px4-firmware/Tools/ecl_ekf/analysis/metrics.py

182 lines
7.8 KiB
Python

#! /usr/bin/env python3
"""
function collection for calculation ecl ekf metrics.
"""
from typing import Dict, List, Tuple, Callable
from pyulog import ULog
import numpy as np
from analysis.detectors import InAirDetector
def calculate_ecl_ekf_metrics(
ulog: ULog, innov_flags: Dict[str, float], innov_fail_checks: List[str],
sensor_checks: List[str], in_air: InAirDetector, in_air_no_ground_effects: InAirDetector,
red_thresh: float = 1.0, amb_thresh: float = 0.5) -> Tuple[dict, dict, dict, dict]:
sensor_metrics = calculate_sensor_metrics(
ulog, sensor_checks, in_air, in_air_no_ground_effects,
red_thresh=red_thresh, amb_thresh=amb_thresh)
innov_fail_metrics = calculate_innov_fail_metrics(
innov_flags, innov_fail_checks, in_air, in_air_no_ground_effects)
imu_metrics = calculate_imu_metrics(ulog, in_air_no_ground_effects)
estimator_status_data = ulog.get_dataset('estimator_status').data
# Check for internal filter nummerical faults
ekf_metrics = {'filter_faults_max': np.amax(estimator_status_data['filter_fault_flags'])}
# TODO - process these bitmask's when they have been properly documented in the uORB topic
# estimator_status['health_flags']
# estimator_status['timeout_flags']
# combine the metrics
combined_metrics = dict()
combined_metrics.update(imu_metrics)
combined_metrics.update(sensor_metrics)
combined_metrics.update(innov_fail_metrics)
combined_metrics.update(ekf_metrics)
return combined_metrics
def calculate_sensor_metrics(
ulog: ULog, sensor_checks: List[str], in_air: InAirDetector,
in_air_no_ground_effects: InAirDetector, red_thresh: float = 1.0,
amb_thresh: float = 0.5) -> Dict[str, float]:
estimator_status_data = ulog.get_dataset('estimator_status').data
sensor_metrics = dict()
# calculates peak, mean, percentage above 0.5 std, and percentage above std metrics for
# estimator status variables
for signal, result_id in [('hgt_test_ratio', 'hgt'),
('mag_test_ratio', 'mag'),
('vel_test_ratio', 'vel'),
('pos_test_ratio', 'pos'),
('tas_test_ratio', 'tas'),
('hagl_test_ratio', 'hagl')]:
# only run sensor checks, if they apply.
if result_id in sensor_checks:
if result_id == 'mag' or result_id == 'hgt':
in_air_detector = in_air_no_ground_effects
else:
in_air_detector = in_air
# the percentage of samples above / below std dev
sensor_metrics['{:s}_percentage_red'.format(result_id)] = calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal, in_air_detector,
lambda x: 100.0 * np.mean(x > red_thresh))
sensor_metrics['{:s}_percentage_amber'.format(result_id)] = calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal, in_air_detector,
lambda x: 100.0 * np.mean(x > amb_thresh)) - \
sensor_metrics['{:s}_percentage_red'.format(result_id)]
# the peak and mean ratio of samples above / below std dev
peak = calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal, in_air_detector, np.amax)
if peak > 0.0:
sensor_metrics['{:s}_test_max'.format(result_id)] = peak
sensor_metrics['{:s}_test_mean'.format(result_id)] = calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal,
in_air_detector, np.mean)
return sensor_metrics
def calculate_innov_fail_metrics(
innov_flags: dict, innov_fail_checks: List[str], in_air: InAirDetector,
in_air_no_ground_effects: InAirDetector) -> dict:
"""
:param innov_flags:
:param innov_fail_checks:
:param in_air:
:param in_air_no_ground_effects:
:return:
"""
innov_fail_metrics = dict()
# calculate innovation check fail metrics
for signal_id, signal, result in [('posv', 'posv_innov_fail', 'hgt_fail_percentage'),
('magx', 'magx_innov_fail', 'magx_fail_percentage'),
('magy', 'magy_innov_fail', 'magy_fail_percentage'),
('magz', 'magz_innov_fail', 'magz_fail_percentage'),
('yaw', 'yaw_innov_fail', 'yaw_fail_percentage'),
('vel', 'vel_innov_fail', 'vel_fail_percentage'),
('posh', 'posh_innov_fail', 'pos_fail_percentage'),
('tas', 'tas_innov_fail', 'tas_fail_percentage'),
('hagl', 'hagl_innov_fail', 'hagl_fail_percentage'),
('ofx', 'ofx_innov_fail', 'ofx_fail_percentage'),
('ofy', 'ofy_innov_fail', 'ofy_fail_percentage')]:
# only run innov fail checks, if they apply.
if signal_id in innov_fail_checks:
if signal_id.startswith('mag') or signal_id == 'yaw' or signal_id == 'posv' or \
signal_id.startswith('of'):
in_air_detector = in_air_no_ground_effects
else:
in_air_detector = in_air
innov_fail_metrics[result] = calculate_stat_from_signal(
innov_flags, 'estimator_status', signal, in_air_detector,
lambda x: 100.0 * np.mean(x > 0.5))
return innov_fail_metrics
def calculate_imu_metrics(
ulog: ULog, in_air_no_ground_effects: InAirDetector) -> dict:
estimator_status_data = ulog.get_dataset('estimator_status').data
imu_metrics = dict()
# calculates the median of the output tracking error ekf innovations
for signal, result in [('output_tracking_error[0]', 'output_obs_ang_err_median'),
('output_tracking_error[1]', 'output_obs_vel_err_median'),
('output_tracking_error[2]', 'output_obs_pos_err_median')]:
imu_metrics[result] = calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal, in_air_no_ground_effects, np.median)
# calculates peak and mean for IMU vibration checks
for signal, result in [('vibe[0]', 'imu_coning'),
('vibe[1]', 'imu_hfdang'),
('vibe[2]', 'imu_hfdvel')]:
peak = calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal, in_air_no_ground_effects, np.amax)
if peak > 0.0:
imu_metrics['{:s}_peak'.format(result)] = peak
imu_metrics['{:s}_mean'.format(result)] = calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal,
in_air_no_ground_effects, np.mean)
# IMU bias checks
imu_metrics['imu_dang_bias_median'] = np.sqrt(np.sum([np.square(calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal, in_air_no_ground_effects, np.median))
for signal in ['states[10]', 'states[11]', 'states[12]']]))
imu_metrics['imu_dvel_bias_median'] = np.sqrt(np.sum([np.square(calculate_stat_from_signal(
estimator_status_data, 'estimator_status', signal, in_air_no_ground_effects, np.median))
for signal in ['states[13]', 'states[14]', 'states[15]']]))
return imu_metrics
def calculate_stat_from_signal(
data: Dict[str, np.ndarray], dataset: str, variable: str,
in_air_det: InAirDetector, stat_function: Callable) -> float:
"""
:param data:
:param variable:
:param in_air_detector:
:return:
"""
return stat_function(data[variable][in_air_det.get_airtime(dataset)])