/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ekf.cpp * Core functions for ekf attitude and position estimator. * * @author Roman Bast * */ #include "ekf.h" #include Ekf::Ekf() { } Ekf::~Ekf() { } void Ekf::update() { if (!_filter_initialised) { _filter_initialised = initialiseFilter(); } // prediction if (_imu_updated) { predictState(); predictCovariance(); _imu_updated = false; } // measurement updates if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) { fuseMag(); } if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) { _fuse_height = true; } if (_gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed)) { _fuse_pos = true; _fuse_vel = true; } if (_fuse_height || _fuse_pos || _fuse_vel) { fusePosVel(); } if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)) { fuseRange(); } if (_airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed)) { fuseAirspeed(); } } bool Ekf::initialiseFilter(void) { _state.ang_error.setZero(); _state.vel.setZero(); _state.pos.setZero(); _state.gyro_bias.setZero(); _state.gyro_scale(0) = _state.gyro_scale(1) = _state.gyro_scale(2) = 1.0f; _state.accel_z_bias = 0.0f; _state.mag_I.setZero(); _state.mag_B.setZero(); _state.wind_vel.setZero(); // get initial attitude estimate from accel vector, assuming vehicle is static Vector3f accel_init = _imu_down_sampled.delta_vel / _imu_down_sampled.delta_vel_dt; float pitch = 0.0f; float roll = 0.0f; if (accel_init.norm() > 0.001f) { accel_init.normalize(); pitch = asinf(accel_init(0)); roll = -asinf(accel_init(1) / cosf(pitch)); } matrix::Euler euler_init(0, pitch, roll); _state.quat_nominal = Quaternion(euler_init); resetVelocity(); resetPosition(); initialiseCovariance(); return true; } void Ekf::predictState() { // compute transformation matrix from body to world frame matrix::Dcm R(_state.quat_nominal); R.transpose(); // attitude error state prediciton Quaternion dq; dq.from_axis_angle(_imu_sample_delayed.delta_ang); _state.quat_nominal = dq * _state.quat_nominal; _state.quat_nominal.normalize(); Vector3f vel_last = _state.vel; // predict velocity states _state.vel += R * _imu_sample_delayed.delta_vel; _state.vel(2) += 9.81f * _imu_sample_delayed.delta_vel_dt; // predict position states via trapezoidal integration of velocity _state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f; //matrix::Euler euler(_state.quat_nominal); //printf("roll pitch yaw %.5f %.5f %.5f\n", (double)euler(2), (double)euler(1), (double)euler(0)); } void Ekf::fusePosVel() { } void Ekf::fuseMag() { } void Ekf::fuseAirspeed() { } void Ekf::fuseRange() { }