drivers: add ICM45686

Signed-off-by: Julian Oes <julian@oes.ch>
This commit is contained in:
Julian Oes 2023-02-27 18:44:56 +13:00 committed by Daniel Agar
parent 82dce9353c
commit f4b48e685f
7 changed files with 1312 additions and 0 deletions

View File

@ -84,6 +84,7 @@
#define DRV_RNG_DEVTYPE_MB12XX 0x31
#define DRV_RNG_DEVTYPE_LL40LS 0x32
#define DRV_ACC_DEVTYPE_MPU6050 0x33
#define DRV_IMU_DEVTYPE_ICM45686 0x34
#define DRV_GYR_DEVTYPE_MPU6050 0x35
#define DRV_IMU_DEVTYPE_MPU6500 0x36

View File

@ -0,0 +1,48 @@
############################################################################
#
# Copyright (c) 2023 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
px4_add_module(
MODULE drivers__imu__invensense__icm45686
MAIN icm45686
COMPILE_FLAGS
${MAX_CUSTOM_OPT_LEVEL}
#-DDEBUG_BUILD
SRCS
icm45686_main.cpp
ICM45686.cpp
ICM45686.hpp
InvenSense_ICM45686_registers.hpp
DEPENDS
px4_work_queue
drivers_accelerometer
drivers_gyroscope
)

View File

@ -0,0 +1,735 @@
/****************************************************************************
*
* Copyright (c) 2023 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM45686.hpp"
using namespace time_literals;
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
static constexpr uint16_t combine_uint(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
static constexpr int32_t reassemble_20bit(const uint32_t a, const uint32_t b, const uint32_t c)
{
// 0xXXXAABBC
uint32_t high = ((a << 12) & 0x000FF000);
uint32_t low = ((b << 4) & 0x00000FF0);
uint32_t lowest = (c & 0x0000000F);
uint32_t x = high | low | lowest;
if (a & Bit7) {
// sign extend
x |= 0xFFF00000u;
}
return static_cast<int32_t>(x);
}
ICM45686::ICM45686(const I2CSPIDriverConfig &config) :
SPI(config),
I2CSPIDriver(config),
_px4_accel(get_device_id(), config.rotation),
_px4_gyro(get_device_id(), config.rotation)
{
if (config.custom1 != 0) {
_enable_clock_input = true;
_input_clock_freq = config.custom1;
// TODO: this is not tested
ConfigureCLKIN();
} else {
_enable_clock_input = false;
}
ConfigureSampleRate(_px4_gyro.get_max_rate_hz());
}
ICM45686::~ICM45686()
{
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
}
int ICM45686::init()
{
int ret = SPI::init();
if (ret != PX4_OK) {
DEVICE_DEBUG("SPI::init failed (%i)", ret);
return ret;
}
return Reset() ? 0 : -1;
}
bool ICM45686::Reset()
{
_state = STATE::RESET;
ScheduleClear();
ScheduleNow();
return true;
}
void ICM45686::exit_and_cleanup()
{
I2CSPIDriverBase::exit_and_cleanup();
}
void ICM45686::print_status()
{
I2CSPIDriverBase::print_status();
PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);
PX4_INFO("Clock input: %s", _enable_clock_input ? "enabled" : "disabled");
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
}
int ICM45686::probe()
{
for (int i = 0; i < 3; i++) {
const uint8_t whoami = RegisterRead(Register::BANK_0::WHO_AM_I);
if (whoami != WHOAMI) {
DEVICE_DEBUG("unexpected WHO_AM_I 0x%02x", whoami);
return PX4_ERROR;
}
}
return PX4_OK;
}
void ICM45686::RunImpl()
{
const hrt_abstime now = hrt_absolute_time();
switch (_state) {
case STATE::RESET:
// DEVICE_CONFIG: Software reset configuration
RegisterWrite(Register::BANK_0::REG_MISC2, REG_MISC2_BIT::SOFT_RST);
_reset_timestamp = now;
_failure_count = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(1_ms); // wait 1 ms for soft reset to be effective
break;
case STATE::WAIT_FOR_RESET:
if ((RegisterRead(Register::BANK_0::WHO_AM_I) == WHOAMI)
&& ((RegisterRead(Register::BANK_0::REG_MISC2) & Bit1) == 0x0)) {
// Wakeup accel and gyro and schedule remaining configuration
RegisterWrite(Register::BANK_0::PWR_MGMT0, PWR_MGMT0_BIT::GYRO_MODE_LOW_NOISE | PWR_MGMT0_BIT::ACCEL_MODE_LOW_NOISE);
_state = STATE::CONFIGURE;
ScheduleDelayed(30_ms); // 30 ms gyro startup time, 10 ms accel from sleep to valid data
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then reset the FIFO
_state = STATE::FIFO_RESET;
ScheduleDelayed(1_ms);
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::FIFO_RESET:
_state = STATE::FIFO_READ;
FIFOReset();
ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
break;
case STATE::FIFO_READ: {
hrt_abstime timestamp_sample = now;
bool success = false;
if (FIFORead(timestamp_sample)) {
success = true;
if (_failure_count > 0) {
_failure_count--;
}
}
if (!success) {
_failure_count++;
// full reset if things are failing consistently
if (_failure_count > 10) {
Reset();
return;
}
}
if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
// check configuration registers periodically or immediately following any failure
if (RegisterCheck(_register_bank0_cfg[_checked_register_bank0])) {
_last_config_check_timestamp = now;
_checked_register_bank0 = (_checked_register_bank0 + 1) % size_register_bank0_cfg;
} else {
// register check failed, force reset
perf_count(_bad_register_perf);
Reset();
}
}
}
break;
}
}
void ICM45686::ConfigureSampleRate(int sample_rate)
{
// round down to the nearest FIFO sample dt
const float min_interval = FIFO_SAMPLE_DT;
_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);
_fifo_gyro_samples = roundf(math::min((float)_fifo_empty_interval_us / (1e6f / GYRO_RATE), (float)FIFO_MAX_SAMPLES));
// recompute FIFO empty interval (us) with actual gyro sample limit
_fifo_empty_interval_us = _fifo_gyro_samples * (1e6f / GYRO_RATE);
ConfigureFIFOWatermark(_fifo_gyro_samples);
}
void ICM45686::ConfigureFIFOWatermark(uint8_t samples)
{
// FIFO watermark threshold in number of bytes
const uint16_t fifo_watermark_threshold = samples * sizeof(FIFO::DATA);
for (auto &r : _register_bank0_cfg) {
if (r.reg == Register::BANK_0::FIFO_CONFIG1_0) {
// FIFO_WM[7:0] FIFO_CONFIG2
r.set_bits = fifo_watermark_threshold & 0xFF;
} else if (r.reg == Register::BANK_0::FIFO_CONFIG1_1) {
// FIFO_WM[11:8] FIFO_CONFIG3
r.set_bits = (fifo_watermark_threshold >> 8) & 0xFF;
}
}
}
void ICM45686::ConfigureCLKIN()
{
for (auto &r0 : _register_bank0_cfg) {
if (r0.reg == Register::BANK_0::RTC_CONFIG) {
r0.set_bits = RTC_CONFIG_BIT::RTC_MODE;
}
}
for (auto &r0 : _register_bank0_cfg) {
if (r0.reg == Register::BANK_0::IOC_PAD_SCENARIO_OVRD) {
r0.set_bits = PADS_INT2_CFG_OVRD | PADS_INT2_CFG_OVRD_CLKIN;
}
}
}
bool ICM45686::Configure()
{
// Set it to little endian first, otherwise the chip doesn't match the manual
// which is just utterly confusing.
//uint8_t cmd[3] {
// BANK_IPREG_TOP1,
// SREG_CTRL,
// SREG_CTRL_SREG_DATA_ENDIAN_SEL_BIT::SREG_CTRL_SREG_DATA_ENDIAN_SEL_BIG };
//transfer(cmd, cmd, sizeof(cmd));
// first set and clear all configured register bits
for (const auto &reg_cfg : _register_bank0_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
// now check that all are configured
bool success = true;
for (const auto &reg_cfg : _register_bank0_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
// 20-bits data format used the only FSR settings that are operational
// are ±4000dps for gyroscope and ±32 for accelerometer
_px4_accel.set_range(32.f * CONSTANTS_ONE_G);
_px4_gyro.set_range(math::radians(4000.f));
return success;
}
template <typename T>
bool ICM45686::RegisterCheck(const T &reg_cfg)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_INFO("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_INFO("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
return success;
}
template <typename T>
uint8_t ICM45686::RegisterRead(T reg)
{
uint8_t cmd[2] {};
cmd[0] = static_cast<uint8_t>(reg) | DIR_READ;
transfer(cmd, cmd, sizeof(cmd));
return cmd[1];
}
template <typename T>
void ICM45686::RegisterWrite(T reg, uint8_t value)
{
uint8_t cmd[2] { (uint8_t)reg, value };
transfer(cmd, cmd, sizeof(cmd));
}
template <typename T>
void ICM45686::RegisterSetAndClearBits(T reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}
uint16_t ICM45686::FIFOReadCount()
{
// read FIFO count
uint8_t fifo_count_buf[3] {};
fifo_count_buf[0] = static_cast<uint8_t>(Register::BANK_0::FIFO_COUNT_0) | DIR_READ;
if (transfer(fifo_count_buf, fifo_count_buf, sizeof(fifo_count_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return 0;
}
// FIFO_COUNT_0 is supposed to contain the high bits and FIFO_COUNT_1 the low bits,
// according to the manual, however, the device is configured to little endianness
// which means FIFO and FIFO count are pre-swapped..
return combine(fifo_count_buf[2], fifo_count_buf[1]);
}
bool ICM45686::FIFORead(const hrt_abstime &timestamp_sample)
{
const uint16_t fifo_packets = FIFOReadCount();
if (fifo_packets == 0) {
perf_count(_fifo_empty_perf);
return false;
}
FIFOTransferBuffer buffer{};
const size_t transfer_size = math::min(sizeof(FIFOTransferBuffer), fifo_packets * sizeof(FIFO::DATA) + 1);
if (transfer((uint8_t *)&buffer, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
perf_count(_bad_transfer_perf);
return false;
}
unsigned valid_samples = 0;
for (unsigned i = 0; i < transfer_size / sizeof(FIFO::DATA); i++) {
bool valid = true;
// With FIFO_ACCEL_EN and FIFO_GYRO_EN header should be 8b_0110_10xx
const uint8_t FIFO_HEADER = buffer.f[i].FIFO_Header;
if (FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_MSG) {
// FIFO sample empty if HEADER_MSG set
valid = false;
} else if (!(FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_ACCEL)) {
// accel bit not set
valid = false;
} else if (!(FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_GYRO)) {
// gyro bit not set
valid = false;
} else if (!(FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_20)) {
// Packet does not contain a new and valid extended 20-bit data
valid = false;
} else if ((FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_TIMESTAMP_FSYNC) != Bit3) {
// Packet does not contain ODR timestamp
valid = false;
} else if (FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_ODR_ACCEL) {
// accel ODR changed
valid = false;
} else if (FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_ODR_GYRO) {
// gyro ODR changed
valid = false;
}
if (valid) {
valid_samples++;
} else {
perf_count(_bad_transfer_perf);
break;
}
}
if (valid_samples > 0) {
if (ProcessTemperature(buffer.f, valid_samples)) {
ProcessGyro(timestamp_sample, buffer.f, valid_samples);
ProcessAccel(timestamp_sample, buffer.f, valid_samples);
return true;
}
}
return false;
}
void ICM45686::FIFOReset()
{
perf_count(_fifo_reset_perf);
// Disable FIFO
RegisterClearBits(Register::BANK_0::FIFO_CONFIG3,
FIFO_CONFIG3_BIT::FIFO_ES1_EN |
FIFO_CONFIG3_BIT::FIFO_ES0_EN |
FIFO_CONFIG3_BIT::FIFO_HIRES_EN |
FIFO_CONFIG3_BIT::FIFO_GYRO_EN |
FIFO_CONFIG3_BIT::FIFO_ACCEL_EN |
FIFO_CONFIG3_BIT::FIFO_IF_EN);
// Disable FIFO by switching to bypass mode
RegisterSetAndClearBits(Register::BANK_0::FIFO_CONFIG0,
FIFO_CONFIG0_BIT::FIFO_MODE_BYPASS_SET,
FIFO_CONFIG0_BIT::FIFO_MODE_BYPASS_CLEAR);
// When the FIFO is disabled we can actually set the FIFO depth
RegisterSetBits(Register::BANK_0::FIFO_CONFIG0, FIFO_CONFIG0_BIT::FIFO_DEPTH_8K_SET);
// And then enable FIFO again
RegisterSetAndClearBits(Register::BANK_0::FIFO_CONFIG0, FIFO_CONFIG0_BIT::FIFO_MODE_STOP_ON_FULL_SET,
FIFO_CONFIG0_BIT::FIFO_MODE_STOP_ON_FULL_CLEAR);
// And enable again
RegisterSetBits(Register::BANK_0::FIFO_CONFIG3,
FIFO_CONFIG3_BIT::FIFO_HIRES_EN |
FIFO_CONFIG3_BIT::FIFO_GYRO_EN |
FIFO_CONFIG3_BIT::FIFO_ACCEL_EN |
FIFO_CONFIG3_BIT::FIFO_IF_EN);
}
void ICM45686::ProcessAccel(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples)
{
sensor_accel_fifo_s accel{};
accel.timestamp_sample = timestamp_sample;
accel.samples = 0;
// 19-bits of accelerometer data
bool scale_20bit = false;
// first pass
for (int i = 0; i < samples; i++) {
if (_enable_clock_input) {
// Swapped as device is in little endian by default.
const uint16_t timestamp_fifo = combine_uint(fifo[i].Timestamp_L, fifo[i].Timestamp_H);
accel.dt = (float)timestamp_fifo * ((1.f / _input_clock_freq) * 1e6f);
} else {
accel.dt = FIFO_TIMESTAMP_SCALING;
}
// 20 bit hires mode
// Sign extension + Accel [19:12] + Accel [11:4] + Accel [3:2] (20 bit extension byte)
// Accel data is 18 bit ()
int32_t accel_x = reassemble_20bit(
fifo[i].ACCEL_DATA_XL,
fifo[i].ACCEL_DATA_XH,
fifo[i].HIGHRES_X_LSB & 0xF0 >> 4);
int32_t accel_y = reassemble_20bit(
fifo[i].ACCEL_DATA_YL,
fifo[i].ACCEL_DATA_YH,
fifo[i].HIGHRES_Y_LSB & 0xF0 >> 4);
int32_t accel_z = reassemble_20bit(
fifo[i].ACCEL_DATA_ZL,
fifo[i].ACCEL_DATA_ZH,
fifo[i].HIGHRES_Z_LSB & 0xF0 >> 4);
// sample invalid if -524288
if (accel_x != -524288 && accel_y != -524288 && accel_z != -524288) {
// check if any values are going to exceed int16 limits
static constexpr int16_t max_accel = INT16_MAX;
static constexpr int16_t min_accel = INT16_MIN;
if (accel_x >= max_accel || accel_x <= min_accel) {
scale_20bit = true;
}
if (accel_y >= max_accel || accel_y <= min_accel) {
scale_20bit = true;
}
if (accel_z >= max_accel || accel_z <= min_accel) {
scale_20bit = true;
}
// least significant bit is always 0)
accel.x[accel.samples] = accel_x / 2;
accel.y[accel.samples] = accel_y / 2;
accel.z[accel.samples] = accel_z / 2;
accel.samples++;
}
}
if (!scale_20bit) {
// if highres enabled accel data is always 8192 LSB/g
_px4_accel.set_scale(CONSTANTS_ONE_G / 8192.f);
} else {
// 20 bit data scaled to 16 bit (2^4)
for (int i = 0; i < samples; i++) {
// 20 bit hires mode
// Sign extension + Accel [19:12] + Accel [11:4] + Accel [3:2] (20 bit extension byte)
// Accel data is 18 bit ()
int16_t accel_x = combine(fifo[i].ACCEL_DATA_XL, fifo[i].ACCEL_DATA_XH);
int16_t accel_y = combine(fifo[i].ACCEL_DATA_YL, fifo[i].ACCEL_DATA_YH);
int16_t accel_z = combine(fifo[i].ACCEL_DATA_ZL, fifo[i].ACCEL_DATA_ZH);
accel.x[i] = accel_x;
accel.y[i] = accel_y;
accel.z[i] = accel_z;
}
_px4_accel.set_scale(CONSTANTS_ONE_G / 8192.f * 8.0f);
}
// correct frame for publication
for (int i = 0; i < accel.samples; i++) {
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
accel.x[i] = accel.x[i];
accel.y[i] = (accel.y[i] == INT16_MIN) ? INT16_MAX : -accel.y[i];
accel.z[i] = (accel.z[i] == INT16_MIN) ? INT16_MAX : -accel.z[i];
}
_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
if (accel.samples > 0) {
_px4_accel.updateFIFO(accel);
}
}
void ICM45686::ProcessGyro(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples)
{
sensor_gyro_fifo_s gyro{};
gyro.timestamp_sample = timestamp_sample;
gyro.samples = 0;
// 20-bits of gyroscope data
bool scale_20bit = false;
// first pass
for (int i = 0; i < samples; i++) {
if (_enable_clock_input) {
// Swapped as device is in little endian by default.
uint16_t timestamp_fifo = combine_uint(fifo[i].Timestamp_L, fifo[i].Timestamp_H);
gyro.dt = (float)timestamp_fifo * ((1.f / _input_clock_freq) * 1e6f);
} else {
gyro.dt = FIFO_TIMESTAMP_SCALING;
}
// 20 bit hires mode
// Gyro [19:12] + Gyro [11:4] + Gyro [3:0] (bottom 4 bits of 20 bit extension byte)
int32_t gyro_x = reassemble_20bit(fifo[i].GYRO_DATA_XL, fifo[i].GYRO_DATA_XH, fifo[i].HIGHRES_X_LSB & 0x0F);
int32_t gyro_y = reassemble_20bit(fifo[i].GYRO_DATA_YL, fifo[i].GYRO_DATA_YH, fifo[i].HIGHRES_Y_LSB & 0x0F);
int32_t gyro_z = reassemble_20bit(fifo[i].GYRO_DATA_ZL, fifo[i].GYRO_DATA_ZH, fifo[i].HIGHRES_Z_LSB & 0x0F);
// check if any values are going to exceed int16 limits
static constexpr int16_t max_gyro = INT16_MAX;
static constexpr int16_t min_gyro = INT16_MIN;
if (gyro_x >= max_gyro || gyro_x <= min_gyro) {
scale_20bit = true;
}
if (gyro_y >= max_gyro || gyro_y <= min_gyro) {
scale_20bit = true;
}
if (gyro_z >= max_gyro || gyro_z <= min_gyro) {
scale_20bit = true;
}
gyro.x[gyro.samples] = gyro_x;
gyro.y[gyro.samples] = gyro_y;
gyro.z[gyro.samples] = gyro_z;
gyro.samples++;
}
if (!scale_20bit) {
// if highres enabled gyro data is always 131 LSB/dps
_px4_gyro.set_scale(math::radians(1.f / 131.f));
} else {
// 20 bit data scaled to 16 bit (2^4)
for (int i = 0; i < samples; i++) {
gyro.x[i] = combine(fifo[i].GYRO_DATA_XL, fifo[i].GYRO_DATA_XH);
gyro.y[i] = combine(fifo[i].GYRO_DATA_YL, fifo[i].GYRO_DATA_YH);
gyro.z[i] = combine(fifo[i].GYRO_DATA_ZL, fifo[i].GYRO_DATA_ZH);
}
_px4_gyro.set_scale(math::radians(1.f / 131.f * 16.0f));
}
// correct frame for publication
for (int i = 0; i < gyro.samples; i++) {
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
gyro.x[i] = gyro.x[i];
gyro.y[i] = (gyro.y[i] == INT16_MIN) ? INT16_MAX : -gyro.y[i];
gyro.z[i] = (gyro.z[i] == INT16_MIN) ? INT16_MAX : -gyro.z[i];
}
_px4_gyro.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
if (gyro.samples > 0) {
_px4_gyro.updateFIFO(gyro);
}
}
bool ICM45686::ProcessTemperature(const FIFO::DATA fifo[], const uint8_t samples)
{
int16_t temperature[FIFO_MAX_SAMPLES];
float temperature_sum{0};
int valid_samples = 0;
for (int i = 0; i < samples; i++) {
// Swapped as device is in little endian by default.
const int16_t t = combine(fifo[i].TEMP_DATA_L, fifo[i].TEMP_DATA_H);
// sample invalid if -32768
if (t != -32768) {
temperature_sum += t;
temperature[valid_samples] = t;
valid_samples++;
}
}
if (valid_samples > 0) {
const float temperature_avg = temperature_sum / valid_samples;
for (int i = 0; i < valid_samples; i++) {
// temperature changing wildly is an indication of a transfer error
if (fabsf(temperature[i] - temperature_avg) > 1000) {
perf_count(_bad_transfer_perf);
return false;
}
}
// use average temperature reading
const float temp_c = (temperature_avg / TEMPERATURE_SENSITIVITY) + TEMPERATURE_OFFSET;
if (PX4_ISFINITE(temp_c)) {
_px4_accel.set_temperature(temp_c);
_px4_gyro.set_temperature(temp_c);
return true;
} else {
perf_count(_bad_transfer_perf);
}
}
return false;
}

View File

@ -0,0 +1,165 @@
/****************************************************************************
*
* Copyright (c) 2023 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ICM45686.hpp
*
* Driver for the Invensense ICM45686 connected via SPI.
*
*/
#pragma once
#include "InvenSense_ICM45686_registers.hpp"
#include <drivers/drv_hrt.h>
#include <lib/drivers/accelerometer/PX4Accelerometer.hpp>
#include <lib/drivers/device/spi.h>
#include <lib/drivers/gyroscope/PX4Gyroscope.hpp>
#include <lib/geo/geo.h>
#include <lib/perf/perf_counter.h>
#include <px4_platform_common/atomic.h>
#include <px4_platform_common/i2c_spi_buses.h>
using namespace InvenSense_ICM45686;
class ICM45686 : public device::SPI, public I2CSPIDriver<ICM45686>
{
public:
ICM45686(const I2CSPIDriverConfig &config);
~ICM45686() override;
static void print_usage();
void RunImpl();
int init() override;
void print_status() override;
private:
void exit_and_cleanup() override;
// Sensor Configuration
static constexpr float FIFO_SAMPLE_DT{1e6f / 8000.f}; // 8000 Hz accel & gyro ODR configured
static constexpr float GYRO_RATE{1e6f / FIFO_SAMPLE_DT};
static constexpr float ACCEL_RATE{1e6f / FIFO_SAMPLE_DT};
static constexpr float FIFO_TIMESTAMP_SCALING{16.f *(32.f / 30.f)}; // Used when not using clock input
// maximum FIFO samples per transfer is limited to the size of sensor_accel_fifo/sensor_gyro_fifo
static constexpr int32_t FIFO_MAX_SAMPLES{math::min(FIFO::SIZE / sizeof(FIFO::DATA), sizeof(sensor_gyro_fifo_s::x) / sizeof(sensor_gyro_fifo_s::x[0]), sizeof(sensor_accel_fifo_s::x) / sizeof(sensor_accel_fifo_s::x[0]) * (int)(GYRO_RATE / ACCEL_RATE))};
// Transfer data
struct FIFOTransferBuffer {
uint8_t cmd{static_cast<uint8_t>(Register::BANK_0::FIFO_DATA) | DIR_READ};
FIFO::DATA f[FIFO_MAX_SAMPLES] {};
} __attribute__((packed));
// ensure padding is right
static_assert(sizeof(FIFOTransferBuffer) == (1 + FIFO_MAX_SAMPLES *sizeof(FIFO::DATA)));
struct register_bank0_config_t {
Register::BANK_0 reg;
uint8_t set_bits{0};
uint8_t clear_bits{0};
};
int probe() override;
bool Reset();
bool Configure();
void ConfigureSampleRate(int sample_rate);
void ConfigureFIFOWatermark(uint8_t samples);
void ConfigureCLKIN();
template <typename T> bool RegisterCheck(const T &reg_cfg);
template <typename T> uint8_t RegisterRead(T reg);
template <typename T> void RegisterWrite(T reg, uint8_t value);
template <typename T> void RegisterSetAndClearBits(T reg, uint8_t setbits, uint8_t clearbits);
template <typename T> void RegisterSetBits(T reg, uint8_t setbits) { RegisterSetAndClearBits(reg, setbits, 0); }
template <typename T> void RegisterClearBits(T reg, uint8_t clearbits) { RegisterSetAndClearBits(reg, 0, clearbits); }
uint16_t FIFOReadCount();
bool FIFORead(const hrt_abstime &timestamp_sample);
void FIFOReset();
void ProcessAccel(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples);
void ProcessGyro(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples);
bool ProcessTemperature(const FIFO::DATA fifo[], const uint8_t samples);
PX4Accelerometer _px4_accel;
PX4Gyroscope _px4_gyro;
perf_counter_t _bad_register_perf{perf_alloc(PC_COUNT, MODULE_NAME": bad register")};
perf_counter_t _bad_transfer_perf{perf_alloc(PC_COUNT, MODULE_NAME": bad transfer")};
perf_counter_t _fifo_empty_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO empty")};
perf_counter_t _fifo_overflow_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO overflow")};
perf_counter_t _fifo_reset_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO reset")};
hrt_abstime _reset_timestamp{0};
hrt_abstime _last_config_check_timestamp{0};
hrt_abstime _temperature_update_timestamp{0};
int _failure_count{0};
bool _enable_clock_input{false};
float _input_clock_freq{0.f};
bool _data_ready_interrupt_enabled{false};
enum class STATE : uint8_t {
RESET,
WAIT_FOR_RESET,
CONFIGURE,
FIFO_RESET,
FIFO_READ,
} _state{STATE::RESET};
uint16_t _fifo_empty_interval_us{1250}; // default 1250 us / 800 Hz transfer interval
int32_t _fifo_gyro_samples{static_cast<int32_t>(_fifo_empty_interval_us / (1000000 / GYRO_RATE))};
uint8_t _checked_register_bank0{0};
static constexpr uint8_t size_register_bank0_cfg{9};
register_bank0_config_t _register_bank0_cfg[size_register_bank0_cfg] {
{ Register::BANK_0::INT1_CONFIG0, 0, 0},
{ Register::BANK_0::PWR_MGMT0, PWR_MGMT0_BIT::GYRO_MODE_LOW_NOISE | PWR_MGMT0_BIT::ACCEL_MODE_LOW_NOISE, 0 },
{ Register::BANK_0::GYRO_CONFIG0, GYRO_CONFIG0_BIT::GYRO_UI_FS_SEL_4000_DPS_SET | GYRO_CONFIG0_BIT::GYRO_ODR_6400_HZ_SET, GYRO_CONFIG0_BIT::GYRO_UI_FS_SEL_4000_DPS_CLEAR | GYRO_CONFIG0_BIT::GYRO_ODR_6400_HZ_CLEAR },
{ Register::BANK_0::ACCEL_CONFIG0, ACCEL_CONFIG0_BIT::ACCEL_UI_FS_SEL_32_G_SET | ACCEL_CONFIG0_BIT::ACCEL_ODR_6400_HZ_SET, ACCEL_CONFIG0_BIT::ACCEL_UI_FS_SEL_32_G_CLEAR | ACCEL_CONFIG0_BIT::ACCEL_ODR_6400_HZ_CLEAR },
{ Register::BANK_0::FIFO_CONFIG4, 0, FIFO_CONFIG4_BIT::FIFO_COMP_EN },
{ Register::BANK_0::FIFO_CONFIG0, FIFO_CONFIG0_BIT::FIFO_MODE_STOP_ON_FULL_SET | FIFO_CONFIG0_BIT::FIFO_DEPTH_8K_SET, FIFO_CONFIG0_BIT::FIFO_MODE_STOP_ON_FULL_CLEAR | FIFO_CONFIG0_BIT::FIFO_DEPTH_8K_CLEAR },
{ Register::BANK_0::FIFO_CONFIG3, FIFO_CONFIG3_BIT::FIFO_HIRES_EN | FIFO_CONFIG3_BIT::FIFO_GYRO_EN | FIFO_CONFIG3_BIT::FIFO_ACCEL_EN | FIFO_CONFIG3_BIT::FIFO_IF_EN, 0 },
{ Register::BANK_0::RTC_CONFIG, 0, 0}, // RTC_MODE[5] set at runtime
{ Register::BANK_0::IOC_PAD_SCENARIO_OVRD, 0, 0}, // PADS_INT2_CFG_OVRD and PADS_INT2_CFG_OVRD_VAL set at runtime
};
};

View File

@ -0,0 +1,266 @@
/****************************************************************************
*
* Copyright (c) 2023 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file InvenSense_ICM45686_registers.hpp
*
* Invensense ICM-45686 registers.
*
*/
#pragma once
#include <cstdint>
#include <cstddef>
namespace InvenSense_ICM45686
{
// TODO: move to a central header
static constexpr uint8_t Bit0 = (1 << 0);
static constexpr uint8_t Bit1 = (1 << 1);
static constexpr uint8_t Bit2 = (1 << 2);
static constexpr uint8_t Bit3 = (1 << 3);
static constexpr uint8_t Bit4 = (1 << 4);
static constexpr uint8_t Bit5 = (1 << 5);
static constexpr uint8_t Bit6 = (1 << 6);
static constexpr uint8_t Bit7 = (1 << 7);
static constexpr uint32_t SPI_SPEED = 24 * 1000 * 1000; // 24 MHz SPI
static constexpr uint8_t DIR_READ = 0x80;
static constexpr uint8_t WHOAMI = 0xE9;
static constexpr float TEMPERATURE_SENSITIVITY = 132.48f; // LSB/C
static constexpr float TEMPERATURE_OFFSET = 25.f; // C
namespace Register
{
enum class BANK_0 : uint8_t {
PWR_MGMT0 = 0x10,
FIFO_COUNT_0 = 0x12,
FIFO_COUNT_1 = 0x13,
FIFO_DATA = 0x14,
INT1_CONFIG0 = 0x16,
INT1_CONFIG1 = 0x17,
INT1_CONFIG2 = 0x18,
INT1_STATUS0 = 0x19,
ACCEL_CONFIG0 = 0x1B,
GYRO_CONFIG0 = 0x1C,
FIFO_CONFIG0 = 0x1D,
FIFO_CONFIG1_0 = 0x1E,
FIFO_CONFIG1_1 = 0x1F,
FIFO_CONFIG2 = 0x20,
FIFO_CONFIG3 = 0x21,
FIFO_CONFIG4 = 0x22,
RTC_CONFIG = 0x26,
DMP_EXT_SEN_ODR_CFG = 0x27,
EDMP_APEX_EN0 = 0x29,
EDMP_APEX_EN1 = 0x2A,
APEX_BUFFER_MGMT = 0x2B,
INTF_CONFIG0 = 0x2C,
INTF_CONFIG1_OVRD = 0x2D,
INTF_AUX_CONFIG = 0x2E,
IOC_PAD_SCENARIO = 0x2F,
IOC_PAD_SCENARIO_AUX_OVRD = 0x30,
IOC_PAD_SCENARIO_OVRD = 0x31,
DRIVE_CONFIG0 = 0x32,
DRIVE_CONFIG1 = 0x33,
DRIVE_CONFIG2 = 0x34,
INT_APEX_CONFIG1 = 0x3a,
INT_APEX_STATUS0 = 0x3b,
INT_APEX_STATUS1 = 0x3c,
INT2_CONFIG0 = 0x56,
INT2_CONFIG1 = 0x57,
INT2_CONFIG2 = 0x58,
INT2_STATUS0 = 0x59,
WHO_AM_I = 0x72,
REG_MISC2 = 0x7F,
};
};
//---------------- BANK0 Register bits
// PWR_MGMT0
enum PWR_MGMT0_BIT : uint8_t {
GYRO_MODE_LOW_NOISE = Bit3 | Bit2, // 11: Places gyroscope in Low Noise (LN) Mode
ACCEL_MODE_LOW_NOISE = Bit1 | Bit0, // 11: Places accelerometer in Low Noise (LN) Mode
};
enum INT1_STATUS0 : uint8_t {
INT1_STATUS_RESET_DONE = Bit7,
INT1_STATUS_AUX1_AGC = Bit6,
INT1_STATUS_AP_AGC_RDY = Bit5,
INT1_STATUS_AP_FSYNC = Bit4,
INT1_STATUS_AP_AUX1_DRDY = Bit3,
INT1_STATUS_AP_DRDY = Bit2,
INT1_STATUS_FIFO_THS = Bit1,
INT1_STATUS_FIFO_FULL = Bit0,
};
enum ACCEL_CONFIG0_BIT : uint8_t {
ACCEL_UI_FS_SEL_32_G_SET = 0,
ACCEL_UI_FS_SEL_32_G_CLEAR = Bit6 | Bit5 | Bit4,
ACCEL_UI_FS_SEL_16_G_SET = Bit4,
ACCEL_UI_FS_SEL_16_G_CLEAR = Bit6 | Bit5,
ACCEL_UI_FS_SEL_8_G_SET = Bit5,
ACCEL_UI_FS_SEL_8_G_CLEAR = Bit6 | Bit4,
ACCEL_ODR_6400_HZ_SET = Bit0 | Bit1,
ACCEL_ODR_6400_HZ_CLEAR = Bit2,
ACCEL_ODR_3200_HZ_SET = Bit2,
ACCEL_ODR_3200_HZ_CLEAR = Bit0 | Bit1,
ACCEL_ODR_1600_HZ_SET = Bit2 | Bit0,
ACCEL_ODR_1600_HZ_CLEAR = Bit1,
ACCEL_ODR_800_HZ_SET = Bit2 | Bit1,
ACCEL_ODR_800_HZ_CLEAR = Bit0,
};
enum GYRO_CONFIG0_BIT : uint8_t {
GYRO_UI_FS_SEL_4000_DPS_SET = 0,
GYRO_UI_FS_SEL_4000_DPS_CLEAR = Bit7 | Bit6 | Bit5 | Bit4,
GYRO_UI_FS_SEL_2000_DPS_SET = Bit4,
GYRO_UI_FS_SEL_2000_DPS_CLEAR = Bit7 | Bit6 | Bit5,
GYRO_UI_FS_SEL_1000_DPS_SET = Bit5,
GYRO_UI_FS_SEL_1000_DPS_CLEAR = Bit7 | Bit6 | Bit4,
GYRO_ODR_6400_HZ_SET = Bit0 | Bit1,
GYRO_ODR_6400_HZ_CLEAR = Bit2,
GYRO_ODR_3200_HZ_SET = Bit2,
GYRO_ODR_3200_HZ_CLEAR = Bit0 | Bit1,
GYRO_ODR_1600_HZ_SET = Bit2 | Bit0,
GYRO_ODR_1600_HZ_CLEAR = Bit1,
GYRO_ODR_800_HZ_SET = Bit2 | Bit1,
GYRO_ODR_800_HZ_CLEAR = Bit0,
};
enum FIFO_CONFIG0_BIT : uint8_t {
FIFO_MODE_BYPASS_SET = 0,
FIFO_MODE_BYPASS_CLEAR = Bit6 | Bit7,
FIFO_MODE_STREAM_SET = Bit6,
FIFO_MODE_STREAM_CLEAR = Bit7,
FIFO_MODE_STOP_ON_FULL_SET = Bit7,
FIFO_MODE_STOP_ON_FULL_CLEAR = Bit6,
FIFO_DEPTH_2K_SET = Bit0 | Bit1 | Bit2,
FIFO_DEPTH_2K_CLEAR = Bit3 | Bit4,
FIFO_DEPTH_8K_SET = Bit0 | Bit1 | Bit2 | Bit3 | Bit4,
FIFO_DEPTH_8K_CLEAR = 0,
};
enum FIFO_CONFIG2_BIT : uint8_t {
FIFO_FLUSH = Bit7,
FIFO_WR_WM_GT_TH_EQUAL = 0,
FIFO_WR_WM_GT_TH_GREATER_THAN = Bit3,
};
enum FIFO_CONFIG3_BIT : uint8_t {
FIFO_ES1_EN = Bit5, // External sensor 1 data insertion into FIFO frame
FIFO_ES0_EN = Bit4, // External sensor 0 data insertion into FIFO frame
FIFO_HIRES_EN = Bit3, // High resolution accel and gyro data insertion into FIFO frame
FIFO_GYRO_EN = Bit2, // Gyro data insertion into FIFO frame
FIFO_ACCEL_EN = Bit1, // Accel data insertion into FIFO frame
FIFO_IF_EN = Bit0, // Enable FIFO
};
enum FIFO_CONFIG4_BIT : uint8_t {
FIFO_COMP_EN = Bit2, // FIFO compression enabled
FIFO_TMST_FSYNC_EN = Bit1, // Timestamp/FSYNC data inserted into FIFO frame
};
enum RTC_CONFIG_BIT : uint8_t {
RTC_ALIGN = Bit6, // Re-align command is generated by writing 1 to this bit
RTC_MODE = Bit5, // 0: RTC functionality not enabled, 1: RTC functionality enabled
};
enum IOC_PAD_SCENARIO_OVRD_BIT : uint8_t {
PADS_INT2_CFG_OVRD = Bit2, // Override enable for PADS_INT2_CFG, 0: disable, 1: enable
PADS_INT2_CFG_OVRD_INT2 = 0,
PADS_INT2_CFG_OVRD_FSYNC = Bit0,
PADS_INT2_CFG_OVRD_CLKIN = Bit1,
};
enum REG_MISC2_BIT : uint8_t {
SOFT_RST = Bit1, // 1: Triggers soft reset operation
};
// IPREG_TOP1
//static constexpr uint8_t BANK_IPREG_TOP1 = 0xA2;
//static constexpr uint8_t SREG_CTRL = 0x67;
//enum SREG_CTRL_SREG_DATA_ENDIAN_SEL_BIT : uint8_t {
// SREG_CTRL_SREG_DATA_ENDIAN_SEL_BIG = Bit1, // big endian as documented (instead of default little endian)
//};
namespace FIFO
{
static constexpr size_t SIZE = 8192;
struct DATA {
uint8_t FIFO_Header;
uint8_t ACCEL_DATA_XH; // Accel X [19:12]
uint8_t ACCEL_DATA_XL; // Accel X [11:4]
uint8_t ACCEL_DATA_YH; // Accel Y [19:12]
uint8_t ACCEL_DATA_YL; // Accel Y [11:4]
uint8_t ACCEL_DATA_ZH; // Accel Z [19:12]
uint8_t ACCEL_DATA_ZL; // Accel Z [11:4]
uint8_t GYRO_DATA_XH; // Gyro X [19:12]
uint8_t GYRO_DATA_XL; // Gyro X [11:4]
uint8_t GYRO_DATA_YH; // Gyro Y [19:12]
uint8_t GYRO_DATA_YL; // Gyro Y [11:4]
uint8_t GYRO_DATA_ZH; // Gyro Z [19:12]
uint8_t GYRO_DATA_ZL; // Gyro Z [11:4]
uint8_t TEMP_DATA_H; // Temperature[15:8]
uint8_t TEMP_DATA_L; // Temperature[7:0]
uint8_t Timestamp_H; // Timestamp[15:8]
uint8_t Timestamp_L; // Timestamp[7:0]
uint8_t HIGHRES_X_LSB; // Accel X LSB [3:0] Gyro X LSB [3:0]
uint8_t HIGHRES_Y_LSB; // Accel Y LSB [3:0] Gyro Y LSB [3:0]
uint8_t HIGHRES_Z_LSB; // Accel Z LSB [3:0] Gyro Z LSB [3:0]
};
// With FIFO_ACCEL_EN and FIFO_GYRO_EN header should be 8b_0110_10xx
enum FIFO_HEADER_BIT : uint8_t {
HEADER_MSG = Bit7, // 1: FIFO is empty
HEADER_ACCEL = Bit6, // 1: Packet is sized so that accel data have location in the packet, FIFO_ACCEL_EN must be 1
HEADER_GYRO = Bit5, // 1: Packet is sized so that gyro data have location in the packet, FIFO_GYRO_EN must be1
HEADER_20 = Bit4, // 1: Packet has a new and valid sample of extended 20-bit data for gyro and/or accel
HEADER_TIMESTAMP_FSYNC = Bit3 | Bit2, // 10: Packet contains ODR Timestamp
HEADER_ODR_ACCEL = Bit1, // 1: The ODR for accel is different for this accel data packet compared to the previous accel packet
HEADER_ODR_GYRO = Bit0, // 1: The ODR for gyro is different for this gyro data packet compared to the previous gyro packet
};
}
} // namespace InvenSense_ICM42688P

View File

@ -0,0 +1,5 @@
menuconfig DRIVERS_IMU_INVENSENSE_ICM45686
bool "icm45686"
default n
---help---
Enable support for icm45686

View File

@ -0,0 +1,92 @@
/****************************************************************************
*
* Copyright (c) 2023 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM45686.hpp"
#include <px4_platform_common/getopt.h>
#include <px4_platform_common/module.h>
void ICM45686::print_usage()
{
PRINT_MODULE_USAGE_NAME("icm42688p", "driver");
PRINT_MODULE_USAGE_SUBCATEGORY("imu");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_PARAMS_I2C_SPI_DRIVER(false, true);
PRINT_MODULE_USAGE_PARAM_INT('R', 0, 0, 35, "Rotation", true);
PRINT_MODULE_USAGE_PARAM_INT('C', 0, 0, 35000, "Input clock frequency (Hz)", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
}
extern "C" int icm45686_main(int argc, char *argv[])
{
int ch;
using ThisDriver = ICM45686;
BusCLIArguments cli{false, true};
cli.default_spi_frequency = SPI_SPEED;
while ((ch = cli.getOpt(argc, argv, "C:R:")) != EOF) {
switch (ch) {
case 'C':
cli.custom1 = atoi(cli.optArg());
break;
case 'R':
cli.rotation = (enum Rotation)atoi(cli.optArg());
break;
}
}
const char *verb = cli.optArg();
if (!verb) {
ThisDriver::print_usage();
return -1;
}
BusInstanceIterator iterator(MODULE_NAME, cli, DRV_IMU_DEVTYPE_ICM45686);
if (!strcmp(verb, "start")) {
return ThisDriver::module_start(cli, iterator);
}
if (!strcmp(verb, "stop")) {
return ThisDriver::module_stop(iterator);
}
if (!strcmp(verb, "status")) {
return ThisDriver::module_status(iterator);
}
ThisDriver::print_usage();
return -1;
}