Remove duplicate checking for dead reckoning and consolidate into a single function.
Use separate timers to check for start of dead reckoning and check when dead reckoning has been performed for too long for the nav solution to be valid.
Allow the timeout for validity reporting to be adjusted externally.
Separate external reporting of dead reckoning from internal checks.
* EKF: Move optical flow specific state reset to helper functions
* EKF: Ensure loss of optical flow aiding is handled correctly
If data is only source of aiding and has been rejected for too long - reset using flow data as a velocity reference.
If flow data is unavailable for too long - declare optical flow use stopped.
Use consistent time periods for all resets
* EKF: Ensure loss of external vision aiding is handled correctly
If data is only source of aiding and has been rejected for too long - reset using data as a position.
Don't reset velocity if there is another source of aiding constraining it.
If data is unavailable for too long, declare external vision use stopped.
Use consistent time periods for all resets.
* EKF: Update parameter documentation
Make the distinction between the no_gps_timeout_max and no_aid_timeout_max parameters clearer
* EKF: make class variable units consistent with documentation
* EKF: Don't reset states when optical flow use commences if using external vision
* EKF: Stop optical flow fusion when on ground if excessive movement is detected.
* EKF: fix terrain estimator vulnerabilities
Reset estimate to sensor value if rejected for 10 seconds
Protect against user motion when on ground.
Fix unnecessary duplication of terrain validity check and separate validity update and reporting.
* EKF: remove unnecessary Info console prints
Optical flow use information can be obtained from the estimator_status.control_mode_flags message
* EKF: fix inaccurate comment
* EKF: remove duplicate calculation from terrain validity accessor function
* EKF: Do not delay reversion to no-aiding mode if parameter initiated
* EKF: Move no-aid reversion resets to helper functions
* EKF: Prevent unwanted fusion of velocity data during no aiding mode
* fix typo
* EKF: use baro if it was reset to baro from ev
* EKF: set vert_pos_reset if resetting to ev hgt
otherwise the position controller will not reset the setpoint -> leading to unwanted altitude changes
This enables the EKF to use an additional NE velocity measurement. This can be used to improve position hold stability when landing using a beacon system for positioning by fusing the beacon velocity estimates.
Apply a dead-zone to the vertical position innovation if using baro for height and if in the ground effect region during and just after takeoff.
Method needs to be activated externally.
Turns off automatically after 10 seconds or if specified height gained.
When magnetic field states have been reset in-flight using a single sample, the magnetic field states are not used to constrain heading drift for a period after the reset. This period has been shortened from 10 to 5 seconds which is enough time to average out the effects of measurement noise (the original concern). The shorter time has enabled the previous practice for RW vehicles of using magnetic heading in that time period to constrain yaw drift to be discontinued. This is necessary becasue while magnetic heading is being used, it fights the yaw corrections obtained from GPs observations and lengthens the time required to recover from a bad mag calibration.
Ensures that a complete reset of velocity and position states will always be performed if yaw has had to be reset using GPS velocity.
Ensures that the yaw_align status cannot be set to false once the filter has aligned.
Use of air data to navigate should be classified as dead-reckoning because neither ground relative velocity or position is observed directly and errors grow faster.
Fuse external vision data using a relative position odometry method when GPS data is also being used and enable both GPOS and EV data to be fused on the same time step.
- when switching to range finder use the current terrain estimate as
height sensor offset, otherwise spikes in the range measurements could lead
to a wrong offset
Signed-off-by: Roman <bapstroman@gmail.com>
- do not subtract the height sensor offset variable when computing the
baro offset from the local origin. The baro height offset is calculated
when baro is not fused and so the height sensor offset used in that case
is associated to another sensor and has nothing to do with the baro.
Signed-off-by: Roman <bapstroman@gmail.com>
the primary height source
- moved height control into single function in order to decide which sensor
should be used for estimating height
- under certain conditions allow to use the range finder to estimate height
even if it's not the primary height source
- fixed a bug where the delta time for the baro offset calculation was always
zero
- use methods to set height control flags to reduce code duplication and
to prevent bugs
Signed-off-by: Roman <bapstroman@gmail.com>
Use horizontal acceleration to check if yaw is observable independent of the magnetometer.
Use rotation about the vertical to check if mag raises are observable.
If neither yaw of mag biases are observable, save the magnetic field variances and switch to magnetic yaw fusion.
Use the last learned declination when using magnetic yaw fusion so that the yaw reference remains consistent.
When yaw or biases become observable, reinstate the saved variances and switch back to 3D mag fusion.
Use vertical velocity and position innovation failure to detect bad accelerometer data caused by clipping or aliasing which can cause large vertical acceleration errors and loss of height estimation. When bad accel data is detected:
1) Inhibit accelerometer bias learning
2) Force fusion of vertical velocity and height data
3) Increase accelerometer process noise
This is a functionally equivalent. It moves all of the code for the terrain estimator into a single function call from the main filter update, making it clear that it is independent of the main filter.
Taking off before passing GPS checks would cause airspeed or sideslip to be fused when the filter was still using a constant position assumption. This would cause large airspeed innovations, invalid wind estimates and degrade filter performance after GPS was gained and position and velocity was reset.
Enables wind estimation without an airspeed sensor and enables synthetic sideslip to be used with an airspeed sensor for improved wind state estimation.
Wind states and covariances are reset differently depending on whether airspeed is available.
- if both gps position and velocity measurements are rejected for 7 seconds
do a reset
- if only gps position measurements are rejected then wait for 14 seconds
as we still have velocity measurements to constrain the drift in position
- introduced ecl internal parameter for the timeout
Signed-off-by: Roman <bapstroman@gmail.com>
All the decision for a sensor are made within a specific function for that sensor and when there is data to process at the fusion time horizon.
Information and warning messages are improved.
Wait until enough height has been gained to be clear of ground based magnetic anomalies. Failure to do so can result in incorrect earth field initialisation.
Convert quaternion covariances into an angular alignment variance vector and discard the z component so that yaw uncertainty does not affect the result.
When transitioning into optical flow nav from a non-aiding condition during ground operation, ensure position covariances are reset as they could be invalid.