed = true;
|
|
}
|
|
if ((int)cmd->param2 != (int)current_vehicle_status->flag_control_attitude_enabled) {
|
|
current_vehicle_status->flag_control_attitude_enabled = cmd->param2;
|
|
changed = true;
|
|
}
|
|
if ((int)cmd->param3 != (int)current_vehicle_status->flag_control_velocity_enabled) {
|
|
current_vehicle_status->flag_control_velocity_enabled = cmd->param3;
|
|
changed = true;
|
|
}
|
|
if ((int)cmd->param4 != (int)current_vehicle_status->flag_control_position_enabled) {
|
|
current_vehicle_status->flag_control_position_enabled = cmd->param4;
|
|
changed = true;
|
|
}
|
|
|
|
if (changed) {
|
|
/* publish current state machine */
|
|
state_machine_publish(status_pub, current_vehicle_status, mavlink_fd);
|
|
}
|
|
}
|
|
|
|
// /* request to land */
|
|
// case MAV_CMD_NAV_LAND:
|
|
// {
|
|
// //TODO: add check if landing possible
|
|
// //TODO: add landing maneuver
|
|
//
|
|
// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_ARMED)) {
|
|
// result = MAV_RESULT_ACCEPTED;
|
|
// } }
|
|
// break;
|
|
//
|
|
// /* request to takeoff */
|
|
// case MAV_CMD_NAV_TAKEOFF:
|
|
// {
|
|
// //TODO: add check if takeoff possible
|
|
// //TODO: add takeoff maneuver
|
|
//
|
|
// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_AUTO)) {
|
|
// result = MAV_RESULT_ACCEPTED;
|
|
// }
|
|
// }
|
|
// break;
|
|
//
|
|
/* preflight calibration */
|
|
case MAV_CMD_PREFLIGHT_CALIBRATION: {
|
|
bool handled = false;
|
|
|
|
/* gyro calibration */
|
|
if ((int)(cmd->param1) == 1) {
|
|
/* transition to calibration state */
|
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
|
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
|
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting gyro calibration");
|
|
tune_confirm();
|
|
do_gyro_calibration(status_pub, ¤t_status);
|
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished gyro calibration");
|
|
tune_confirm();
|
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY);
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else {
|
|
mavlink_log_critical(mavlink_fd, "[commander] REJECTING gyro calibration");
|
|
result = MAV_RESULT_DENIED;
|
|
}
|
|
handled = true;
|
|
}
|
|
|
|
/* magnetometer calibration */
|
|
if ((int)(cmd->param2) == 1) {
|
|
/* transition to calibration state */
|
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
|
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
|
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting mag calibration");
|
|
tune_confirm();
|
|
do_mag_calibration(status_pub, ¤t_status);
|
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished mag calibration");
|
|
tune_confirm();
|
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY);
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else {
|
|
mavlink_log_critical(mavlink_fd, "[commander] CMD REJECTING mag calibration");
|
|
result = MAV_RESULT_DENIED;
|
|
}
|
|
handled = true;
|
|
}
|
|
|
|
/* accel calibration */
|
|
if ((int)(cmd->param5) == 1) {
|
|
/* transition to calibration state */
|
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
|
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
|
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting accel calibration");
|
|
tune_confirm();
|
|
do_accel_calibration(status_pub, ¤t_status);
|
|
tune_confirm();
|
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished accel calibration");
|
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY);
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else {
|
|
mavlink_log_critical(mavlink_fd, "[commander] REJECTING accel calibration");
|
|
result = MAV_RESULT_DENIED;
|
|
}
|
|
handled = true;
|
|
}
|
|
|
|
/* none found */
|
|
if (!handled) {
|
|
//fprintf(stderr, "[commander] refusing unsupported calibration request\n");
|
|
mavlink_log_critical(mavlink_fd, "[commander] CMD refusing unsup. calib. request");
|
|
result = MAV_RESULT_UNSUPPORTED;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MAV_CMD_PREFLIGHT_STORAGE: {
|
|
if (current_status.flag_system_armed) {
|
|
mavlink_log_info(mavlink_fd, "[cmd] REJECTING param command while armed");
|
|
} else {
|
|
|
|
// XXX move this to LOW PRIO THREAD of commander app
|
|
/* Read all parameters from EEPROM to RAM */
|
|
|
|
if (((int)(cmd->param1)) == 0) {
|
|
|
|
/* read all parameters from EEPROM to RAM */
|
|
int read_ret = param_load_default();
|
|
if (read_ret == OK) {
|
|
//printf("[mavlink pm] Loaded EEPROM params in RAM\n");
|
|
mavlink_log_info(mavlink_fd, "[cmd] OK loading params from");
|
|
mavlink_log_info(mavlink_fd, param_get_default_file());
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else if (read_ret == 1) {
|
|
mavlink_log_info(mavlink_fd, "[cmd] OK no changes in");
|
|
mavlink_log_info(mavlink_fd, param_get_default_file());
|
|
result = MAV_RESULT_ACCEPTED;
|
|
} else {
|
|
if (read_ret < -1) {
|
|
mavlink_log_info(mavlink_fd, "[cmd] ERR loading params from");
|
|
mavlink_log_info(mavlink_fd, param_get_default_file());
|
|
} else {
|
|
mavlink_log_info(mavlink_fd, "[cmd] ERR no param file named");
|
|
mavlink_log_info(mavlink_fd, param_get_default_file());
|
|
}
|
|
result = MAV_RESULT_FAILED;
|
|
}
|
|
|
|
} else if (((int)(cmd->param1)) == 1) {
|
|
|
|
/* write all parameters from RAM to EEPROM */
|
|
int write_ret = param_save_default();
|
|
if (write_ret == OK) {
|
|
mavlink_log_info(mavlink_fd, "[cmd] OK saved param file");
|
|
mavlink_log_info(mavlink_fd, param_get_default_file());
|
|
result = MAV_RESULT_ACCEPTED;
|
|
|
|
} else {
|
|
if (write_ret < -1) {
|
|
mavlink_log_info(mavlink_fd, "[cmd] ERR params file does not exit:");
|
|
mavlink_log_info(mavlink_fd, param_get_default_file());
|
|
} else {
|
|
mavlink_log_info(mavlink_fd, "[cmd] ERR writing params to");
|
|
mavlink_log_info(mavlink_fd, param_get_default_file());
|
|
}
|
|
result = MAV_RESULT_FAILED;
|
|
}
|
|
|
|
} else {
|
|
mavlink_log_info(mavlink_fd, "[pm] refusing unsupp. STOR request");
|
|
result = MAV_RESULT_UNSUPPORTED;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default: {
|
|
mavlink_log_critical(mavlink_fd, "[cmd] refusing unsupported command");
|
|
result = MAV_RESULT_UNSUPPORTED;
|
|
/* announce command rejection */
|
|
ioctl(buzzer, TONE_SET_ALARM, 4);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* supported command handling stop */
|
|
if (result == MAV_RESULT_FAILED ||
|
|
result == MAV_RESULT_DENIED ||
|
|
result == MAV_RESULT_UNSUPPORTED) {
|
|
ioctl(buzzer, TONE_SET_ALARM, 5);
|
|
} else if (result == MAV_RESULT_ACCEPTED) {
|
|
tune_confirm();
|
|
}
|
|
|
|
/* send any requested ACKs */
|
|
if (cmd->confirmation > 0) {
|
|
/* send acknowledge command */
|
|
// XXX TODO
|
|
}
|
|
|
|
}
|
|
|
|
static void *orb_receive_loop(void *arg) //handles status information coming from subsystems (present, enabled, health), these values do not indicate the quality (variance) of the signal
|
|
{
|
|
/* Set thread name */
|
|
prctl(PR_SET_NAME, "commander orb rcv", getpid());
|
|
|
|
/* Subscribe to command topic */
|
|
int subsys_sub = orb_subscribe(ORB_ID(subsystem_info));
|
|
struct subsystem_info_s info;
|
|
|
|
struct vehicle_status_s *vstatus = (struct vehicle_status_s*)arg;
|
|
|
|
while (!thread_should_exit) {
|
|
struct pollfd fds[1] = { { .fd = subsys_sub, .events = POLLIN } };
|
|
|
|
if (poll(fds, 1, 5000) == 0) {
|
|
/* timeout, but this is no problem, silently ignore */
|
|
} else {
|
|
/* got command */
|
|
orb_copy(ORB_ID(subsystem_info), subsys_sub, &info);
|
|
|
|
printf("Subsys changed: %d\n", (int)info.subsystem_type);
|
|
|
|
/* mark / unmark as present */
|
|
if (info.present) {
|
|
vstatus->onboard_control_sensors_present |= info.subsystem_type;
|
|
} else {
|
|
vstatus->onboard_control_sensors_present &= ~info.subsystem_type;
|
|
}
|
|
|
|
/* mark / unmark as enabled */
|
|
if (info.enabled) {
|
|
vstatus->onboard_control_sensors_enabled |= info.subsystem_type;
|
|
} else {
|
|
vstatus->onboard_control_sensors_enabled &= ~info.subsystem_type;
|
|
}
|
|
|
|
/* mark / unmark as ok */
|
|
if (info.ok) {
|
|
vstatus->onboard_control_sensors_health |= info.subsystem_type;
|
|
} else {
|
|
vstatus->onboard_control_sensors_health &= ~info.subsystem_type;
|
|
}
|
|
}
|
|
}
|
|
|
|
close(subsys_sub);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Provides a coarse estimate of remaining battery power.
|
|
*
|
|
* The estimate is very basic and based on decharging voltage curves.
|
|
*
|
|
* @return the estimated remaining capacity in 0..1
|
|
*/
|
|
float battery_remaining_estimate_voltage(float voltage);
|
|
|
|
PARAM_DEFINE_FLOAT(BAT_V_EMPTY, 3.2f);
|
|
PARAM_DEFINE_FLOAT(BAT_V_FULL, 4.05f);
|
|
PARAM_DEFINE_FLOAT(BAT_N_CELLS, 3);
|
|
|
|
float battery_remaining_estimate_voltage(float voltage)
|
|
{
|
|
float ret = 0;
|
|
static param_t bat_volt_empty;
|
|
static param_t bat_volt_full;
|
|
static param_t bat_n_cells;
|
|
static bool initialized = false;
|
|
static unsigned int counter = 0;
|
|
static float ncells = 3;
|
|
// XXX change cells to int (and param to INT32)
|
|
|
|
if (!initialized) {
|
|
bat_volt_empty = param_find("BAT_V_EMPTY");
|
|
bat_volt_full = param_find("BAT_V_FULL");
|
|
bat_n_cells = param_find("BAT_N_CELLS");
|
|
initialized = true;
|
|
}
|
|
|
|
static float chemistry_voltage_empty = 3.2f;
|
|
static float chemistry_voltage_full = 4.05f;
|
|
|
|
if (counter % 100 == 0) {
|
|
param_get(bat_volt_empty, &chemistry_voltage_empty);
|
|
param_get(bat_volt_full, &chemistry_voltage_full);
|
|
param_get(bat_n_cells, &ncells);
|
|
}
|
|
counter++;
|
|
|
|
ret = (voltage - ncells * chemistry_voltage_empty) / (ncells * (chemistry_voltage_full - chemistry_voltage_empty));
|
|
|
|
/* limit to sane values */
|
|
ret = (ret < 0) ? 0 : ret;
|
|
ret = (ret > 1) ? 1 : ret;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
usage(const char *reason)
|
|
{
|
|
if (reason)
|
|
fprintf(stderr, "%s\n", reason);
|
|
fprintf(stderr, "usage: daemon {start|stop|status} [-p <additional params>]\n\n");
|
|
exit(1);
|
|
}
|
|
|
|
/**
|
|
* The daemon app only briefly exists to start
|
|
* the background job. The stack size assigned in the
|
|
* Makefile does only apply to this management task.
|
|
*
|
|
* The actual stack size should be set in the call
|
|
* to task_create().
|
|
*/
|
|
int commander_main(int argc, char *argv[])
|
|
{
|
|
if (argc < 1)
|
|
usage("missing command");
|
|
|
|
if (!strcmp(argv[1], "start")) {
|
|
|
|
if (thread_running) {
|
|
printf("commander already running\n");
|
|
/* this is not an error */
|
|
exit(0);
|
|
}
|
|
|
|
thread_should_exit = false;
|
|
daemon_task = task_spawn("commander",
|
|
SCHED_DEFAULT,
|
|
SCHED_PRIORITY_MAX - 50,
|
|
4000,
|
|
commander_thread_main,
|
|
(argv) ? (const char **)&argv[2] : (const char **)NULL);
|
|
thread_running = true;
|
|
exit(0);
|
|
}
|
|
|
|
if (!strcmp(argv[1], "stop")) {
|
|
thread_should_exit = true;
|
|
exit(0);
|
|
}
|
|
|
|
if (!strcmp(argv[1], "status")) {
|
|
if (thread_running) {
|
|
printf("\tcommander is running\n");
|
|
} else {
|
|
printf("\tcommander not started\n");
|
|
}
|
|
exit(0);
|
|
}
|
|
|
|
usage("unrecognized command");
|
|
exit(1);
|
|
}
|
|
|
|
int commander_thread_main(int argc, char *argv[])
|
|
{
|
|
/* not yet initialized */
|
|
commander_initialized = false;
|
|
|
|
/* set parameters */
|
|
failsafe_lowlevel_timeout_ms = 0;
|
|
param_get(param_find("SYS_FAILSAVE_LL"), &failsafe_lowlevel_timeout_ms);
|
|
|
|
/* welcome user */
|
|
printf("[commander] I am in command now!\n");
|
|
|
|
/* pthreads for command and subsystem info handling */
|
|
// pthread_t command_handling_thread;
|
|
pthread_t subsystem_info_thread;
|
|
|
|
/* initialize */
|
|
if (led_init() != 0) {
|
|
fprintf(stderr, "[commander] ERROR: Failed to initialize leds\n");
|
|
}
|
|
|
|
if (buzzer_init() != 0) {
|
|
fprintf(stderr, "[commander] ERROR: Failed to initialize buzzer\n");
|
|
}
|
|
|
|
mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
|
|
|
|
if (mavlink_fd < 0) {
|
|
fprintf(stderr, "[commander] ERROR: Failed to open MAVLink log stream, start mavlink app first.\n");
|
|
}
|
|
|
|
/* make sure we are in preflight state */
|
|
memset(¤t_status, 0, sizeof(current_status));
|
|
current_status.state_machine = SYSTEM_STATE_PREFLIGHT;
|
|
current_status.flag_system_armed = false;
|
|
/* neither manual nor offboard control commands have been received */
|
|
current_status.offboard_control_signal_found_once = false;
|
|
current_status.rc_signal_found_once = false;
|
|
/* mark all signals lost as long as they haven't been found */
|
|
current_status.rc_signal_lost = true;
|
|
current_status.offboard_control_signal_lost = true;
|
|
|
|
/* advertise to ORB */
|
|
stat_pub = orb_advertise(ORB_ID(vehicle_status), ¤t_status);
|
|
/* publish current state machine */
|
|
state_machine_publish(stat_pub, ¤t_status, mavlink_fd);
|
|
|
|
if (stat_pub < 0) {
|
|
printf("[commander] ERROR: orb_advertise for topic vehicle_status failed.\n");
|
|
exit(ERROR);
|
|
}
|
|
|
|
mavlink_log_info(mavlink_fd, "[commander] system is running");
|
|
|
|
/* create pthreads */
|
|
pthread_attr_t subsystem_info_attr;
|
|
pthread_attr_init(&subsystem_info_attr);
|
|
pthread_attr_setstacksize(&subsystem_info_attr, 2048);
|
|
pthread_create(&subsystem_info_thread, &subsystem_info_attr, orb_receive_loop, ¤t_status);
|
|
|
|
/* Start monitoring loop */
|
|
uint16_t counter = 0;
|
|
uint8_t flight_env;
|
|
|
|
/* Initialize to 3.0V to make sure the low-pass loads below valid threshold */
|
|
float battery_voltage = 12.0f;
|
|
bool battery_voltage_valid = true;
|
|
bool low_battery_voltage_actions_done = false;
|
|
bool critical_battery_voltage_actions_done = false;
|
|
uint8_t low_voltage_counter = 0;
|
|
uint16_t critical_voltage_counter = 0;
|
|
int16_t mode_switch_rc_value;
|
|
float bat_remain = 1.0f;
|
|
|
|
uint16_t stick_off_counter = 0;
|
|
uint16_t stick_on_counter = 0;
|
|
|
|
float hdop = 65535.0f;
|
|
|
|
int gps_quality_good_counter = 0;
|
|
|
|
/* Subscribe to manual control data */
|
|
int sp_man_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
|
|
struct manual_control_setpoint_s sp_man;
|
|
memset(&sp_man, 0, sizeof(sp_man));
|
|
|
|
/* Subscribe to offboard control data */
|
|
int sp_offboard_sub = orb_subscribe(ORB_ID(offboard_control_setpoint));
|
|
struct offboard_control_setpoint_s sp_offboard;
|
|
memset(&sp_offboard, 0, sizeof(sp_offboard));
|
|
|
|
int gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
|
|
struct vehicle_gps_position_s gps;
|
|
memset(&gps, 0, sizeof(gps));
|
|
|
|
int sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
|
|
struct sensor_combined_s sensors;
|
|
memset(&sensors, 0, sizeof(sensors));
|
|
|
|
/* Subscribe to command topic */
|
|
int cmd_sub = orb_subscribe(ORB_ID(vehicle_command));
|
|
struct vehicle_command_s cmd;
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
// uint8_t vehicle_state_previous = current_status.state_machine;
|
|
float voltage_previous = 0.0f;
|
|
|
|
uint64_t last_idle_time = 0;
|
|
|
|
/* now initialized */
|
|
commander_initialized = true;
|
|
|
|
uint64_t start_time = hrt_absolute_time();
|
|
uint64_t failsave_ll_start_time = 0;
|
|
|
|
bool state_changed = true;
|
|
|
|
while (!thread_should_exit) {
|
|
|
|
/* Get current values */
|
|
bool new_data;
|
|
orb_check(sp_man_sub, &new_data);
|
|
if (new_data) {
|
|
orb_copy(ORB_ID(manual_control_setpoint), sp_man_sub, &sp_man);
|
|
}
|
|
|
|
orb_check(sp_offboard_sub, &new_data);
|
|
if (new_data) {
|
|
orb_copy(ORB_ID(offboard_control_setpoint), sp_offboard_sub, &sp_offboard);
|
|
}
|
|
orb_copy(ORB_ID(vehicle_gps_position), gps_sub, &gps);
|
|
orb_copy(ORB_ID(sensor_combined), sensor_sub, &sensors);
|
|
|
|
orb_check(cmd_sub, &new_data);
|
|
if (new_data) {
|
|
/* got command */
|
|
orb_copy(ORB_ID(vehicle_command), cmd_sub, &cmd);
|
|
|
|
/* handle it */
|
|
handle_command(stat_pub, ¤t_status, &cmd);
|
|
}
|
|
|
|
battery_voltage = sensors.battery_voltage_v;
|
|
battery_voltage_valid = sensors.battery_voltage_valid;
|
|
|
|
/*
|
|
* Only update battery voltage estimate if voltage is
|
|
* valid and system has been running for two and a half seconds
|
|
*/
|
|
if (battery_voltage_valid && (hrt_absolute_time() - start_time > 2500000)) {
|
|
bat_remain = battery_remaining_estimate_voltage(battery_voltage);
|
|
}
|
|
|
|
/* Slow but important 8 Hz checks */
|
|
if (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 8) == 0) {
|
|
/* toggle activity (blue) led at 1 Hz in standby, 10 Hz in armed mode */
|
|
if ((current_status.state_machine == SYSTEM_STATE_GROUND_READY ||
|
|
current_status.state_machine == SYSTEM_STATE_AUTO ||
|
|
current_status.state_machine == SYSTEM_STATE_MANUAL)) {
|
|
/* armed */
|
|
led_toggle(LED_BLUE);
|
|
|
|
} else if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) {
|
|
/* not armed */
|
|
led_toggle(LED_BLUE);
|
|
}
|
|
|
|
/* toggle error led at 5 Hz in HIL mode */
|
|
if (current_status.flag_hil_enabled) {
|
|
/* hil enabled */
|
|
led_toggle(LED_AMBER);
|
|
|
|
} else if (bat_remain < 0.3f && (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT)) {
|
|
/* toggle error (red) at 5 Hz on low battery or error */
|
|
led_toggle(LED_AMBER);
|
|
|
|
} else {
|
|
// /* Constant error indication in standby mode without GPS */
|
|
// if (!current_status.gps_valid) {
|
|
// led_on(LED_AMBER);
|
|
|
|
// } else {
|
|
// led_off(LED_AMBER);
|
|
// }
|
|
}
|
|
|
|
if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) {
|
|
/* compute system load */
|
|
uint64_t interval_runtime = system_load.tasks[0].total_runtime - last_idle_time;
|
|
|
|
if (last_idle_time > 0)
|
|
current_status.load = 1000 - (interval_runtime / 1000); //system load is time spent in non-idle
|
|
|
|
last_idle_time = system_load.tasks[0].total_runtime;
|
|
}
|
|
}
|
|
|
|
// // XXX Export patterns and threshold to parameters
|
|
/* Trigger audio event for low battery */
|
|
if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 0)) {
|
|
/* For less than 10%, start be really annoying at 5 Hz */
|
|
ioctl(buzzer, TONE_SET_ALARM, 0);
|
|
ioctl(buzzer, TONE_SET_ALARM, 3);
|
|
|
|
} else if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 2)) {
|
|
ioctl(buzzer, TONE_SET_ALARM, 0);
|
|
|
|
} else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 0)) {
|
|
/* For less than 20%, start be slightly annoying at 1 Hz */
|
|
ioctl(buzzer, TONE_SET_ALARM, 0);
|
|
tune_confirm();
|
|
|
|
} else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 2)) {
|
|
ioctl(buzzer, TONE_SET_ALARM, 0);
|
|
}
|
|
|
|
/* Check battery voltage */
|
|
/* write to sys_status */
|
|
current_status.voltage_battery = battery_voltage;
|
|
|
|
/* if battery voltage is getting lower, warn using buzzer, etc. */
|
|
if (battery_voltage_valid && (bat_remain < 0.15f /* XXX MAGIC NUMBER */) && (false == low_battery_voltage_actions_done)) { //TODO: add filter, or call emergency after n measurements < VOLTAGE_BATTERY_MINIMAL_MILLIVOLTS
|
|
|
|
if (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT) {
|
|
low_battery_voltage_actions_done = true;
|
|
mavlink_log_critical(mavlink_fd, "[commander] WARNING! LOW BATTERY!");
|
|
}
|
|
|
|
low_voltage_counter++;
|
|
}
|
|
|
|
/* Critical, this is rather an emergency, kill signal to sdlog and change state machine */
|
|
else if (battery_voltage_valid && (bat_remain < 0.1f /* XXX MAGIC NUMBER */) && (false == critical_battery_voltage_actions_done && true == low_battery_voltage_actions_done)) {
|
|
if (critical_voltage_counter > CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT) {
|
|
critical_battery_voltage_actions_done = true;
|
|
mavlink_log_critical(mavlink_fd, "[commander] EMERGENCY! CRITICAL BATTERY!");
|
|
state_machine_emergency(stat_pub, ¤t_status, mavlink_fd);
|
|
}
|
|
|
|
critical_voltage_counter++;
|
|
|
|
} else {
|
|
low_voltage_counter = 0;
|
|
critical_voltage_counter = 0;
|
|
}
|
|
|
|
/* End battery voltage check */
|
|
|
|
/* Check if last transition deserved an audio event */
|
|
// #warning This code depends on state that is no longer? maintained
|
|
// #if 0
|
|
// trigger_audio_alarm(vehicle_mode_previous, vehicle_state_previous, current_status.mode, current_status.state_machine);
|
|
// #endif
|
|
|
|
/* only check gps fix if we are outdoor */
|
|
// if (flight_env == PX4_FLIGHT_ENVIRONMENT_OUTDOOR) {
|
|
//
|
|
// hdop = (float)(gps.eph) / 100.0f;
|
|
//
|
|
// /* check if gps fix is ok */
|
|
// if (gps.fix_type == GPS_FIX_TYPE_3D) { //TODO: is 2d-fix ok? //see http://en.wikipedia.org/wiki/Dilution_of_precision_%28GPS%29
|
|
//
|
|
// if (gotfix_counter >= GPS_GOTFIX_COUNTER_REQUIRED) { //TODO: add also a required time?
|
|
// update_state_machine_got_position_fix(stat_pub, ¤t_status);
|
|
// gotfix_counter = 0;
|
|
// } else {
|
|
// gotfix_counter++;
|
|
// }
|
|
// nofix_counter = 0;
|
|
//
|
|
// if (hdop < 5.0f) { //TODO: this should be a parameter
|
|
// if (gps_quality_good_counter > GPS_QUALITY_GOOD_COUNTER_LIMIT) {
|
|
// current_status.gps_valid = true;//--> position estimator can use the gps measurements
|
|
// }
|
|
//
|
|
// gps_quality_good_counter++;
|
|
//
|
|
//
|
|
//// if(counter%10 == 0)//for testing only
|
|
//// printf("gps_quality_good_counter = %u\n", gps_quality_good_counter);//for testing only
|
|
//
|
|
// } else {
|
|
// gps_quality_good_counter = 0;
|
|
// current_status.gps_valid = false;//--> position estimator can not use the gps measurements
|
|
// }
|
|
//
|
|
// } else {
|
|
// gps_quality_good_counter = 0;
|
|
// current_status.gps_valid = false;//--> position estimator can not use the gps measurements
|
|
//
|
|
// if (nofix_counter > GPS_NOFIX_COUNTER_LIMIT) { //TODO: add also a timer limit?
|
|
// update_state_machine_no_position_fix(stat_pub, ¤t_status);
|
|
// nofix_counter = 0;
|
|
// } else {
|
|
// nofix_counter++;
|
|
// }
|
|
// gotfix_counter = 0;
|
|
// }
|
|
//
|
|
// }
|
|
//
|
|
//
|
|
// if (flight_env == PX4_FLIGHT_ENVIRONMENT_TESTING) //simulate position fix for quick indoor tests
|
|
//update_state_machine_got_position_fix(stat_pub, ¤t_status, mavlink_fd);
|
|
/* end: check gps */
|
|
|
|
|
|
/* ignore RC signals if in offboard control mode */
|
|
if (!current_status.offboard_control_signal_found_once && sp_man.timestamp != 0) {
|
|
/* Start RC state check */
|
|
|
|
if ((hrt_absolute_time() - sp_man.timestamp) < 100000) {
|
|
|
|
/* check if left stick is in lower left position --> switch to standby state */
|
|
if ((sp_man.yaw < -STICK_ON_OFF_LIMIT) && sp_man.throttle < STICK_THRUST_RANGE*0.2f) { //TODO: remove hardcoded values
|
|
if (stick_off_counter > STICK_ON_OFF_COUNTER_LIMIT) {
|
|
update_state_machine_disarm(stat_pub, ¤t_status, mavlink_fd);
|
|
stick_on_counter = 0;
|
|
|
|
} else {
|
|
stick_off_counter++;
|
|
stick_on_counter = 0;
|
|
}
|
|
}
|
|
|
|
/* check if left stick is in lower right position --> arm */
|
|
if (sp_man.yaw > STICK_ON_OFF_LIMIT && sp_man.throttle < STICK_THRUST_RANGE*0.2f) { //TODO: remove hardcoded values
|
|
if (stick_on_counter > STICK_ON_OFF_COUNTER_LIMIT) {
|
|
update_state_machine_arm(stat_pub, ¤t_status, mavlink_fd);
|
|
stick_on_counter = 0;
|
|
|
|
} else {
|
|
stick_on_counter++;
|
|
stick_off_counter = 0;
|
|
}
|
|
}
|
|
//printf("RC: y:%i/t:%i s:%i chans: %i\n", rc_yaw_scale, rc_throttle_scale, mode_switch_rc_value, rc.chan_count);
|
|
|
|
if (sp_man.override_mode_switch > STICK_ON_OFF_LIMIT) {
|
|
update_state_machine_mode_manual(stat_pub, ¤t_status, mavlink_fd);
|
|
|
|
} else if (sp_man.override_mode_switch < -STICK_ON_OFF_LIMIT) {
|
|
update_state_machine_mode_auto(stat_pub, ¤t_status, mavlink_fd);
|
|
|
|
} else {
|
|
update_state_machine_mode_stabilized(stat_pub, ¤t_status, mavlink_fd);
|
|
}
|
|
|
|
/* handle the case where RC signal was regained */
|
|
if (!current_status.rc_signal_found_once) {
|
|
current_status.rc_signal_found_once = true;
|
|
mavlink_log_critical(mavlink_fd, "[commander] DETECTED RC SIGNAL FIRST TIME.");
|
|
} else {
|
|
if (current_status.rc_signal_lost) mavlink_log_critical(mavlink_fd, "[commander] RECOVERY - RC SIGNAL GAINED!");
|
|
}
|
|
|
|
current_status.rc_signal_cutting_off = false;
|
|
current_status.rc_signal_lost = false;
|
|
current_status.rc_signal_lost_interval = 0;
|
|
|
|
} else {
|
|
static uint64_t last_print_time = 0;
|
|
/* print error message for first RC glitch and then every 5 s / 5000 ms) */
|
|
if (!current_status.rc_signal_cutting_off || ((hrt_absolute_time() - last_print_time) > 5000000)) {
|
|
/* only complain if the offboard control is NOT active */
|
|
current_status.rc_signal_cutting_off = true;
|
|
mavlink_log_critical(mavlink_fd, "[commander] CRITICAL - NO REMOTE SIGNAL!");
|
|
last_print_time = hrt_absolute_time();
|
|
}
|
|
/* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */
|
|
current_status.rc_signal_lost_interval = hrt_absolute_time() - sp_man.timestamp;
|
|
|
|
/* if the RC signal is gone for a full second, consider it lost */
|
|
if (current_status.rc_signal_lost_interval > 1000000) {
|
|
current_status.rc_signal_lost = true;
|
|
current_status.failsave_lowlevel = true;
|
|
state_changed = true;
|
|
}
|
|
|
|
// if (hrt_absolute_time() - current_status.failsave_ll_start_time > failsafe_lowlevel_timeout_ms*1000) {
|
|
// publish_armed_status(¤t_status);
|
|
// }
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/* End mode switch */
|
|
|
|
/* END RC state check */
|
|
|
|
|
|
/* State machine update for offboard control */
|
|
if (!current_status.rc_signal_found_once && sp_offboard.timestamp != 0) {
|
|
if ((hrt_absolute_time() - sp_offboard.timestamp) < 5000000) {
|
|
|
|
/* decide about attitude control flag, enable in att/pos/vel */
|
|
bool attitude_ctrl_enabled = (sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE ||
|
|
sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_VELOCITY ||
|
|
sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_POSITION);
|
|
|
|
/* decide about rate control flag, enable it always XXX (for now) */
|
|
bool rates_ctrl_enabled = true;
|
|
|
|
/* set up control mode */
|
|
if (current_status.flag_control_attitude_enabled != attitude_ctrl_enabled) {
|
|
current_status.flag_control_attitude_enabled = attitude_ctrl_enabled;
|
|
state_changed = true;
|
|
}
|
|
|
|
if (current_status.flag_control_rates_enabled != rates_ctrl_enabled) {
|
|
current_status.flag_control_rates_enabled = rates_ctrl_enabled;
|
|
state_changed = true;
|
|
}
|
|
|
|
/* handle the case where offboard control signal was regained */
|
|
if (!current_status.offboard_control_signal_found_once) {
|
|
current_status.offboard_control_signal_found_once = true;
|
|
/* enable offboard control, disable manual input */
|
|
current_status.flag_control_manual_enabled = false;
|
|
current_status.flag_control_offboard_enabled = true;
|
|
state_changed = true;
|
|
tune_confirm();
|
|
|
|
mavlink_log_critical(mavlink_fd, "[commander] DETECTED OFFBOARD CONTROL SIGNAL FIRST");
|
|
} else {
|
|
if (current_status.offboard_control_signal_lost) {
|
|
mavlink_log_critical(mavlink_fd, "[commander] OK:RECOVERY OFFBOARD CONTROL");
|
|
state_changed = true;
|
|
tune_confirm();
|
|
}
|
|
}
|
|
|
|
current_status.offboard_control_signal_weak = false;
|
|
current_status.offboard_control_signal_lost = false;
|
|
current_status.offboard_control_signal_lost_interval = 0;
|
|
|
|
/* arm / disarm on request */
|
|
if (sp_offboard.armed && !current_status.flag_system_armed) {
|
|
update_state_machine_arm(stat_pub, ¤t_status, mavlink_fd);
|
|
/* switch to stabilized mode = takeoff */
|
|
update_state_machine_mode_stabilized(stat_pub, ¤t_status, mavlink_fd);
|
|
} else if (!sp_offboard.armed && current_status.flag_system_armed) {
|
|
update_state_machine_disarm(stat_pub, ¤t_status, mavlink_fd);
|
|
}
|
|
|
|
} else {
|
|
static uint64_t last_print_time = 0;
|
|
/* print error message for first RC glitch and then every 5 s / 5000 ms) */
|
|
if (!current_status.offboard_control_signal_weak || ((hrt_absolute_time() - last_print_time) > 5000000)) {
|
|
current_status.offboard_control_signal_weak = true;
|
|
mavlink_log_critical(mavlink_fd, "[commander] CRIT:NO OFFBOARD CONTROL!");
|
|
last_print_time = hrt_absolute_time();
|
|
}
|
|
/* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */
|
|
current_status.offboard_control_signal_lost_interval = hrt_absolute_time() - sp_offboard.timestamp;
|
|
|
|
/* if the signal is gone for 0.1 seconds, consider it lost */
|
|
if (current_status.offboard_control_signal_lost_interval > 100000) {
|
|
current_status.offboard_control_signal_lost = true;
|
|
current_status.failsave_lowlevel_start_time = hrt_absolute_time();
|
|
tune_confirm();
|
|
|
|
/* kill motors after timeout */
|
|
if (hrt_absolute_time() - current_status.failsave_lowlevel_start_time > failsafe_lowlevel_timeout_ms*1000) {
|
|
current_status.failsave_lowlevel = true;
|
|
state_changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
current_status.counter++;
|
|
current_status.timestamp = hrt_absolute_time();
|
|
|
|
|
|
/* If full run came back clean, transition to standby */
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT &&
|
|
current_status.flag_preflight_gyro_calibration == false &&
|
|
current_status.flag_preflight_mag_calibration == false &&
|
|
current_status.flag_preflight_accel_calibration == false) {
|
|
/* All ok, no calibration going on, go to standby */
|
|
do_state_update(stat_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY);
|
|
}
|
|
|
|
/* publish at least with 1 Hz */
|
|
if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0 || state_changed) {
|
|
publish_armed_status(¤t_status);
|
|
orb_publish(ORB_ID(vehicle_status), stat_pub, ¤t_status);
|
|
state_changed = false;
|
|
}
|
|
|
|
/* Store old modes to detect and act on state transitions */
|
|
voltage_previous = current_status.voltage_battery;
|
|
|
|
fflush(stdout);
|
|
counter++;
|
|
usleep(COMMANDER_MONITORING_INTERVAL);
|
|
}
|
|
|
|
/* wait for threads to complete */
|
|
// pthread_join(command_handling_thread, NULL);
|
|
pthread_join(subsystem_info_thread, NULL);
|
|
|
|
/* close fds */
|
|
led_deinit();
|
|
buzzer_deinit();
|
|
close(sp_man_sub);
|
|
close(sp_offboard_sub);
|
|
close(gps_sub);
|
|
close(sensor_sub);
|
|
close(cmd_sub);
|
|
|
|
printf("[commander] exiting..\n");
|
|
fflush(stdout);
|
|
|
|
thread_running = false;
|
|
|
|
return 0;
|
|
}
|
|
|