px4-firmware/test/mavsdk_tests/test_multicopter_control_al...

305 lines
12 KiB
C++

/****************************************************************************
*
* Copyright (c) 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <thread>
#include <chrono>
#include <math.h>
#include "autopilot_tester_failure.h"
TEST_CASE("Control Allocation - Remove one motor", "[controlallocation]")
{
const float flight_altitude = 10.0f;
const float altitude_tolerance = 4.0f;
const float hover_speed_tolerance = 1.0f;
AutopilotTester::MissionOptions mission_options;
mission_options.rtl_at_end = false;
mission_options.relative_altitude_m = flight_altitude;
AutopilotTesterFailure tester;
tester.connect(connection_url);
tester.wait_until_ready();
// Configuration
tester.set_param_sys_failure_en(true); // Enable failure injection
tester.set_param_fd_act_en(true); // Enable motor failure detection
tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure
tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor
tester.prepare_square_mission(mission_options);
tester.set_takeoff_altitude(flight_altitude);
tester.set_rtl_altitude(flight_altitude);
tester.check_tracks_mission(5.f);
tester.store_home();
tester.enable_actuator_output_status();
std::this_thread::sleep_for(std::chrono::seconds(
1)); // This is necessary for the takeoff altitude to be applied properly
// Takeoff
tester.arm();
tester.takeoff();
tester.wait_until_hovering();
tester.wait_until_altitude(flight_altitude, std::chrono::seconds(30));
tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(30));
// Motor failure mid-air
tester.start_checking_altitude(altitude_tolerance);
const int motor_instance = 1;
const unsigned num_motors = 6; // TODO: get from model
tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, motor_instance,
mavsdk::Failure::Result::Success);
std::this_thread::sleep_for(std::chrono::seconds(1));
tester.ensure_motor_stopped(motor_instance - 1, num_motors);
tester.execute_mission();
tester.stop_checking_altitude();
tester.ensure_motor_stopped(motor_instance - 1, num_motors); // just to be sure
// RTL
tester.execute_rtl();
std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(180);
tester.wait_until_disarmed(until_disarmed_timeout);
tester.check_home_within(5.f);
}
TEST_CASE("Control Allocation - Remove two motors", "[controlallocation]")
{
const float flight_altitude = 10.0f;
const float altitude_tolerance = 4.0f;
const float hover_speed_tolerance = 1.0f;
AutopilotTesterFailure tester;
tester.connect(connection_url);
tester.wait_until_ready();
tester.set_param_sys_failure_en(true); // Enable failure injection
tester.set_param_fd_act_en(true); // Enable motor failure detection
tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure
tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor
AutopilotTester::MissionOptions mission_options;
mission_options.rtl_at_end = false;
mission_options.relative_altitude_m = flight_altitude;
tester.prepare_square_mission(mission_options);
tester.set_takeoff_altitude(flight_altitude);
tester.set_rtl_altitude(flight_altitude);
tester.check_tracks_mission(5.f);
tester.store_home();
std::this_thread::sleep_for(std::chrono::seconds(
1)); // This is necessary for the takeoff altitude to be applied properly
tester.arm();
tester.takeoff();
tester.wait_until_hovering();
tester.wait_until_altitude(flight_altitude, std::chrono::seconds(30));
tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(30));
// Remove two motors opposite of one another on the hexa airframe
const int first_motor_instance = 1;
const int second_motor_instance = 2;
tester.start_checking_altitude(altitude_tolerance);
tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off,
first_motor_instance,
mavsdk::Failure::Result::Success);
std::this_thread::sleep_for(std::chrono::seconds(1));
tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off,
second_motor_instance,
mavsdk::Failure::Result::Success);
std::this_thread::sleep_for(std::chrono::seconds(1));
tester.execute_mission();
tester.stop_checking_altitude();
// RTL with two motors out won't work because navigator will wait forever until
// the yaw setpoint is reached during RTL, and it won't land.
tester.land();
std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(180);
tester.wait_until_disarmed(until_disarmed_timeout);
}
TEST_CASE("Control Allocation - Remove and restore every motor once", "[controlallocation]")
{
const float flight_altitude = 10.0f;
const float altitude_tolerance = 4.0f;
const float hover_speed_tolerance = 1.0f;
AutopilotTesterFailure tester;
tester.connect(connection_url);
tester.wait_until_ready();
tester.set_param_sys_failure_en(true); // Enable failure injection
tester.set_param_fd_act_en(true); // Enable motor failure detection
tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure
tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor
AutopilotTester::MissionOptions mission_options;
mission_options.rtl_at_end = false;
mission_options.relative_altitude_m = flight_altitude;
tester.prepare_square_mission(mission_options);
tester.set_takeoff_altitude(flight_altitude);
tester.set_rtl_altitude(flight_altitude);
tester.check_tracks_mission(5.f);
tester.store_home();
std::this_thread::sleep_for(std::chrono::seconds(
1)); // This is necessary for the takeoff altitude to be applied properly
tester.arm();
tester.takeoff();
tester.wait_until_hovering();
tester.wait_until_altitude(flight_altitude, std::chrono::seconds(30));
tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(30));
tester.start_checking_altitude(altitude_tolerance);
for (int m = 1; m <= 6; m++) {
tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, m,
mavsdk::Failure::Result::Success);
std::this_thread::sleep_for(std::chrono::seconds(1));
tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Ok, m,
mavsdk::Failure::Result::Success);
std::this_thread::sleep_for(std::chrono::seconds(1));
}
tester.execute_mission();
tester.stop_checking_altitude();
tester.execute_rtl();
std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(180);
tester.wait_until_disarmed(until_disarmed_timeout);
tester.check_home_within(5.f);
}
TEST_CASE("Control Allocation - Return home on motor failure", "[controlallocation]")
{
const float flight_altitude = 10.0f;
const float hover_speed_tolerance = 1.0f;
AutopilotTesterFailure tester;
tester.connect(connection_url);
tester.wait_until_ready();
// Configuration
tester.set_param_sys_failure_en(true); // Enable failure injection
tester.set_param_fd_act_en(true); // Enable motor failure detection
tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure
tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor
tester.set_param_com_act_fail_act(3); // RTL on motor failure
tester.set_takeoff_altitude(flight_altitude);
tester.store_home();
std::this_thread::sleep_for(std::chrono::seconds(
1)); // This is necessary for the takeoff altitude to be applied properly
// Takeoff
tester.arm();
tester.takeoff();
tester.wait_until_hovering();
tester.wait_until_altitude(flight_altitude, std::chrono::seconds(30));
tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(30));
// TODO: Minor improvement, fly forward for a little bit before triggering motor failure to distinguish "RTL" and "Land only"
// Motor failure mid-air
const int motor_instance = 1;
tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, motor_instance,
mavsdk::Failure::Result::Success);
std::this_thread::sleep_for(std::chrono::seconds(1));
// Wait for RTL to trigger automatically
std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(180);
tester.wait_until_disarmed(until_disarmed_timeout);
tester.check_home_within(5.f);
}
TEST_CASE("Control Allocation - Terminate on motor failure", "[controlallocation]")
{
const float flight_altitude = 100.0f;
const float hover_speed_tolerance = 1.0f;
AutopilotTesterFailure tester;
tester.connect(connection_url);
tester.wait_until_ready();
// Configuration
tester.set_param_sys_failure_en(true); // Enable failure injection
tester.set_param_fd_act_en(true); // Enable motor failure detection
tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure
tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor
tester.set_param_com_act_fail_act(4); // Terminate on motor failure
tester.set_takeoff_altitude(flight_altitude);
std::this_thread::sleep_for(std::chrono::seconds(
1)); // This is necessary for the takeoff altitude to be applied properly
// Takeoff
tester.arm();
tester.takeoff();
tester.wait_until_altitude(flight_altitude, std::chrono::seconds(60));
tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(60));
// Motor failure mid-air
const int motor_instance = 1;
tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, motor_instance,
mavsdk::Failure::Result::Success);
std::this_thread::sleep_for(std::chrono::seconds(1));
// Wait for disarm with a low enough timeout such that it's necessary for the
// drone to freefall (terminate) in order to disarm quickly enough:
// h = g/2 * t^2 -> solve for t
const int seconds_to_touchdown = 2 + sqrt(flight_altitude * 2 / 10.0);
std::cout << "seconds_to_touchdown: " << seconds_to_touchdown << std::endl;
std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(seconds_to_touchdown);
tester.wait_until_disarmed(until_disarmed_timeout);
}
#if 0
// This is for checking that the SITL test is actually capable of detecting the drone crash
// when not reallocating the control allocation on a motor failure
TEST_CASE("Control Allocation - Remove two motors and expect crash", "[controlallocation]")
{
// TODO
}
#endif
#if 0
TEST_CASE("Control Allocation with multiple sequential motor failures", "[controlallocation]")
{
// TODO
}
#endif
#if 0
TEST_CASE("Control Allocation with multiple simultaneous motor failures", "[controlallocation]")
{
// TODO
}
#endif