px4-firmware/apps/gps/nmealib/gmath.c

377 lines
12 KiB
C

/*
*
* NMEA library
* URL: http://nmea.sourceforge.net
* Author: Tim (xtimor@gmail.com)
* Licence: http://www.gnu.org/licenses/lgpl.html
* $Id: gmath.c 17 2008-03-11 11:56:11Z xtimor $
*
*/
/*! \file gmath.h */
#include "nmea/gmath.h"
#include <math.h>
#include <float.h>
/**
* \fn nmea_degree2radian
* \brief Convert degree to radian
*/
float nmea_degree2radian(float val)
{ return (val * NMEA_PI180); }
/**
* \fn nmea_radian2degree
* \brief Convert radian to degree
*/
float nmea_radian2degree(float val)
{ return (val / NMEA_PI180); }
/**
* \brief Convert NDEG (NMEA degree) to fractional degree
*/
float nmea_ndeg2degree(float val)
{
float deg = ((int)(val / 100));
val = deg + (val - deg * 100) / 60;
return val;
}
/**
* \brief Convert fractional degree to NDEG (NMEA degree)
*/
float nmea_degree2ndeg(float val)
{
float int_part;
float fra_part;
fra_part = modf(val, &int_part);
val = int_part * 100 + fra_part * 60;
return val;
}
/**
* \fn nmea_ndeg2radian
* \brief Convert NDEG (NMEA degree) to radian
*/
float nmea_ndeg2radian(float val)
{ return nmea_degree2radian(nmea_ndeg2degree(val)); }
/**
* \fn nmea_radian2ndeg
* \brief Convert radian to NDEG (NMEA degree)
*/
float nmea_radian2ndeg(float val)
{ return nmea_degree2ndeg(nmea_radian2degree(val)); }
/**
* \brief Calculate PDOP (Position Dilution Of Precision) factor
*/
float nmea_calc_pdop(float hdop, float vdop)
{
return sqrt(pow(hdop, 2) + pow(vdop, 2));
}
float nmea_dop2meters(float dop)
{ return (dop * NMEA_DOP_FACTOR); }
float nmea_meters2dop(float meters)
{ return (meters / NMEA_DOP_FACTOR); }
/**
* \brief Calculate distance between two points
* \return Distance in meters
*/
float nmea_distance(
const nmeaPOS *from_pos, /**< From position in radians */
const nmeaPOS *to_pos /**< To position in radians */
)
{
float dist = ((float)NMEA_EARTHRADIUS_M) * acos(
sin(to_pos->lat) * sin(from_pos->lat) +
cos(to_pos->lat) * cos(from_pos->lat) * cos(to_pos->lon - from_pos->lon)
);
return dist;
}
/**
* \brief Calculate distance between two points
* This function uses an algorithm for an oblate spheroid earth model.
* The algorithm is described here:
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
* \return Distance in meters
*/
float nmea_distance_ellipsoid(
const nmeaPOS *from_pos, /**< From position in radians */
const nmeaPOS *to_pos, /**< To position in radians */
float *from_azimuth, /**< (O) azimuth at "from" position in radians */
float *to_azimuth /**< (O) azimuth at "to" position in radians */
)
{
/* All variables */
float f, a, b, sqr_a, sqr_b;
float L, phi1, phi2, U1, U2, sin_U1, sin_U2, cos_U1, cos_U2;
float sigma, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, sqr_cos_alpha, lambda, sin_lambda, cos_lambda, delta_lambda;
int remaining_steps;
float sqr_u, A, B, delta_sigma;
/* Check input */
//NMEA_ASSERT(from_pos != 0);
//NMEA_ASSERT(to_pos != 0);
if ((from_pos->lat == to_pos->lat) && (from_pos->lon == to_pos->lon))
{ /* Identical points */
if ( from_azimuth != 0 )
*from_azimuth = 0;
if ( to_azimuth != 0 )
*to_azimuth = 0;
return 0;
} /* Identical points */
/* Earth geometry */
f = NMEA_EARTH_FLATTENING;
a = NMEA_EARTH_SEMIMAJORAXIS_M;
b = (1 - f) * a;
sqr_a = a * a;
sqr_b = b * b;
/* Calculation */
L = to_pos->lon - from_pos->lon;
phi1 = from_pos->lat;
phi2 = to_pos->lat;
U1 = atan((1 - f) * tan(phi1));
U2 = atan((1 - f) * tan(phi2));
sin_U1 = sin(U1);
sin_U2 = sin(U2);
cos_U1 = cos(U1);
cos_U2 = cos(U2);
/* Initialize iteration */
sigma = 0;
sin_sigma = sin(sigma);
cos_sigma = cos(sigma);
cos_2_sigmam = 0;
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
sqr_cos_alpha = 0;
lambda = L;
sin_lambda = sin(lambda);
cos_lambda = cos(lambda);
delta_lambda = lambda;
remaining_steps = 20;
while ((delta_lambda > 1e-12) && (remaining_steps > 0))
{ /* Iterate */
/* Variables */
float tmp1, tmp2, tan_sigma, sin_alpha, cos_alpha, C, lambda_prev;
/* Calculation */
tmp1 = cos_U2 * sin_lambda;
tmp2 = cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda;
sin_sigma = sqrt(tmp1 * tmp1 + tmp2 * tmp2);
cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda;
tan_sigma = sin_sigma / cos_sigma;
sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma;
cos_alpha = cos(asin(sin_alpha));
sqr_cos_alpha = cos_alpha * cos_alpha;
cos_2_sigmam = cos_sigma - 2 * sin_U1 * sin_U2 / sqr_cos_alpha;
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
C = f / 16 * sqr_cos_alpha * (4 + f * (4 - 3 * sqr_cos_alpha));
lambda_prev = lambda;
sigma = asin(sin_sigma);
lambda = L +
(1 - C) * f * sin_alpha
* (sigma + C * sin_sigma * (cos_2_sigmam + C * cos_sigma * (-1 + 2 * sqr_cos_2_sigmam)));
delta_lambda = lambda_prev - lambda;
if ( delta_lambda < 0 ) delta_lambda = -delta_lambda;
sin_lambda = sin(lambda);
cos_lambda = cos(lambda);
remaining_steps--;
} /* Iterate */
/* More calculation */
sqr_u = sqr_cos_alpha * (sqr_a - sqr_b) / sqr_b;
A = 1 + sqr_u / 16384 * (4096 + sqr_u * (-768 + sqr_u * (320 - 175 * sqr_u)));
B = sqr_u / 1024 * (256 + sqr_u * (-128 + sqr_u * (74 - 47 * sqr_u)));
delta_sigma = B * sin_sigma * (
cos_2_sigmam + B / 4 * (
cos_sigma * (-1 + 2 * sqr_cos_2_sigmam) -
B / 6 * cos_2_sigmam * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * sqr_cos_2_sigmam)
));
/* Calculate result */
if ( from_azimuth != 0 )
{
float tan_alpha_1 = cos_U2 * sin_lambda / (cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda);
*from_azimuth = atan(tan_alpha_1);
}
if ( to_azimuth != 0 )
{
float tan_alpha_2 = cos_U1 * sin_lambda / (-sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda);
*to_azimuth = atan(tan_alpha_2);
}
return b * A * (sigma - delta_sigma);
}
/**
* \brief Horizontal move of point position
*/
int nmea_move_horz(
const nmeaPOS *start_pos, /**< Start position in radians */
nmeaPOS *end_pos, /**< Result position in radians */
float azimuth, /**< Azimuth (degree) [0, 359] */
float distance /**< Distance (km) */
)
{
nmeaPOS p1 = *start_pos;
int RetVal = 1;
distance /= NMEA_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */
azimuth = nmea_degree2radian(azimuth);
end_pos->lat = asin(
sin(p1.lat) * cos(distance) + cos(p1.lat) * sin(distance) * cos(azimuth));
end_pos->lon = p1.lon + atan2(
sin(azimuth) * sin(distance) * cos(p1.lat), cos(distance) - sin(p1.lat) * sin(end_pos->lat));
if(NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon))
{
end_pos->lat = 0; end_pos->lon = 0;
RetVal = 0;
}
return RetVal;
}
/**
* \brief Horizontal move of point position
* This function uses an algorithm for an oblate spheroid earth model.
* The algorithm is described here:
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
*/
int nmea_move_horz_ellipsoid(
const nmeaPOS *start_pos, /**< Start position in radians */
nmeaPOS *end_pos, /**< (O) Result position in radians */
float azimuth, /**< Azimuth in radians */
float distance, /**< Distance (km) */
float *end_azimuth /**< (O) Azimuth at end position in radians */
)
{
/* Variables */
float f, a, b, sqr_a, sqr_b;
float phi1, tan_U1, sin_U1, cos_U1, s, alpha1, sin_alpha1, cos_alpha1;
float tan_sigma1, sigma1, sin_alpha, cos_alpha, sqr_cos_alpha, sqr_u, A, B;
float sigma_initial, sigma, sigma_prev, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, delta_sigma;
int remaining_steps;
float tmp1, phi2, lambda, C, L;
/* Check input */
//NMEA_ASSERT(start_pos != 0);
//NMEA_ASSERT(end_pos != 0);
if (fabs(distance) < 1e-12)
{ /* No move */
*end_pos = *start_pos;
if ( end_azimuth != 0 ) *end_azimuth = azimuth;
return ! (NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon));
} /* No move */
/* Earth geometry */
f = NMEA_EARTH_FLATTENING;
a = NMEA_EARTH_SEMIMAJORAXIS_M;
b = (1 - f) * a;
sqr_a = a * a;
sqr_b = b * b;
/* Calculation */
phi1 = start_pos->lat;
tan_U1 = (1 - f) * tan(phi1);
cos_U1 = 1 / sqrt(1 + tan_U1 * tan_U1);
sin_U1 = tan_U1 * cos_U1;
s = distance;
alpha1 = azimuth;
sin_alpha1 = sin(alpha1);
cos_alpha1 = cos(alpha1);
tan_sigma1 = tan_U1 / cos_alpha1;
sigma1 = atan2(tan_U1, cos_alpha1);
sin_alpha = cos_U1 * sin_alpha1;
sqr_cos_alpha = 1 - sin_alpha * sin_alpha;
cos_alpha = sqrt(sqr_cos_alpha);
sqr_u = sqr_cos_alpha * (sqr_a - sqr_b) / sqr_b;
A = 1 + sqr_u / 16384 * (4096 + sqr_u * (-768 + sqr_u * (320 - 175 * sqr_u)));
B = sqr_u / 1024 * (256 + sqr_u * (-128 + sqr_u * (74 - 47 * sqr_u)));
/* Initialize iteration */
sigma_initial = s / (b * A);
sigma = sigma_initial;
sin_sigma = sin(sigma);
cos_sigma = cos(sigma);
cos_2_sigmam = cos(2 * sigma1 + sigma);
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
delta_sigma = 0;
sigma_prev = 2 * NMEA_PI;
remaining_steps = 20;
while ((fabs(sigma - sigma_prev) > 1e-12) && (remaining_steps > 0))
{ /* Iterate */
cos_2_sigmam = cos(2 * sigma1 + sigma);
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
sin_sigma = sin(sigma);
cos_sigma = cos(sigma);
delta_sigma = B * sin_sigma * (
cos_2_sigmam + B / 4 * (
cos_sigma * (-1 + 2 * sqr_cos_2_sigmam) -
B / 6 * cos_2_sigmam * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * sqr_cos_2_sigmam)
));
sigma_prev = sigma;
sigma = sigma_initial + delta_sigma;
remaining_steps --;
} /* Iterate */
/* Calculate result */
tmp1 = (sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_alpha1);
phi2 = atan2(
sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_alpha1,
(1 - f) * sqrt(sin_alpha * sin_alpha + tmp1 * tmp1)
);
lambda = atan2(
sin_sigma * sin_alpha1,
cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_alpha1
);
C = f / 16 * sqr_cos_alpha * (4 + f * (4 - 3 * sqr_cos_alpha));
L = lambda -
(1 - C) * f * sin_alpha * (
sigma + C * sin_sigma *
(cos_2_sigmam + C * cos_sigma * (-1 + 2 * sqr_cos_2_sigmam))
);
/* Result */
end_pos->lon = start_pos->lon + L;
end_pos->lat = phi2;
if ( end_azimuth != 0 )
{
*end_azimuth = atan2(
sin_alpha, -sin_U1 * sin_sigma + cos_U1 * cos_sigma * cos_alpha1
);
}
return ! (NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon));
}
/**
* \brief Convert position from INFO to radians position
*/
void nmea_info2pos(const nmeaINFO *info, nmeaPOS *pos)
{
pos->lat = nmea_ndeg2radian(info->lat);
pos->lon = nmea_ndeg2radian(info->lon);
}
/**
* \brief Convert radians position to INFOs position
*/
void nmea_pos2info(const nmeaPOS *pos, nmeaINFO *info)
{
info->lat = nmea_radian2ndeg(pos->lat);
info->lon = nmea_radian2ndeg(pos->lon);
}