forked from Archive/PX4-Autopilot
1162 lines
45 KiB
C++
1162 lines
45 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name ECL nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file control.cpp
|
|
* Control functions for ekf attitude and position estimator.
|
|
*
|
|
* @author Paul Riseborough <p_riseborough@live.com.au>
|
|
*
|
|
*/
|
|
|
|
#include "../ecl.h"
|
|
#include "ekf.h"
|
|
#include "mathlib.h"
|
|
|
|
void Ekf::controlFusionModes()
|
|
{
|
|
// Store the status to enable change detection
|
|
_control_status_prev.value = _control_status.value;
|
|
|
|
// Get the magnetic declination
|
|
calcMagDeclination();
|
|
|
|
// monitor the tilt alignment
|
|
if (!_control_status.flags.tilt_align) {
|
|
// whilst we are aligning the tilt, monitor the variances
|
|
Vector3f angle_err_var_vec = calcRotVecVariances();
|
|
|
|
// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
|
|
// and declare the tilt alignment complete
|
|
if ((angle_err_var_vec(0) + angle_err_var_vec(1)) < sq(0.05235f)) {
|
|
_control_status.flags.tilt_align = true;
|
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
|
|
|
|
// send alignment status message to the console
|
|
if (_control_status.flags.baro_hgt) {
|
|
ECL_INFO("EKF aligned, (pressure height, IMU buf: %i, OBS buf: %i)",(int)_imu_buffer_length,(int)_obs_buffer_length);
|
|
} else if (_control_status.flags.ev_hgt) {
|
|
ECL_INFO("EKF aligned, (EV height, IMU buf: %i, OBS buf: %i)",(int)_imu_buffer_length,(int)_obs_buffer_length);
|
|
} else if (_control_status.flags.gps_hgt) {
|
|
ECL_INFO("EKF aligned, (GPS height, IMU buf: %i, OBS buf: %i)",(int)_imu_buffer_length,(int)_obs_buffer_length);
|
|
} else if (_control_status.flags.rng_hgt) {
|
|
ECL_INFO("EKF aligned, (range height, IMU buf: %i, OBS buf: %i)",(int)_imu_buffer_length,(int)_obs_buffer_length);
|
|
} else {
|
|
ECL_ERR("EKF aligned, (unknown height, IMU buf: %i, OBS buf: %i)",(int)_imu_buffer_length,(int)_obs_buffer_length);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// check for arrival of new sensor data at the fusion time horizon
|
|
_gps_data_ready = _gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed);
|
|
_mag_data_ready = _mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed);
|
|
|
|
_delta_time_baro_us = _baro_sample_delayed.time_us;
|
|
_baro_data_ready = _baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed);
|
|
|
|
// if we have a new baro sample save the delta time between this sample and the last sample which is
|
|
// used below for baro offset calculations
|
|
if (_baro_data_ready) {
|
|
_delta_time_baro_us = _baro_sample_delayed.time_us - _delta_time_baro_us;
|
|
}
|
|
|
|
// calculate 2,2 element of rotation matrix from sensor frame to earth frame
|
|
_R_rng_to_earth_2_2 = _R_to_earth(2, 0) * _sin_tilt_rng + _R_to_earth(2, 2) * _cos_tilt_rng;
|
|
_range_data_ready = _range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)
|
|
&& (_R_rng_to_earth_2_2 > 0.7071f);
|
|
|
|
_flow_data_ready = _flow_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_flow_sample_delayed)
|
|
&& (_R_to_earth(2, 2) > 0.7071f);
|
|
_ev_data_ready = _ext_vision_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_ev_sample_delayed);
|
|
_tas_data_ready = _airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed);
|
|
|
|
// check for height sensor timeouts and reset and change sensor if necessary
|
|
controlHeightSensorTimeouts();
|
|
|
|
// control use of observations for aiding
|
|
controlMagFusion();
|
|
controlExternalVisionFusion();
|
|
controlOpticalFlowFusion();
|
|
controlGpsFusion();
|
|
controlAirDataFusion();
|
|
controlBetaFusion();
|
|
controlDragFusion();
|
|
controlHeightFusion();
|
|
|
|
// for efficiency, fusion of direct state observations for position and velocity is performed sequentially
|
|
// in a single function using sensor data from multiple sources (GPS, external vision, baro, range finder, etc)
|
|
controlVelPosFusion();
|
|
|
|
// report dead reckoning if we are no longer fusing measurements that constrain velocity drift
|
|
_is_dead_reckoning = (_time_last_imu - _time_last_pos_fuse > _params.no_aid_timeout_max)
|
|
&& (_time_last_imu - _time_last_vel_fuse > _params.no_aid_timeout_max)
|
|
&& (_time_last_imu - _time_last_of_fuse > _params.no_aid_timeout_max);
|
|
|
|
}
|
|
|
|
void Ekf::controlExternalVisionFusion()
|
|
{
|
|
// Check for new exernal vision data
|
|
if (_ev_data_ready) {
|
|
|
|
// external vision position aiding selection logic
|
|
if ((_params.fusion_mode & MASK_USE_EVPOS) && !_control_status.flags.ev_pos && _control_status.flags.tilt_align && _control_status.flags.yaw_align) {
|
|
// check for a exernal vision measurement that has fallen behind the fusion time horizon
|
|
if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) {
|
|
// turn on use of external vision measurements for position and height
|
|
setControlEVHeight();
|
|
ECL_INFO("EKF commencing external vision position fusion");
|
|
// reset the position, height and velocity
|
|
resetPosition();
|
|
resetVelocity();
|
|
resetHeight();
|
|
}
|
|
}
|
|
|
|
// external vision yaw aiding selection logic
|
|
if ((_params.fusion_mode & MASK_USE_EVYAW) && !_control_status.flags.ev_yaw && _control_status.flags.tilt_align) {
|
|
// check for a exernal vision measurement that has fallen behind the fusion time horizon
|
|
if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) {
|
|
// reset the yaw angle to the value from the observaton quaternion
|
|
// get the roll, pitch, yaw estimates from the quaternion states
|
|
matrix::Quaternion<float> q_init(_state.quat_nominal(0), _state.quat_nominal(1), _state.quat_nominal(2),
|
|
_state.quat_nominal(3));
|
|
matrix::Euler<float> euler_init(q_init);
|
|
|
|
// get initial yaw from the observation quaternion
|
|
extVisionSample ev_newest = _ext_vision_buffer.get_newest();
|
|
matrix::Quaternion<float> q_obs(ev_newest.quat(0), ev_newest.quat(1), ev_newest.quat(2), ev_newest.quat(3));
|
|
matrix::Euler<float> euler_obs(q_obs);
|
|
euler_init(2) = euler_obs(2);
|
|
|
|
// save a copy of the quaternion state for later use in calculating the amount of reset change
|
|
Quaternion quat_before_reset = _state.quat_nominal;
|
|
|
|
// calculate initial quaternion states for the ekf
|
|
_state.quat_nominal = Quaternion(euler_init);
|
|
|
|
// calculate the amount that the quaternion has changed by
|
|
_state_reset_status.quat_change = _state.quat_nominal * quat_before_reset.inversed();
|
|
|
|
// add the reset amount to the output observer buffered data
|
|
outputSample output_states;
|
|
unsigned output_length = _output_buffer.get_length();
|
|
for (unsigned i=0; i < output_length; i++) {
|
|
output_states = _output_buffer.get_from_index(i);
|
|
output_states.quat_nominal *= _state_reset_status.quat_change;
|
|
_output_buffer.push_to_index(i,output_states);
|
|
}
|
|
|
|
// apply the change in attitude quaternion to our newest quaternion estimate
|
|
// which was already taken out from the output buffer
|
|
_output_new.quat_nominal *= _state_reset_status.quat_change;
|
|
|
|
// capture the reset event
|
|
_state_reset_status.quat_counter++;
|
|
|
|
// flag the yaw as aligned
|
|
_control_status.flags.yaw_align = true;
|
|
|
|
// turn on fusion of external vision yaw measurements and disable all magnetoemter fusion
|
|
_control_status.flags.ev_yaw = true;
|
|
_control_status.flags.mag_hdg = false;
|
|
_control_status.flags.mag_3D = false;
|
|
_control_status.flags.mag_dec = false;
|
|
|
|
ECL_INFO("EKF commencing external vision yaw fusion");
|
|
}
|
|
}
|
|
|
|
// determine if we should use the height observation
|
|
if (_params.vdist_sensor_type == VDIST_SENSOR_EV) {
|
|
setControlEVHeight();
|
|
_fuse_height = true;
|
|
|
|
}
|
|
|
|
// determine if we should use the horizontal position observations
|
|
if (_control_status.flags.ev_pos) {
|
|
_fuse_pos = true;
|
|
|
|
// correct position and height for offset relative to IMU
|
|
Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body;
|
|
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
|
|
_ev_sample_delayed.posNED(0) -= pos_offset_earth(0);
|
|
_ev_sample_delayed.posNED(1) -= pos_offset_earth(1);
|
|
_ev_sample_delayed.posNED(2) -= pos_offset_earth(2);
|
|
}
|
|
|
|
// determine if we should use the yaw observation
|
|
if (_control_status.flags.ev_yaw) {
|
|
fuseHeading();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Ekf::controlOpticalFlowFusion()
|
|
{
|
|
// Check for new optical flow data that has fallen behind the fusion time horizon
|
|
if (_flow_data_ready) {
|
|
|
|
// optical flow fusion mode selection logic
|
|
if ((_params.fusion_mode & MASK_USE_OF) // optical flow has been selected by the user
|
|
&& !_control_status.flags.opt_flow // we are not yet using flow data
|
|
&& _control_status.flags.tilt_align // we know our tilt attitude
|
|
&& (_time_last_imu - _time_last_hagl_fuse) < 5e5) // we have a valid distance to ground estimate
|
|
{
|
|
|
|
// If the heading is not aligned, reset the yaw and magnetic field states
|
|
if (!_control_status.flags.yaw_align) {
|
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
|
|
}
|
|
|
|
// If the heading is valid, start using optical flow aiding
|
|
if (_control_status.flags.yaw_align) {
|
|
// set the flag and reset the fusion timeout
|
|
_control_status.flags.opt_flow = true;
|
|
_time_last_of_fuse = _time_last_imu;
|
|
|
|
// if we are not using GPS then the velocity and position states and covariances need to be set
|
|
if (!_control_status.flags.gps) {
|
|
// constrain height above ground to be above minimum possible
|
|
float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance);
|
|
|
|
// calculate absolute distance from focal point to centre of frame assuming a flat earth
|
|
float range = heightAboveGndEst / _R_rng_to_earth_2_2;
|
|
|
|
if ((range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) {
|
|
// we should have reliable OF measurements so
|
|
// calculate X and Y body relative velocities from OF measurements
|
|
Vector3f vel_optflow_body;
|
|
vel_optflow_body(0) = - range * _flow_sample_delayed.flowRadXYcomp(1) / _flow_sample_delayed.dt;
|
|
vel_optflow_body(1) = range * _flow_sample_delayed.flowRadXYcomp(0) / _flow_sample_delayed.dt;
|
|
vel_optflow_body(2) = 0.0f;
|
|
|
|
// rotate from body to earth frame
|
|
Vector3f vel_optflow_earth;
|
|
vel_optflow_earth = _R_to_earth * vel_optflow_body;
|
|
|
|
// take x and Y components
|
|
_state.vel(0) = vel_optflow_earth(0);
|
|
_state.vel(1) = vel_optflow_earth(1);
|
|
|
|
} else {
|
|
_state.vel(0) = 0.0f;
|
|
_state.vel(1) = 0.0f;
|
|
}
|
|
|
|
// reset the velocity covariance terms
|
|
zeroRows(P,4,5);
|
|
zeroCols(P,4,5);
|
|
|
|
// reset the horizontal velocity variance using the optical flow noise variance
|
|
P[5][5] = P[4][4] = sq(range) * calcOptFlowMeasVar();
|
|
|
|
if (!_control_status.flags.in_air) {
|
|
// we are likely starting OF for the first time so reset the horizontal position and vertical velocity states
|
|
_state.pos(0) = 0.0f;
|
|
_state.pos(1) = 0.0f;
|
|
|
|
} else {
|
|
// set to the last known position
|
|
_state.pos(0) = _last_known_posNE(0);
|
|
_state.pos(1) = _last_known_posNE(1);
|
|
|
|
}
|
|
|
|
// reset the corresponding covariances
|
|
// we are by definition at the origin at commencement so variances are also zeroed
|
|
zeroRows(P,7,8);
|
|
zeroCols(P,7,8);
|
|
|
|
// align the output observer to the EKF states
|
|
alignOutputFilter();
|
|
|
|
}
|
|
}
|
|
|
|
} else if (!(_params.fusion_mode & MASK_USE_OF)) {
|
|
_control_status.flags.opt_flow = false;
|
|
|
|
}
|
|
|
|
// handle the case when we are relying on optical flow fusion and lose it
|
|
if (_control_status.flags.opt_flow && !_control_status.flags.gps) {
|
|
// We are relying on flow aiding to constrain attitude drift so after 5s without aiding we need to do something
|
|
if ((_time_last_imu - _time_last_of_fuse > 5e6)) {
|
|
// Switch to the non-aiding mode, zero the velocity states
|
|
// and set the synthetic position to the current estimate
|
|
_control_status.flags.opt_flow = false;
|
|
_last_known_posNE(0) = _state.pos(0);
|
|
_last_known_posNE(1) = _state.pos(1);
|
|
_state.vel.setZero();
|
|
|
|
}
|
|
}
|
|
|
|
// fuse the data
|
|
if (_control_status.flags.opt_flow) {
|
|
// Update optical flow bias estimates
|
|
calcOptFlowBias();
|
|
|
|
// Fuse optical flow LOS rate observations into the main filter
|
|
fuseOptFlow();
|
|
_last_known_posNE(0) = _state.pos(0);
|
|
_last_known_posNE(1) = _state.pos(1);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
void Ekf::controlGpsFusion()
|
|
{
|
|
// Check for new GPS data that has fallen behind the fusion time horizon
|
|
if (_gps_data_ready) {
|
|
|
|
// Determine if we should use GPS aiding for velocity and horizontal position
|
|
// To start using GPS we need angular alignment completed, the local NED origin set and GPS data that has not failed checks recently
|
|
if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) {
|
|
if (_control_status.flags.tilt_align && _NED_origin_initialised && (_time_last_imu - _last_gps_fail_us > 5e6)) {
|
|
// If the heading is not aligned, reset the yaw and magnetic field states
|
|
if (!_control_status.flags.yaw_align) {
|
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
|
|
|
|
}
|
|
|
|
// If the heading is valid start using gps aiding
|
|
if (_control_status.flags.yaw_align) {
|
|
// if we are not already aiding with optical flow, then we need to reset the position and velocity
|
|
// otherwise we only need to reset the position
|
|
_control_status.flags.gps = true;
|
|
if (!_control_status.flags.opt_flow) {
|
|
if (!resetPosition() || !resetVelocity()) {
|
|
_control_status.flags.gps = false;
|
|
|
|
}
|
|
} else if (!resetPosition()) {
|
|
_control_status.flags.gps = false;
|
|
|
|
}
|
|
if (_control_status.flags.gps) {
|
|
ECL_INFO("EKF commencing GPS fusion");
|
|
_time_last_gps = _time_last_imu;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (!(_params.fusion_mode & MASK_USE_GPS)) {
|
|
_control_status.flags.gps = false;
|
|
|
|
}
|
|
|
|
// handle the case when we now have GPS, but have not been using it for an extended period
|
|
if (_control_status.flags.gps && !_control_status.flags.opt_flow) {
|
|
// We are relying on GPS aiding to constrain attitude drift so after 7 seconds without aiding we need to do something
|
|
bool do_reset = (_time_last_imu - _time_last_pos_fuse > _params.no_gps_timeout_max) && (_time_last_imu - _time_last_vel_fuse > _params.no_gps_timeout_max);
|
|
|
|
// Our position measurments have been rejected for more than 14 seconds
|
|
do_reset |= _time_last_imu - _time_last_pos_fuse > 2 * _params.no_gps_timeout_max;
|
|
|
|
if (do_reset) {
|
|
// Reset states to the last GPS measurement
|
|
resetPosition();
|
|
resetVelocity();
|
|
ECL_WARN("EKF GPS fusion timeout - reset to GPS");
|
|
|
|
// Reset the timeout counters
|
|
_time_last_pos_fuse = _time_last_imu;
|
|
_time_last_vel_fuse = _time_last_imu;
|
|
|
|
}
|
|
}
|
|
|
|
// Only use GPS data for position and velocity aiding if enabled
|
|
if (_control_status.flags.gps) {
|
|
_fuse_pos = true;
|
|
_fuse_vert_vel = true;
|
|
_fuse_hor_vel = true;
|
|
|
|
// correct velocity for offset relative to IMU
|
|
Vector3f ang_rate = _imu_sample_delayed.delta_ang * (1.0f/_imu_sample_delayed.delta_ang_dt);
|
|
Vector3f pos_offset_body = _params.gps_pos_body - _params.imu_pos_body;
|
|
Vector3f vel_offset_body = cross_product(ang_rate,pos_offset_body);
|
|
Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
|
|
_gps_sample_delayed.vel -= vel_offset_earth;
|
|
|
|
// correct position and height for offset relative to IMU
|
|
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
|
|
_gps_sample_delayed.pos(0) -= pos_offset_earth(0);
|
|
_gps_sample_delayed.pos(1) -= pos_offset_earth(1);
|
|
_gps_sample_delayed.hgt += pos_offset_earth(2);
|
|
|
|
}
|
|
|
|
} else {
|
|
// handle the case where we do not have GPS and have not been using it for an extended period, but are still relying on it
|
|
if ((_time_last_imu - _time_last_gps > 10e6) && (_time_last_imu - _time_last_airspeed > 1e6) && (_time_last_imu - _time_last_optflow > 1e6) && _control_status.flags.gps) {
|
|
// if we don't have a source of aiding to constrain attitude drift,
|
|
// then we need to switch to the non-aiding mode, zero the velocity states
|
|
// and set the synthetic GPS position to the current estimate
|
|
_control_status.flags.gps = false;
|
|
_last_known_posNE(0) = _state.pos(0);
|
|
_last_known_posNE(1) = _state.pos(1);
|
|
_state.vel.setZero();
|
|
ECL_WARN("EKF measurement timeout - stopping navigation");
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
void Ekf::controlHeightSensorTimeouts()
|
|
{
|
|
/*
|
|
* Handle the case where we have not fused height measurements recently and
|
|
* uncertainty exceeds the max allowable. Reset using the best available height
|
|
* measurement source, continue using it after the reset and declare the current
|
|
* source failed if we have switched.
|
|
*/
|
|
|
|
// Check for IMU accelerometer vibration induced clipping as evidenced by the vertical innovations being positive and not stale.
|
|
// Clipping causes the average accel reading to move towards zero which makes the INS think it is falling and produces positive vertical innovations
|
|
float var_product_lim = sq(_params.vert_innov_test_lim) * sq(_params.vert_innov_test_lim);
|
|
bool bad_vert_accel = (_control_status.flags.baro_hgt && // we can only run this check if vertical position and velocity observations are indepedant
|
|
(sq(_vel_pos_innov[5] * _vel_pos_innov[2]) > var_product_lim * (_vel_pos_innov_var[5] * _vel_pos_innov_var[2])) && // vertical position and velocity sensors are in agreement that we have a significant error
|
|
(_vel_pos_innov[2] > 0.0f) && // positive innovation indicates that the inertial nav thinks it is falling
|
|
((_imu_sample_delayed.time_us - _baro_sample_delayed.time_us) < 2 * BARO_MAX_INTERVAL) && // vertical position data is fresh
|
|
((_imu_sample_delayed.time_us - _gps_sample_delayed.time_us) < 2 * GPS_MAX_INTERVAL)); // vertical velocity data is fresh
|
|
|
|
// record time of last bad vert accel
|
|
if (bad_vert_accel) {
|
|
_time_bad_vert_accel = _time_last_imu;
|
|
} else {
|
|
_time_good_vert_accel = _time_last_imu;
|
|
}
|
|
|
|
// declare a bad vertical acceleration measurement and make the declaration persist
|
|
// for a minimum of 10 seconds
|
|
if (_bad_vert_accel_detected) {
|
|
_bad_vert_accel_detected = (_time_last_imu - _time_bad_vert_accel < BADACC_PROBATION);
|
|
} else {
|
|
_bad_vert_accel_detected = bad_vert_accel;
|
|
}
|
|
|
|
// check if height is continuously failing becasue of accel errors
|
|
bool continuous_bad_accel_hgt = ((_time_last_imu - _time_good_vert_accel) > (unsigned)_params.bad_acc_reset_delay_us);
|
|
|
|
// check if height has been inertial deadreckoning for too long
|
|
bool hgt_fusion_timeout = ((_time_last_imu - _time_last_hgt_fuse) > 5e6);
|
|
|
|
// if in range aid mode, check faultiness that otherwise would never change back
|
|
if (_params.range_aid) {
|
|
// check if range finder data is available
|
|
rangeSample rng_init = _range_buffer.get_newest();
|
|
_rng_hgt_faulty = ((_time_last_imu - rng_init.time_us) > 2 * RNG_MAX_INTERVAL);
|
|
|
|
// check if GPS height is available
|
|
gpsSample gps_init = _gps_buffer.get_newest();
|
|
_gps_hgt_faulty = ((_time_last_imu - gps_init.time_us) > 2 * GPS_MAX_INTERVAL);
|
|
}
|
|
|
|
// reset the vertical position and velocity states
|
|
if ((P[9][9] > sq(_params.hgt_reset_lim)) && (hgt_fusion_timeout || continuous_bad_accel_hgt)) {
|
|
// boolean that indicates we will do a height reset
|
|
bool reset_height = false;
|
|
|
|
// handle the case where we are using baro for height
|
|
if (_control_status.flags.baro_hgt) {
|
|
// check if GPS height is available
|
|
gpsSample gps_init = _gps_buffer.get_newest();
|
|
bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL);
|
|
bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);
|
|
baroSample baro_init = _baro_buffer.get_newest();
|
|
bool baro_hgt_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);
|
|
|
|
// check for inertial sensing errors in the last 10 seconds
|
|
bool prev_bad_vert_accel = (_time_last_imu - _time_bad_vert_accel < BADACC_PROBATION);
|
|
|
|
// reset to GPS if adequate GPS data is available and the timeout cannot be blamed on IMU data
|
|
bool reset_to_gps = gps_hgt_available && gps_hgt_accurate && !_gps_hgt_faulty && !prev_bad_vert_accel;
|
|
|
|
// reset to GPS if GPS data is available and there is no Baro data
|
|
reset_to_gps = reset_to_gps || (gps_hgt_available && !baro_hgt_available);
|
|
|
|
// reset to Baro if we are not doing a GPS reset and baro data is available
|
|
bool reset_to_baro = !reset_to_gps && baro_hgt_available;
|
|
|
|
if (reset_to_gps) {
|
|
// set height sensor health
|
|
_baro_hgt_faulty = true;
|
|
|
|
// declare the GPS height healthy
|
|
_gps_hgt_faulty = false;
|
|
|
|
// reset the height mode
|
|
setControlGPSHeight();
|
|
|
|
// request a reset
|
|
reset_height = true;
|
|
ECL_WARN("EKF baro hgt timeout - reset to GPS");
|
|
|
|
} else if (reset_to_baro){
|
|
// set height sensor health
|
|
_baro_hgt_faulty = false;
|
|
|
|
// reset the height mode
|
|
setControlBaroHeight();
|
|
|
|
// request a reset
|
|
reset_height = true;
|
|
ECL_WARN("EKF baro hgt timeout - reset to baro");
|
|
|
|
} else {
|
|
// we have nothing we can reset to
|
|
// deny a reset
|
|
reset_height = false;
|
|
|
|
}
|
|
}
|
|
|
|
// handle the case we are using GPS for height
|
|
if (_control_status.flags.gps_hgt) {
|
|
// check if GPS height is available
|
|
gpsSample gps_init = _gps_buffer.get_newest();
|
|
bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL);
|
|
bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);
|
|
|
|
// check the baro height source for consistency and freshness
|
|
baroSample baro_init = _baro_buffer.get_newest();
|
|
bool baro_data_fresh = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);
|
|
float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset);
|
|
bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P[8][8]) * sq(_params.baro_innov_gate);
|
|
|
|
// if baro data is acceptable and GPS data is inaccurate, reset height to baro
|
|
bool reset_to_baro = baro_data_consistent && baro_data_fresh && !_baro_hgt_faulty && !gps_hgt_accurate;
|
|
|
|
// if GPS height is unavailable and baro data is available, reset height to baro
|
|
reset_to_baro = reset_to_baro || (!gps_hgt_available && baro_data_fresh);
|
|
|
|
// if we cannot switch to baro and GPS data is available, reset height to GPS
|
|
bool reset_to_gps = !reset_to_baro && gps_hgt_available;
|
|
|
|
if (reset_to_baro) {
|
|
// set height sensor health
|
|
_gps_hgt_faulty = true;
|
|
_baro_hgt_faulty = false;
|
|
|
|
// reset the height mode
|
|
setControlBaroHeight();
|
|
|
|
// request a reset
|
|
reset_height = true;
|
|
ECL_WARN("EKF gps hgt timeout - reset to baro");
|
|
|
|
} else if (reset_to_gps) {
|
|
// set height sensor health
|
|
_gps_hgt_faulty = false;
|
|
|
|
// reset the height mode
|
|
setControlGPSHeight();
|
|
|
|
// request a reset
|
|
reset_height = true;
|
|
ECL_WARN("EKF gps hgt timeout - reset to GPS");
|
|
|
|
} else {
|
|
// we have nothing to reset to
|
|
reset_height = false;
|
|
|
|
}
|
|
}
|
|
|
|
// handle the case we are using range finder for height
|
|
if (_control_status.flags.rng_hgt) {
|
|
// check if range finder data is available
|
|
rangeSample rng_init = _range_buffer.get_newest();
|
|
bool rng_data_available = ((_time_last_imu - rng_init.time_us) < 2 * RNG_MAX_INTERVAL);
|
|
|
|
// check if baro data is available
|
|
baroSample baro_init = _baro_buffer.get_newest();
|
|
bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);
|
|
|
|
// reset to baro if we have no range data and baro data is available
|
|
bool reset_to_baro = !rng_data_available && baro_data_available;
|
|
|
|
// reset to range data if it is available
|
|
bool reset_to_rng = rng_data_available;
|
|
|
|
if (reset_to_baro) {
|
|
// set height sensor health
|
|
_rng_hgt_faulty = true;
|
|
_baro_hgt_faulty = false;
|
|
|
|
// reset the height mode
|
|
setControlBaroHeight();
|
|
|
|
// request a reset
|
|
reset_height = true;
|
|
ECL_WARN("EKF rng hgt timeout - reset to baro");
|
|
|
|
} else if (reset_to_rng) {
|
|
// set height sensor health
|
|
_rng_hgt_faulty = false;
|
|
|
|
// reset the height mode
|
|
setControlRangeHeight();
|
|
|
|
// request a reset
|
|
reset_height = true;
|
|
ECL_WARN("EKF rng hgt timeout - reset to rng hgt");
|
|
|
|
} else {
|
|
// we have nothing to reset to
|
|
reset_height = false;
|
|
|
|
}
|
|
}
|
|
|
|
// handle the case where we are using external vision data for height
|
|
if (_control_status.flags.ev_hgt) {
|
|
// check if vision data is available
|
|
extVisionSample ev_init = _ext_vision_buffer.get_newest();
|
|
bool ev_data_available = ((_time_last_imu - ev_init.time_us) < 2 * EV_MAX_INTERVAL);
|
|
|
|
// check if baro data is available
|
|
baroSample baro_init = _baro_buffer.get_newest();
|
|
bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);
|
|
|
|
// reset to baro if we have no vision data and baro data is available
|
|
bool reset_to_baro = !ev_data_available && baro_data_available;
|
|
|
|
// reset to ev data if it is available
|
|
bool reset_to_ev = ev_data_available;
|
|
|
|
if (reset_to_baro) {
|
|
// set height sensor health
|
|
_baro_hgt_faulty = false;
|
|
|
|
// reset the height mode
|
|
setControlBaroHeight();
|
|
|
|
// request a reset
|
|
reset_height = true;
|
|
ECL_WARN("EKF ev hgt timeout - reset to baro");
|
|
|
|
} else if (reset_to_ev) {
|
|
// reset the height mode
|
|
setControlEVHeight();
|
|
|
|
// request a reset
|
|
reset_height = true;
|
|
ECL_WARN("EKF ev hgt timeout - reset to ev hgt");
|
|
|
|
} else {
|
|
// we have nothing to reset to
|
|
reset_height = false;
|
|
|
|
}
|
|
}
|
|
|
|
// Reset vertical position and velocity states to the last measurement
|
|
if (reset_height) {
|
|
resetHeight();
|
|
// Reset the timout timer
|
|
_time_last_hgt_fuse = _time_last_imu;
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
void Ekf::controlHeightFusion()
|
|
{
|
|
// set control flags for the desired primary height source
|
|
|
|
if (_range_data_ready) {
|
|
// correct the range data for position offset relative to the IMU
|
|
Vector3f pos_offset_body = _params.rng_pos_body - _params.imu_pos_body;
|
|
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
|
|
_range_sample_delayed.rng += pos_offset_earth(2) / _R_rng_to_earth_2_2;
|
|
}
|
|
|
|
|
|
if (_params.vdist_sensor_type == VDIST_SENSOR_BARO) {
|
|
_in_range_aid_mode = rangeAidConditionsMet(_in_range_aid_mode);
|
|
|
|
if (_in_range_aid_mode && _range_data_ready && !_rng_hgt_faulty) {
|
|
setControlRangeHeight();
|
|
_fuse_height = true;
|
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current
|
|
// measurment matches our current height estimate
|
|
if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
|
|
if (_terrain_initialised) {
|
|
_hgt_sensor_offset = _terrain_vpos;
|
|
} else {
|
|
_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2);
|
|
}
|
|
}
|
|
|
|
} else if (_baro_data_ready && !_baro_hgt_faulty &&
|
|
!(_in_range_aid_mode && !_range_data_ready && !_rng_hgt_faulty)) {
|
|
setControlBaroHeight();
|
|
_fuse_height = true;
|
|
_in_range_aid_mode = false;
|
|
|
|
// we have just switched to using baro height, we don't need to set a height sensor offset
|
|
// since we track a separate _baro_hgt_offset
|
|
if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) {
|
|
_hgt_sensor_offset = 0.0f;
|
|
}
|
|
} else if (_control_status.flags.gps_hgt && _gps_data_ready && !_gps_hgt_faulty) {
|
|
// switch to gps if there was a reset to gps
|
|
_fuse_height = true;
|
|
_in_range_aid_mode = false;
|
|
|
|
// we have just switched to using gps height, calculate height sensor offset such that current
|
|
// measurment matches our current height estimate
|
|
if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) {
|
|
_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// set the height data source to range if requested
|
|
if ((_params.vdist_sensor_type == VDIST_SENSOR_RANGE) && !_rng_hgt_faulty) {
|
|
setControlRangeHeight();
|
|
_fuse_height = _range_data_ready;
|
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current
|
|
// measurment matches our current height estimate
|
|
if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
|
|
if (_terrain_initialised) {
|
|
_hgt_sensor_offset = _terrain_vpos;
|
|
} else {
|
|
_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2);
|
|
}
|
|
}
|
|
} else if ((_params.vdist_sensor_type == VDIST_SENSOR_RANGE) && _baro_data_ready && !_baro_hgt_faulty) {
|
|
setControlBaroHeight();
|
|
_fuse_height = true;
|
|
|
|
// we have just switched to using baro height, we don't need to set a height sensor offset
|
|
// since we track a separate _baro_hgt_offset
|
|
if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) {
|
|
_hgt_sensor_offset = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Determine if GPS should be used as the height source
|
|
if (_params.vdist_sensor_type == VDIST_SENSOR_GPS) {
|
|
_in_range_aid_mode = rangeAidConditionsMet(_in_range_aid_mode);
|
|
|
|
if (_in_range_aid_mode && _range_data_ready && !_rng_hgt_faulty) {
|
|
setControlRangeHeight();
|
|
_fuse_height = true;
|
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current
|
|
// measurment matches our current height estimate
|
|
if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
|
|
if (_terrain_initialised) {
|
|
_hgt_sensor_offset = _terrain_vpos;
|
|
} else {
|
|
_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2);
|
|
}
|
|
}
|
|
|
|
} else if (_gps_data_ready && !_gps_hgt_faulty &&
|
|
!(_in_range_aid_mode && !_range_data_ready && !_rng_hgt_faulty)) {
|
|
setControlGPSHeight();
|
|
_fuse_height = true;
|
|
_in_range_aid_mode = false;
|
|
|
|
// we have just switched to using gps height, calculate height sensor offset such that current
|
|
// measurment matches our current height estimate
|
|
if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) {
|
|
_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2);
|
|
}
|
|
} else if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
|
|
// switch to baro if there was a reset to baro
|
|
_fuse_height = true;
|
|
_in_range_aid_mode = false;
|
|
|
|
// we have just switched to using baro height, we don't need to set a height sensor offset
|
|
// since we track a separate _baro_hgt_offset
|
|
if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) {
|
|
_hgt_sensor_offset = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate a filtered offset between the baro origin and local NED origin if we are not using the baro as a height reference
|
|
if (!_control_status.flags.baro_hgt && _baro_data_ready) {
|
|
float local_time_step = 1e-6f * _delta_time_baro_us;
|
|
local_time_step = math::constrain(local_time_step, 0.0f, 1.0f);
|
|
|
|
// apply a 10 second first order low pass filter to baro offset
|
|
float offset_rate_correction = 0.1f * (_baro_sample_delayed.hgt + _state.pos(
|
|
2) - _baro_hgt_offset);
|
|
_baro_hgt_offset += local_time_step * math::constrain(offset_rate_correction, -0.1f, 0.1f);
|
|
}
|
|
|
|
if ((_time_last_imu - _time_last_hgt_fuse) > 2 * RNG_MAX_INTERVAL && _control_status.flags.rng_hgt && !_range_data_ready) {
|
|
// If we are supposed to be using range finder data as the primary height sensor, have missed or rejected measurements
|
|
// and are on the ground, then synthesise a measurement at the expected on ground value
|
|
if (!_control_status.flags.in_air) {
|
|
_range_sample_delayed.rng = _params.rng_gnd_clearance;
|
|
_range_sample_delayed.time_us = _imu_sample_delayed.time_us;
|
|
|
|
}
|
|
|
|
_fuse_height = true;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
bool Ekf::rangeAidConditionsMet(bool in_range_aid_mode)
|
|
{
|
|
// if the parameter for range aid is enabled we allow to switch from using the primary height source to using range finder as height source
|
|
// under the following conditions
|
|
// 1) we are not further than max_range_for_dual_fusion away from the ground
|
|
// 2) our ground speed is not higher than max_vel_for_dual_fusion
|
|
// 3) Our terrain estimate is stable (needs better checks)
|
|
if (_params.range_aid) {
|
|
// check if we should use range finder measurements to estimate height, use hysteresis to avoid rapid switching
|
|
bool use_range_finder;
|
|
if (in_range_aid_mode) {
|
|
use_range_finder = (_terrain_vpos - _state.pos(2) < _params.max_hagl_for_range_aid) && _terrain_initialised;
|
|
|
|
} else {
|
|
// if we were not using range aid in the previous iteration then require the current height above terrain to be
|
|
// smaller than 70 % of the maximum allowed ground distance for range aid
|
|
use_range_finder = (_terrain_vpos - _state.pos(2) < 0.7f * _params.max_hagl_for_range_aid) && _terrain_initialised;
|
|
}
|
|
|
|
bool horz_vel_valid = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow)
|
|
&& (_fault_status.value == 0);
|
|
|
|
if (horz_vel_valid) {
|
|
float ground_vel = sqrtf(_state.vel(0) * _state.vel(0) + _state.vel(1) * _state.vel(1));
|
|
|
|
if (in_range_aid_mode) {
|
|
use_range_finder &= ground_vel < _params.max_vel_for_range_aid;
|
|
|
|
} else {
|
|
// if we were not using range aid in the previous iteration then require the ground velocity to be
|
|
// smaller than 70 % of the maximum allowed ground velocity for range aid
|
|
use_range_finder &= ground_vel < 0.7f * _params.max_vel_for_range_aid;
|
|
}
|
|
|
|
} else {
|
|
use_range_finder = false;
|
|
}
|
|
|
|
use_range_finder &= ((_hagl_innov * _hagl_innov / (sq(_params.range_aid_innov_gate) * _hagl_innov_var)) < 1.0f);
|
|
|
|
return use_range_finder;
|
|
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void Ekf::controlAirDataFusion()
|
|
{
|
|
// control activation and initialisation/reset of wind states required for airspeed fusion
|
|
|
|
// If both airspeed and sideslip fusion have timed out then we no longer have valid wind estimates
|
|
bool airspeed_timed_out = _time_last_imu - _time_last_arsp_fuse > 10e6;
|
|
bool sideslip_timed_out = _time_last_imu - _time_last_beta_fuse > 10e6;
|
|
if (_control_status.flags.wind && airspeed_timed_out && sideslip_timed_out && !(_params.fusion_mode & MASK_USE_DRAG)) {
|
|
// if the airspeed or sideslip measurements have timed out for 10 seconds we declare the wind estimate to be invalid
|
|
_control_status.flags.wind = false;
|
|
|
|
}
|
|
|
|
// Always try to fuse airspeed data if available and we are in flight and the filter is operating in a normal aiding mode
|
|
bool is_aiding = _control_status.flags.gps || _control_status.flags.opt_flow || _control_status.flags.ev_pos;
|
|
if (_tas_data_ready && _control_status.flags.in_air && is_aiding) {
|
|
// If starting wind state estimation, reset the wind states and covariances before fusing any data
|
|
if (!_control_status.flags.wind) {
|
|
// activate the wind states
|
|
_control_status.flags.wind = true;
|
|
// reset the timout timer to prevent repeated resets
|
|
_time_last_arsp_fuse = _time_last_imu;
|
|
_time_last_beta_fuse = _time_last_imu;
|
|
// reset the wind speed states and corresponding covariances
|
|
resetWindStates();
|
|
resetWindCovariance();
|
|
|
|
}
|
|
|
|
fuseAirspeed();
|
|
|
|
}
|
|
}
|
|
|
|
void Ekf::controlBetaFusion()
|
|
{
|
|
// control activation and initialisation/reset of wind states required for synthetic sideslip fusion fusion
|
|
|
|
// If both airspeed and sideslip fusion have timed out then we no longer have valid wind estimates
|
|
bool sideslip_timed_out = _time_last_imu - _time_last_beta_fuse > 10e6;
|
|
bool airspeed_timed_out = _time_last_imu - _time_last_arsp_fuse > 10e6;
|
|
if(_control_status.flags.wind && airspeed_timed_out && sideslip_timed_out && !(_params.fusion_mode & MASK_USE_DRAG)) {
|
|
_control_status.flags.wind = false;
|
|
}
|
|
|
|
// Perform synthetic sideslip fusion when in-air and sideslip fuson had been enabled externally in addition to the following criteria:
|
|
|
|
// Suffient time has lapsed sice the last fusion
|
|
bool beta_fusion_time_triggered = _time_last_imu - _time_last_beta_fuse > _params.beta_avg_ft_us;
|
|
|
|
// The filter is operating in a mode where velocity states can be used
|
|
bool vel_states_active = _control_status.flags.gps || _control_status.flags.opt_flow || _control_status.flags.ev_pos;
|
|
|
|
if(beta_fusion_time_triggered && _control_status.flags.fuse_beta && _control_status.flags.in_air && vel_states_active) {
|
|
// If starting wind state estimation, reset the wind states and covariances before fusing any data
|
|
if (!_control_status.flags.wind) {
|
|
// activate the wind states
|
|
_control_status.flags.wind = true;
|
|
// reset the timout timers to prevent repeated resets
|
|
_time_last_beta_fuse = _time_last_imu;
|
|
_time_last_arsp_fuse = _time_last_imu;
|
|
// reset the wind speed states and corresponding covariances
|
|
resetWindStates();
|
|
resetWindCovariance();
|
|
}
|
|
|
|
fuseSideslip();
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
void Ekf::controlDragFusion()
|
|
{
|
|
if (_params.fusion_mode & MASK_USE_DRAG && _control_status.flags.in_air) {
|
|
if (!_control_status.flags.wind) {
|
|
// reset the wind states and covariances when starting drag accel fusion
|
|
_control_status.flags.wind = true;
|
|
resetWindStates();
|
|
resetWindCovariance();
|
|
|
|
} else if (_drag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_drag_sample_delayed)) {
|
|
fuseDrag();
|
|
|
|
}
|
|
} else {
|
|
_control_status.flags.wind = false;
|
|
}
|
|
}
|
|
|
|
void Ekf::controlMagFusion()
|
|
{
|
|
// If we are using external vision data for heading then no magnetometer fusion is used
|
|
if (_control_status.flags.ev_yaw) {
|
|
return;
|
|
}
|
|
|
|
// If we are on ground, store the local position and time to use as a reference
|
|
// Also reset the flight alignment flag so that the mag fields will be re-initialised next time we achieve flight altitude
|
|
if (!_control_status.flags.in_air) {
|
|
_last_on_ground_posD = _state.pos(2);
|
|
_flt_mag_align_complete = false;
|
|
}
|
|
|
|
// checs for new magnetometer data tath has fallen beind the fusion time horizon
|
|
if (_mag_data_ready) {
|
|
|
|
// Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances
|
|
// or the more accurate 3-axis fusion
|
|
if (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTO) {
|
|
// Check if height has increased sufficiently to be away from ground magnetic anomalies
|
|
bool height_achieved = (_last_on_ground_posD - _state.pos(2)) > 1.5f;
|
|
|
|
// Check if there has been enough change in horizontal velocity to make yaw observable
|
|
// Apply hysteresis to check to avoid rapid toggling
|
|
if (_yaw_angle_observable) {
|
|
_yaw_angle_observable = _accel_lpf_NE.norm() > _params.mag_acc_gate;
|
|
} else {
|
|
_yaw_angle_observable = _accel_lpf_NE.norm() > 2.0f * _params.mag_acc_gate;
|
|
}
|
|
_yaw_angle_observable = _yaw_angle_observable && (_control_status.flags.gps || _control_status.flags.ev_pos);
|
|
|
|
// check if there is enough yaw rotation to make the mag bias states observable
|
|
if (!_mag_bias_observable && (fabsf(_yaw_rate_lpf_ef) > _params.mag_yaw_rate_gate)) {
|
|
// initial yaw motion is detected
|
|
_mag_bias_observable = true;
|
|
_yaw_delta_ef = 0.0f;
|
|
_time_yaw_started = _imu_sample_delayed.time_us;
|
|
} else if (_mag_bias_observable) {
|
|
// monitor yaw rotation in 45 deg sections.
|
|
// a rotation of 45 deg is sufficient to make the mag bias observable
|
|
if (fabsf(_yaw_delta_ef) > 0.7854f) {
|
|
_time_yaw_started = _imu_sample_delayed.time_us;
|
|
_yaw_delta_ef = 0.0f;
|
|
}
|
|
// require sustained yaw motion of 50% the initial yaw rate threshold
|
|
float min_yaw_change_req = 0.5f * _params.mag_yaw_rate_gate * (1e-6f * (float)(_imu_sample_delayed.time_us - _time_yaw_started));
|
|
_mag_bias_observable = fabsf(_yaw_delta_ef) > min_yaw_change_req;
|
|
} else {
|
|
_mag_bias_observable = false;
|
|
}
|
|
|
|
// record the last time that movement was suitable for use of 3-axis magnetometer fusion
|
|
if (_mag_bias_observable || _yaw_angle_observable) {
|
|
_time_last_movement = _imu_sample_delayed.time_us;
|
|
}
|
|
|
|
// decide whether 3-axis magnetomer fusion can be used
|
|
bool use_3D_fusion = _control_status.flags.tilt_align && // Use of 3D fusion requires valid tilt estimates
|
|
_control_status.flags.in_air && // don't use when on the ground becasue of magnetic anomalies
|
|
(_flt_mag_align_complete || height_achieved) && // once in-flight field alignment has been performed, ignore relative height
|
|
((_imu_sample_delayed.time_us - _time_last_movement) < 2 * 1000 * 1000); // Using 3-axis fusion for a minimum period after to allow for false negatives
|
|
|
|
// perform switch-over
|
|
if (use_3D_fusion) {
|
|
if (!_control_status.flags.mag_3D) {
|
|
if (!_flt_mag_align_complete) {
|
|
// if transitioning into 3-axis fusion mode for the first time, we need to initialise the yaw angle and field states
|
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
|
|
_flt_mag_align_complete = true;
|
|
} else {
|
|
// reset the mag field covariances
|
|
zeroRows(P, 16, 21);
|
|
zeroCols(P, 16, 21);
|
|
|
|
// re-instate the last used variances
|
|
for (uint8_t index = 0; index <= 5; index ++) {
|
|
P[index+16][index+16] = _saved_mag_variance[index];
|
|
}
|
|
}
|
|
}
|
|
|
|
// use 3D mag fusion when airborne
|
|
_control_status.flags.mag_hdg = false;
|
|
_control_status.flags.mag_3D = true;
|
|
|
|
} else {
|
|
// save magnetic field state variances for next time
|
|
if (_control_status.flags.mag_3D) {
|
|
for (uint8_t index = 0; index <= 5; index ++) {
|
|
_saved_mag_variance[index] = P[index+16][index+16];
|
|
}
|
|
_control_status.flags.mag_3D = false;
|
|
}
|
|
_control_status.flags.mag_hdg = true;
|
|
}
|
|
|
|
// perform switch-over from only updating the mag states to updating all states
|
|
if (!_control_status.flags.update_mag_states_only && _control_status_prev.flags.update_mag_states_only) {
|
|
// When re-commencing use of magnetometer to correct vehicle states
|
|
// set the field state variance to the observation variance and zero
|
|
// the covariance terms to allow the field states re-learn rapidly
|
|
zeroRows(P, 16, 21);
|
|
zeroCols(P, 16, 21);
|
|
for (uint8_t index = 0; index <= 5; index ++) {
|
|
P[index+16][index+16] = sq(_params.mag_noise);
|
|
}
|
|
}
|
|
|
|
} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_HEADING) {
|
|
// always use heading fusion
|
|
_control_status.flags.mag_hdg = true;
|
|
_control_status.flags.mag_3D = false;
|
|
|
|
} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_3D) {
|
|
// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
|
|
if (!_control_status.flags.mag_3D) {
|
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
|
|
}
|
|
|
|
// always use 3-axis mag fusion
|
|
_control_status.flags.mag_hdg = false;
|
|
_control_status.flags.mag_3D = true;
|
|
|
|
} else {
|
|
// do no magnetometer fusion at all
|
|
_control_status.flags.mag_hdg = false;
|
|
_control_status.flags.mag_3D = false;
|
|
}
|
|
|
|
// if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift
|
|
// fusing declination when gps aiding is available is optional, but recommended to prevent problem if the vehicle is static for extended periods of time
|
|
if (_control_status.flags.mag_3D && (!_control_status.flags.gps || (_params.mag_declination_source & MASK_FUSE_DECL))) {
|
|
_control_status.flags.mag_dec = true;
|
|
|
|
} else {
|
|
_control_status.flags.mag_dec = false;
|
|
}
|
|
|
|
// fuse magnetometer data using the selected methods
|
|
if (_control_status.flags.mag_3D && _control_status.flags.yaw_align) {
|
|
fuseMag();
|
|
|
|
if (_control_status.flags.mag_dec) {
|
|
fuseDeclination();
|
|
}
|
|
|
|
} else if (_control_status.flags.mag_hdg && _control_status.flags.yaw_align) {
|
|
// fusion of an Euler yaw angle from either a 321 or 312 rotation sequence
|
|
fuseHeading();
|
|
|
|
} else {
|
|
// do no fusion at all
|
|
}
|
|
}
|
|
}
|
|
|
|
void Ekf::controlVelPosFusion()
|
|
{
|
|
// if we aren't doing any aiding, fake GPS measurements at the last known position to constrain drift
|
|
// Coincide fake measurements with baro data for efficiency with a minimum fusion rate of 5Hz
|
|
if (!_control_status.flags.gps && !_control_status.flags.opt_flow && !_control_status.flags.ev_pos
|
|
&& ((_time_last_imu - _time_last_fake_gps > 2e5) || _fuse_height)) {
|
|
_fuse_pos = true;
|
|
_time_last_fake_gps = _time_last_imu;
|
|
|
|
}
|
|
|
|
// Fuse available NED velocity and position data into the main filter
|
|
if (_fuse_height || _fuse_pos || _fuse_hor_vel || _fuse_vert_vel) {
|
|
fuseVelPosHeight();
|
|
_fuse_hor_vel = _fuse_vert_vel = _fuse_pos = _fuse_height = false;
|
|
|
|
}
|
|
}
|