gyro_fft improve peak finding, parameterize min/max frequencies, remove debug logging

- add min/max frequency parameters for peak detection (IMU_GYRO_FFT_MIN, IMU_GYRO_FFT_MAX)
 - remove full FFT debug logging
 - fix Quinn's second estimator
 - log sensor_gyro_fft
 - fake_gyro use PX4Gyroscope
This commit is contained in:
Daniel Agar 2020-10-12 15:19:39 -04:00 committed by GitHub
parent ff3008c051
commit f557fa46e8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 220 additions and 92 deletions

View File

@ -120,7 +120,6 @@ set(msg_files
sensor_gps.msg
sensor_gyro.msg
sensor_gyro_fft.msg
sensor_gyro_fft_axis.msg
sensor_gyro_fifo.msg
sensor_mag.msg
sensor_preflight_mag.msg

View File

@ -4,12 +4,14 @@ uint64 timestamp_sample
uint32 device_id # unique device ID for the sensor that does not change between power cycles
float32 dt # delta time between samples (microseconds)
float32 scale
uint8 samples # number of valid samples
float32 resolution_hz
uint8 peak_index
uint8[3] peak_index_0
uint8[3] peak_index_1
float32 peak_frequency_0
float32 peak_frequency_1
float32 peak_frequency_2
float32[3] peak_frequency_0 # largest frequency peak found per sensor axis (0 if none)
float32[3] peak_frequency_1 # second largest frequency peak found per sensor axis (0 if none)
uint8[3] peak_index_quinns
float32[3] peak_frequency_quinns

View File

@ -1,23 +0,0 @@
uint64 timestamp # time since system start (microseconds)
uint64 timestamp_sample
uint32 device_id # unique device ID for the sensor that does not change between power cycles
float32 dt # delta time between samples (microseconds)
uint16 samples # number of valid samples
float32 resolution_hz
int16[128] fft
uint16 peak_index
uint16 peak_index_quinns
float32 peak_frequency
float32 peak_frequency_quinns
uint8 AXIS_X = 0
uint8 AXIS_Y = 1
uint8 AXIS_Z = 2
uint8 axis

View File

@ -287,8 +287,6 @@ rtps:
id: 136
- msg: sensor_gyro_fft
id: 137
- msg: sensor_gyro_fft_axis
id: 138
########## multi topics: begin ##########
- msg: actuator_controls_0
id: 150

View File

@ -40,5 +40,6 @@ px4_add_module(
FakeGyro.cpp
FakeGyro.hpp
DEPENDS
drivers_gyroscope
px4_work_queue
)

View File

@ -37,8 +37,10 @@ using namespace time_literals;
FakeGyro::FakeGyro() :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::hp_default)
ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::hp_default),
_px4_gyro(1310988) // 1310988: DRV_IMU_DEVTYPE_SIM, BUS: 1, ADDR: 1, TYPE: SIMULATION
{
_px4_gyro.set_scale(math::radians(2000.f) / static_cast<float>(INT16_MAX - 1)); // 2000 degrees/second max
}
bool FakeGyro::init()
@ -55,29 +57,26 @@ void FakeGyro::Run()
return;
}
sensor_gyro_fifo_s sensor_gyro_fifo{};
sensor_gyro_fifo.timestamp_sample = hrt_absolute_time();
sensor_gyro_fifo.device_id = 1;
sensor_gyro_fifo.samples = GYRO_RATE / (1e6f / SENSOR_RATE);
sensor_gyro_fifo.dt = 1e6f / GYRO_RATE; // 8 kHz fake gyro
sensor_gyro_fifo.scale = math::radians(2000.f) / static_cast<float>(INT16_MAX - 1); // 2000 degrees/second max
sensor_gyro_fifo_s gyro{};
gyro.timestamp_sample = hrt_absolute_time();
gyro.samples = GYRO_RATE / (1e6f / SENSOR_RATE);
gyro.dt = 1e6f / GYRO_RATE; // 8 kHz fake gyro;
const float dt_s = sensor_gyro_fifo.dt / 1e6f;
const float x_freq = 15.f; // 15 Hz x frequency
const float y_freq = 63.5f; // 63.5 Hz y frequency
const float z_freq = 99.f; // 99 Hz z frequency
const float dt_s = gyro.dt * 1e-6f;
const float x_freq = 15.f; // 15,0 Hz X frequency
const float y_freq = 63.5f; // 63.5 Hz Y frequency
const float z_freq = 135.f; // 135.0 Hz Z frequency
for (int n = 0; n < sensor_gyro_fifo.samples; n++) {
for (int n = 0; n < gyro.samples; n++) {
_time += dt_s;
const float k = 2.f * M_PI_F * _time;
sensor_gyro_fifo.x[n] = (INT16_MAX - 1) * sinf(k * x_freq);
sensor_gyro_fifo.y[n] = (INT16_MAX - 1) / 2 * sinf(k * y_freq);
sensor_gyro_fifo.z[n] = (INT16_MAX - 1) * cosf(k * z_freq);
gyro.x[n] = (INT16_MAX - 1) * sinf(k * x_freq);
gyro.y[n] = (INT16_MAX - 1) / 2 * sinf(k * y_freq);
gyro.z[n] = (INT16_MAX - 1) * cosf(k * z_freq);
}
sensor_gyro_fifo.timestamp = hrt_absolute_time();
_sensor_gyro_fifo_pub.publish(sensor_gyro_fifo);
_px4_gyro.updateFIFO(gyro);
}
int FakeGyro::task_spawn(int argc, char *argv[])

View File

@ -38,6 +38,7 @@
#include <px4_platform_common/module_params.h>
#include <px4_platform_common/posix.h>
#include <px4_platform_common/px4_work_queue/ScheduledWorkItem.hpp>
#include <lib/drivers/gyroscope/PX4Gyroscope.hpp>
#include <uORB/PublicationMulti.hpp>
#include <uORB/Subscription.hpp>
#include <uORB/topics/sensor_gyro_fifo.h>
@ -65,7 +66,7 @@ private:
void Run() override;
uORB::PublicationMulti<sensor_gyro_fifo_s> _sensor_gyro_fifo_pub{ORB_ID(sensor_gyro_fifo)};
PX4Gyroscope _px4_gyro;
float _time{0.f};
};

View File

@ -53,7 +53,7 @@ GyroFFT::GyroFFT() :
float hanning_window[FFT_LENGTH];
for (int n = 0; n < FFT_LENGTH; n++) {
hanning_window[n] = 0.5f - 0.5f * cosf(2.f * M_PI_F * n / (FFT_LENGTH - 1));
hanning_window[n] = 0.5f * (1.f - cosf(2.f * M_PI_F * n / (FFT_LENGTH - 1)));
}
arm_float_to_q15(hanning_window, _hanning_window, FFT_LENGTH);
@ -91,6 +91,21 @@ bool GyroFFT::SensorSelectionUpdate(bool force)
&& (sensor_gyro_fifo_sub.get().device_id == sensor_selection.gyro_device_id)) {
if (_sensor_gyro_fifo_sub.ChangeInstance(i) && _sensor_gyro_fifo_sub.registerCallback()) {
// find corresponding vehicle_imu_status instance
for (uint8_t imu_status = 0; imu_status < MAX_SENSOR_COUNT; imu_status++) {
uORB::Subscription imu_status_sub{ORB_ID(vehicle_imu_status), imu_status};
vehicle_imu_status_s vehicle_imu_status;
if (imu_status_sub.copy(&vehicle_imu_status)) {
if (vehicle_imu_status.gyro_device_id == sensor_selection.gyro_device_id) {
_vehicle_imu_status_sub.ChangeInstance(imu_status);
return true;
}
}
}
PX4_WARN("unable to find IMU status for gyro %d", sensor_selection.gyro_device_id);
return true;
}
}
@ -103,6 +118,17 @@ bool GyroFFT::SensorSelectionUpdate(bool force)
return false;
}
void GyroFFT::VehicleIMUStatusUpdate()
{
vehicle_imu_status_s vehicle_imu_status;
if (_vehicle_imu_status_sub.update(&vehicle_imu_status)) {
if ((vehicle_imu_status.gyro_rate_hz > 0) && (fabsf(vehicle_imu_status.gyro_rate_hz - _gyro_sample_rate_hz) > 1.f)) {
_gyro_sample_rate_hz = vehicle_imu_status.gyro_rate_hz;
}
}
}
// helper function used for frequency estimation
static constexpr float tau(float x)
{
@ -138,6 +164,10 @@ void GyroFFT::Run()
SensorSelectionUpdate();
const float resolution_hz = _gyro_sample_rate_hz / (FFT_LENGTH * 2);
bool publish = false;
// run on sensor gyro fifo updates
sensor_gyro_fifo_s sensor_gyro_fifo;
@ -189,60 +219,122 @@ void GyroFFT::Run()
arm_rfft_q15(&_rfft_q15[axis], _fft_input_buffer, _fft_outupt_buffer);
perf_end(_fft_perf);
static constexpr uint16_t MIN_SNR = 100; // TODO:
uint32_t max_peak_0 = 0;
uint8_t max_peak_index_0 = 0;
bool peak_0_found = false;
// start at 2 to skip DC
// output is ordered [real[0], imag[0], real[1], imag[1], real[2], imag[2] ... real[(N/2)-1], imag[(N/2)-1]
for (uint16_t bucket_index = 2; bucket_index < FFT_LENGTH; bucket_index = bucket_index + 2) {
const float freq_hz = bucket_index * resolution_hz;
if (freq_hz > _param_imu_gyro_fft_max.get()) {
break;
}
if (freq_hz >= _param_imu_gyro_fft_min.get()) {
const int16_t real = _fft_outupt_buffer[bucket_index];
const int16_t complex = _fft_outupt_buffer[bucket_index + 1];
const uint32_t fft_value_squared = real * real + complex * complex;
if ((fft_value_squared > MIN_SNR) && (fft_value_squared >= max_peak_0)) {
max_peak_index_0 = bucket_index;
max_peak_0 = fft_value_squared;
peak_0_found = true;
}
}
}
if (peak_0_found) {
{
// find peak location using Quinn's Second Estimator (2020-06-14: http://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/)
int16_t max_peak = 0;
uint16_t max_peak_index = 0;
int16_t real[3] {_fft_outupt_buffer[max_peak_index_0 - 2], _fft_outupt_buffer[max_peak_index_0], _fft_outupt_buffer[max_peak_index_0 + 2]};
int16_t imag[3] {_fft_outupt_buffer[max_peak_index_0 - 2 + 1], _fft_outupt_buffer[max_peak_index_0 + 1], _fft_outupt_buffer[max_peak_index_0 + 2 + 1]};
// start at 1 to skip DC
for (uint16_t bucket_index = 1; bucket_index < FFT_LENGTH; bucket_index++) {
if (abs(_fft_outupt_buffer[bucket_index]) >= max_peak) {
max_peak_index = bucket_index;
max_peak = abs(_fft_outupt_buffer[bucket_index]);
}
}
const int k = 1;
float divider = (real[k] * real[k] + imag[k] * imag[k]);
// ap = (X[k + 1].r * X[k].r + X[k+1].i * X[k].i) / (X[k].r * X[k].r + X[k].i * X[k].i)
float ap = (real[k + 1] * real[k] + imag[k + 1] * imag[k]) / divider;
// am = (X[k 1].r * X[k].r + X[k 1].i * X[k].i) / (X[k].r * X[k].r + X[k].i * X[k].i)
float am = (real[k - 1] * real[k] + imag[k - 1] * imag[k]) / divider;
int k = max_peak_index;
float divider = powf(_fft_outupt_buffer[k], 2.f);
float ap = (_fft_outupt_buffer[k + 1] * _fft_outupt_buffer[k]) / divider;
float dp = -ap / (1.f - ap);
float am = (_fft_outupt_buffer[k - 1] * _fft_outupt_buffer[k]) / divider;
float dm = am / (1.f - am);
float d = (dp + dm) / 2 + tau(dp * dp) - tau(dm * dm);
float adjustedBinLocation = k + d;
float peakFreqAdjusted = (_gyro_sample_rate * adjustedBinLocation / (FFT_LENGTH * 2));
uint8_t adjustedBinLocation = roundf(max_peak_index_0 + d);
float peakFreqAdjusted = (_gyro_sample_rate_hz * adjustedBinLocation / (FFT_LENGTH * 2));
_sensor_gyro_fft.peak_index_quinns[axis] = adjustedBinLocation;
_sensor_gyro_fft.peak_frequency_quinns[axis] = peakFreqAdjusted;
}
// publish sensor_gyro_fft_axis (one instance per axis)
sensor_gyro_fft_axis_s sensor_gyro_fft_axis{};
const int N_publish = math::min((unsigned)FFT_LENGTH,
sizeof(sensor_gyro_fft_axis_s::fft) / sizeof(sensor_gyro_fft_axis_s::fft[0]));
memcpy(sensor_gyro_fft_axis.fft, _fft_outupt_buffer, N_publish);
// find next peak
uint32_t max_peak_1 = 0;
uint8_t max_peak_index_1 = 0;
bool peak_1_found = false;
sensor_gyro_fft_axis.resolution_hz = _gyro_sample_rate / (FFT_LENGTH * 2);
for (uint16_t bucket_index = 2; bucket_index < FFT_LENGTH; bucket_index = bucket_index + 2) {
if (bucket_index != max_peak_index_0) {
const float freq_hz = bucket_index * resolution_hz;
sensor_gyro_fft_axis.peak_index = max_peak_index;
sensor_gyro_fft_axis.peak_frequency = max_peak_index * sensor_gyro_fft_axis.resolution_hz;
if (freq_hz > _param_imu_gyro_fft_max.get()) {
break;
}
sensor_gyro_fft_axis.peak_index_quinns = adjustedBinLocation;
sensor_gyro_fft_axis.peak_frequency_quinns = peakFreqAdjusted;
if (freq_hz >= _param_imu_gyro_fft_min.get()) {
const int16_t real = _fft_outupt_buffer[bucket_index];
const int16_t complex = _fft_outupt_buffer[bucket_index + 1];
const uint32_t fft_value_squared = real * real + complex * complex;
sensor_gyro_fft_axis.samples = FFT_LENGTH;
sensor_gyro_fft_axis.dt = 1e6f / _gyro_sample_rate;
sensor_gyro_fft_axis.device_id = sensor_gyro_fifo.device_id;
sensor_gyro_fft_axis.axis = axis;
sensor_gyro_fft_axis.timestamp_sample = sensor_gyro_fifo.timestamp_sample;
sensor_gyro_fft_axis.timestamp = hrt_absolute_time();
_sensor_gyro_fft_axis_pub[axis].publish(sensor_gyro_fft_axis);
if ((fft_value_squared > MIN_SNR) && (fft_value_squared >= max_peak_1)) {
max_peak_index_1 = bucket_index;
max_peak_1 = fft_value_squared;
peak_1_found = true;
}
}
}
}
if (peak_1_found) {
// if 2 peaks found then log them in order
_sensor_gyro_fft.peak_index_0[axis] = math::min(max_peak_index_0, max_peak_index_1);
_sensor_gyro_fft.peak_index_1[axis] = math::max(max_peak_index_0, max_peak_index_1);
_sensor_gyro_fft.peak_frequency_0[axis] = _sensor_gyro_fft.peak_index_0[axis] * resolution_hz;
_sensor_gyro_fft.peak_frequency_1[axis] = _sensor_gyro_fft.peak_index_1[axis] * resolution_hz;
} else {
// only 1 peak found
_sensor_gyro_fft.peak_index_0[axis] = max_peak_index_0;
_sensor_gyro_fft.peak_index_1[axis] = 0;
_sensor_gyro_fft.peak_frequency_0[axis] = max_peak_index_0 * resolution_hz;
_sensor_gyro_fft.peak_frequency_1[axis] = 0;
}
publish = true;
}
// reset
buffer_index = 0;
}
}
}
if (publish) {
_sensor_gyro_fft.dt = 1e6f / _gyro_sample_rate_hz;
_sensor_gyro_fft.device_id = sensor_gyro_fifo.device_id;
_sensor_gyro_fft.resolution_hz = resolution_hz;
_sensor_gyro_fft.timestamp_sample = sensor_gyro_fifo.timestamp_sample;
_sensor_gyro_fft.timestamp = hrt_absolute_time();
_sensor_gyro_fft_pub.publish(_sensor_gyro_fft);
publish = false;
}
}
perf_end(_cycle_perf);

View File

@ -46,9 +46,9 @@
#include <uORB/SubscriptionCallback.hpp>
#include <uORB/topics/parameter_update.h>
#include <uORB/topics/sensor_gyro_fft.h>
#include <uORB/topics/sensor_gyro_fft_axis.h>
#include <uORB/topics/sensor_gyro_fifo.h>
#include <uORB/topics/sensor_selection.h>
#include <uORB/topics/vehicle_imu_status.h>
#include "arm_math.h"
#include "arm_const_structs.h"
@ -76,18 +76,15 @@ public:
private:
void Run() override;
bool SensorSelectionUpdate(bool force = false);
void VehicleIMUStatusUpdate();
static constexpr int MAX_SENSOR_COUNT = 3;
uORB::Publication<sensor_gyro_fft_s> _sensor_gyro_fft_pub{ORB_ID(sensor_gyro_fft)};
uORB::Publication<sensor_gyro_fft_axis_s> _sensor_gyro_fft_axis_pub[3] {
ORB_ID(sensor_gyro_fft_axis),
ORB_ID(sensor_gyro_fft_axis),
ORB_ID(sensor_gyro_fft_axis),
};
uORB::Subscription _parameter_update_sub{ORB_ID(parameter_update)};
uORB::Subscription _sensor_selection_sub{ORB_ID(sensor_selection)};
uORB::Subscription _vehicle_imu_status_sub{ORB_ID(vehicle_imu_status)};
uORB::SubscriptionCallbackWorkItem _sensor_gyro_fifo_sub{this, ORB_ID(sensor_gyro_fifo)};
@ -106,9 +103,16 @@ private:
q15_t _fft_input_buffer[FFT_LENGTH] {};
q15_t _fft_outupt_buffer[FFT_LENGTH * 2] {};
float _gyro_sample_rate{8000}; // 8 kHz default
float _gyro_sample_rate_hz{8000}; // 8 kHz default
int _fft_buffer_index[3] {};
unsigned _gyro_last_generation{0};
sensor_gyro_fft_s _sensor_gyro_fft{};
DEFINE_PARAMETERS(
(ParamFloat<px4::params::IMU_GYRO_FFT_MIN>) _param_imu_gyro_fft_min,
(ParamFloat<px4::params::IMU_GYRO_FFT_MAX>) _param_imu_gyro_fft_max
)
};

View File

@ -0,0 +1,54 @@
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* IMU gyro FFT minimum frequency.
*
* @min 1
* @max 1000
* @unit Hz
* @reboot_required true
* @group Sensors
*/
PARAM_DEFINE_FLOAT(IMU_GYRO_FFT_MIN, 30.0f);
/**
* IMU gyro FFT maximum frequency.
*
* @min 1
* @max 1000
* @unit Hz
* @reboot_required true
* @group Sensors
*/
PARAM_DEFINE_FLOAT(IMU_GYRO_FFT_MAX, 200.0f);

View File

@ -80,6 +80,7 @@ void LoggedTopics::add_default_topics()
add_topic("safety");
add_topic("sensor_combined");
add_topic("sensor_correction");
add_topic("sensor_gyro_fft");
add_topic("sensor_preflight_mag", 500);
add_topic("sensor_selection");
add_topic("sensors_status_imu", 200);