LSM303D accel and mag working (still WIP)

This commit is contained in:
Julian Oes 2013-04-05 16:36:42 -07:00 committed by Lorenz Meier
parent 2187dc8e9a
commit f288c65baa
1 changed files with 489 additions and 75 deletions

View File

@ -98,17 +98,30 @@ static const int ERROR = -1;
#define ADDR_OUT_Z_H_A 0x2D
#define ADDR_CTRL_REG1 0x20
#define ADDR_CTRL_REG5 0x24
#define ADDR_CTRL_REG7 0x26
#define REG1_RATE_50HZ_A ((0<<7) | (1<<6) | (0<<5) | (1<<4))
#define REG1_RATE_100HZ_A ((0<<7) | (1<<6) | (1<<5) | (0<<4))
#define REG1_RATE_200HZ_A ((0<<7) | (1<<6) | (1<<5) | (1<<4))
#define REG1_RATE_400HZ_A ((1<<7) | (0<<6) | (0<<5) | (0<<4))
#define REG1_RATE_800HZ_A ((1<<7) | (0<<6) | (0<<5) | (1<<4))
#define REG1_RATE_1600HZ_A ((1<<7) | (0<<6) | (1<<5) | (0<<4))
#define REG1_CONT_UPDATE_A (0<<3)
#define REG1_Z_ENABLE_A (1<<2)
#define REG1_Y_ENABLE_A (1<<1)
#define REG1_X_ENABLE_A (1<<0)
#define REG5_TEMP_ENABLE (1<<7)
#define REG5_M_RES_HIGH ((1<<6) | (1<<5))
#define REG5_RATE_50HZ_M ((1<<4) | (0<<3) | (0<<2))
#define REG5_RATE_100HZ_M ((1<<4) | (0<<3) | (1<<2))
#define REG7_CONTINUOUS_MODE_M ((0<<1) | (0<<0))
#define ADDR_WHO_AM_I 0x0F
#define WHO_I_AM 0x49
@ -117,6 +130,8 @@ static const int ERROR = -1;
extern "C" { __EXPORT int lsm303d_main(int argc, char *argv[]); }
class LSM303D_mag;
class LSM303D : public device::SPI
{
public:
@ -136,25 +151,49 @@ public:
protected:
virtual int probe();
friend class LSM303D_mag;
virtual ssize_t mag_read(struct file *filp, char *buffer, size_t buflen);
virtual int mag_ioctl(struct file *filp, int cmd, unsigned long arg);
private:
struct hrt_call _call;
unsigned _call_interval;
LSM303D_mag *_mag;
unsigned _num_reports;
volatile unsigned _next_report;
volatile unsigned _oldest_report;
struct accel_report *_reports;
struct hrt_call _accel_call;
struct hrt_call _mag_call;
unsigned _call_accel_interval;
unsigned _call_mag_interval;
unsigned _num_accel_reports;
volatile unsigned _next_accel_report;
volatile unsigned _oldest_accel_report;
struct accel_report *_accel_reports;
struct accel_scale _accel_scale;
float _accel_range_scale;
float _accel_range_m_s2;
orb_advert_t _accel_topic;
unsigned _current_rate;
unsigned _current_range;
unsigned _num_mag_reports;
volatile unsigned _next_mag_report;
volatile unsigned _oldest_mag_report;
struct mag_report *_mag_reports;
perf_counter_t _sample_perf;
struct mag_scale _mag_scale;
float _mag_range_scale;
float _mag_range_ga;
orb_advert_t _mag_topic;
unsigned _current_accel_rate;
unsigned _current_accel_range;
unsigned _current_mag_rate;
unsigned _current_mag_range;
perf_counter_t _accel_sample_perf;
perf_counter_t _mag_sample_perf;
/**
* Start automatic measurement.
@ -177,11 +216,15 @@ private:
*/
static void measure_trampoline(void *arg);
static void mag_measure_trampoline(void *arg);
/**
* Fetch measurements from the sensor and update the report ring.
*/
void measure();
void mag_measure();
/**
* Read a register from the LSM303D
*
@ -230,27 +273,66 @@ private:
int set_samplerate(unsigned frequency);
};
/**
* Helper class implementing the mag driver node.
*/
class LSM303D_mag : public device::CDev
{
public:
LSM303D_mag(LSM303D *parent);
~LSM303D_mag();
virtual ssize_t read(struct file *filp, char *buffer, size_t buflen);
virtual int ioctl(struct file *filp, int cmd, unsigned long arg);
protected:
friend class LSM303D;
void parent_poll_notify();
private:
LSM303D *_parent;
void measure();
void measure_trampoline(void *arg);
};
/* helper macro for handling report buffer indices */
#define INCREMENT(_x, _lim) do { _x++; if (_x >= _lim) _x = 0; } while(0)
LSM303D::LSM303D(int bus, const char* path, spi_dev_e device) :
SPI("LSM303D", path, bus, device, SPIDEV_MODE3, 8000000),
_call_interval(0),
_num_reports(0),
_next_report(0),
_oldest_report(0),
_reports(nullptr),
_mag(new LSM303D_mag(this)),
_call_accel_interval(0),
_call_mag_interval(0),
_num_accel_reports(0),
_next_accel_report(0),
_oldest_accel_report(0),
_accel_reports(nullptr),
_accel_range_scale(0.0f),
_accel_range_m_s2(0.0f),
_accel_topic(-1),
_current_rate(0),
_current_range(0),
_sample_perf(perf_alloc(PC_ELAPSED, "lsm303d_read"))
_num_mag_reports(0),
_next_mag_report(0),
_oldest_mag_report(0),
_mag_reports(nullptr),
_mag_range_scale(0.0f),
_mag_range_ga(0.0f),
_current_accel_rate(0),
_current_accel_range(0),
_current_mag_rate(0),
_current_mag_range(0),
_accel_sample_perf(perf_alloc(PC_ELAPSED, "lsm303d_accel_read")),
_mag_sample_perf(perf_alloc(PC_ELAPSED, "lsm303d_mag_read"))
{
// enable debug() calls
_debug_enabled = true;
_accel_range_scale = 1.0f;
_mag_range_scale = 1.0f;
// default scale factors
_accel_scale.x_offset = 0;
_accel_scale.x_scale = 1.0f;
@ -258,6 +340,13 @@ LSM303D::LSM303D(int bus, const char* path, spi_dev_e device) :
_accel_scale.y_scale = 1.0f;
_accel_scale.z_offset = 0;
_accel_scale.z_scale = 1.0f;
_mag_scale.x_offset = 0;
_mag_scale.x_scale = 1.0f;
_mag_scale.y_offset = 0;
_mag_scale.y_scale = 1.0f;
_mag_scale.z_offset = 0;
_mag_scale.z_scale = 1.0f;
}
LSM303D::~LSM303D()
@ -266,36 +355,57 @@ LSM303D::~LSM303D()
stop();
/* free any existing reports */
if (_reports != nullptr)
delete[] _reports;
if (_accel_reports != nullptr)
delete[] _accel_reports;
if (_mag_reports != nullptr)
delete[] _mag_reports;
delete _mag;
/* delete the perf counter */
perf_free(_sample_perf);
perf_free(_accel_sample_perf);
perf_free(_mag_sample_perf);
}
int
LSM303D::init()
{
int ret = ERROR;
int mag_ret;
int fd_mag;
/* do SPI init (and probe) first */
if (SPI::init() != OK)
goto out;
/* allocate basic report buffers */
_num_reports = 2;
_oldest_report = _next_report = 0;
_reports = new struct accel_report[_num_reports];
_num_accel_reports = 2;
_oldest_accel_report = _next_accel_report = 0;
_accel_reports = new struct accel_report[_num_accel_reports];
if (_reports == nullptr)
if (_accel_reports == nullptr)
goto out;
/* advertise sensor topic */
memset(&_reports[0], 0, sizeof(_reports[0]));
_accel_topic = orb_advertise(ORB_ID(sensor_accel), &_reports[0]);
/* advertise accel topic */
memset(&_accel_reports[0], 0, sizeof(_accel_reports[0]));
_accel_topic = orb_advertise(ORB_ID(sensor_accel), &_accel_reports[0]);
_num_mag_reports = 2;
_oldest_mag_report = _next_mag_report = 0;
_mag_reports = new struct mag_report[_num_mag_reports];
if (_mag_reports == nullptr)
goto out;
/* advertise mag topic */
memset(&_mag_reports[0], 0, sizeof(_mag_reports[0]));
_mag_topic = orb_advertise(ORB_ID(sensor_mag), &_mag_reports[0]);
/* set default configuration */
write_reg(ADDR_CTRL_REG1, REG1_RATE_400HZ_A | REG1_X_ENABLE_A | REG1_Y_ENABLE_A | REG1_Z_ENABLE_A);
write_reg(ADDR_CTRL_REG7, REG7_CONTINUOUS_MODE_M);
write_reg(ADDR_CTRL_REG5, REG5_TEMP_ENABLE | REG5_RATE_50HZ_M | REG5_M_RES_HIGH);
// /* set default configuration */
write_reg(ADDR_CTRL_REG1, REG1_RATE_100HZ_A | REG1_X_ENABLE_A | REG1_Y_ENABLE_A | REG1_Z_ENABLE_A);
// write_reg(ADDR_CTRL_REG2, 0); /* disable high-pass filters */
// write_reg(ADDR_CTRL_REG3, 0); /* no interrupts - we don't use them */
// write_reg(ADDR_CTRL_REG4, REG4_BDU);
@ -307,6 +417,15 @@ LSM303D::init()
set_range(500); /* default to 500dps */
set_samplerate(0); /* max sample rate */
// _current_accel_rate = 100;
/* do CDev init for the gyro device node, keep it optional */
mag_ret = _mag->init();
if (mag_ret != OK) {
_mag_topic = -1;
}
ret = OK;
out:
return ret;
@ -336,7 +455,7 @@ LSM303D::read(struct file *filp, char *buffer, size_t buflen)
return -ENOSPC;
/* if automatic measurement is enabled */
if (_call_interval > 0) {
if (_call_accel_interval > 0) {
/*
* While there is space in the caller's buffer, and reports, copy them.
@ -344,10 +463,10 @@ LSM303D::read(struct file *filp, char *buffer, size_t buflen)
* we are careful to avoid racing with it.
*/
while (count--) {
if (_oldest_report != _next_report) {
memcpy(buffer, _reports + _oldest_report, sizeof(*_reports));
ret += sizeof(_reports[0]);
INCREMENT(_oldest_report, _num_reports);
if (_oldest_accel_report != _next_accel_report) {
memcpy(buffer, _accel_reports + _oldest_accel_report, sizeof(*_accel_reports));
ret += sizeof(_accel_reports[0]);
INCREMENT(_oldest_accel_report, _num_accel_reports);
}
}
@ -356,12 +475,53 @@ LSM303D::read(struct file *filp, char *buffer, size_t buflen)
}
/* manual measurement */
_oldest_report = _next_report = 0;
_oldest_accel_report = _next_accel_report = 0;
measure();
/* measurement will have generated a report, copy it out */
memcpy(buffer, _reports, sizeof(*_reports));
ret = sizeof(*_reports);
memcpy(buffer, _accel_reports, sizeof(*_accel_reports));
ret = sizeof(*_accel_reports);
return ret;
}
ssize_t
LSM303D::mag_read(struct file *filp, char *buffer, size_t buflen)
{
unsigned count = buflen / sizeof(struct mag_report);
int ret = 0;
/* buffer must be large enough */
if (count < 1)
return -ENOSPC;
/* if automatic measurement is enabled */
if (_call_mag_interval > 0) {
/*
* While there is space in the caller's buffer, and reports, copy them.
* Note that we may be pre-empted by the measurement code while we are doing this;
* we are careful to avoid racing with it.
*/
while (count--) {
if (_oldest_mag_report != _next_mag_report) {
memcpy(buffer, _mag_reports + _oldest_mag_report, sizeof(*_mag_reports));
ret += sizeof(_mag_reports[0]);
INCREMENT(_oldest_mag_report, _num_mag_reports);
}
}
/* if there was no data, warn the caller */
return ret ? ret : -EAGAIN;
}
/* manual measurement */
_oldest_mag_report = _next_mag_report = 0;
measure();
/* measurement will have generated a report, copy it out */
memcpy(buffer, _mag_reports, sizeof(*_mag_reports));
ret = sizeof(*_mag_reports);
return ret;
}
@ -377,7 +537,7 @@ LSM303D::ioctl(struct file *filp, int cmd, unsigned long arg)
/* switching to manual polling */
case SENSOR_POLLRATE_MANUAL:
stop();
_call_interval = 0;
_call_accel_interval = 0;
return OK;
/* external signalling not supported */
@ -396,7 +556,7 @@ LSM303D::ioctl(struct file *filp, int cmd, unsigned long arg)
/* adjust to a legal polling interval in Hz */
default: {
/* do we need to start internal polling? */
bool want_start = (_call_interval == 0);
bool want_start = (_call_accel_interval == 0);
/* convert hz to hrt interval via microseconds */
unsigned ticks = 1000000 / arg;
@ -407,7 +567,7 @@ LSM303D::ioctl(struct file *filp, int cmd, unsigned long arg)
/* update interval for next measurement */
/* XXX this is a bit shady, but no other way to adjust... */
_call.period = _call_interval = ticks;
_accel_call.period = _call_accel_interval = ticks;
/* if we need to start the poll state machine, do it */
if (want_start)
@ -419,10 +579,10 @@ LSM303D::ioctl(struct file *filp, int cmd, unsigned long arg)
}
case SENSORIOCGPOLLRATE:
if (_call_interval == 0)
if (_call_accel_interval == 0)
return SENSOR_POLLRATE_MANUAL;
return 1000000 / _call_interval;
return 1000000 / _call_accel_interval;
case SENSORIOCSQUEUEDEPTH: {
/* account for sentinel in the ring */
@ -440,16 +600,16 @@ LSM303D::ioctl(struct file *filp, int cmd, unsigned long arg)
/* reset the measurement state machine with the new buffer, free the old */
stop();
delete[] _reports;
_num_reports = arg;
_reports = buf;
delete[] _accel_reports;
_num_accel_reports = arg;
_accel_reports = buf;
start();
return OK;
}
case SENSORIOCGQUEUEDEPTH:
return _num_reports - 1;
return _num_accel_reports - 1;
case SENSORIOCRESET:
/* XXX implement */
@ -461,6 +621,110 @@ LSM303D::ioctl(struct file *filp, int cmd, unsigned long arg)
}
}
int
LSM303D::mag_ioctl(struct file *filp, int cmd, unsigned long arg)
{
switch (cmd) {
case SENSORIOCSPOLLRATE: {
switch (arg) {
/* switching to manual polling */
case SENSOR_POLLRATE_MANUAL:
stop();
_call_mag_interval = 0;
return OK;
/* external signalling not supported */
case SENSOR_POLLRATE_EXTERNAL:
/* zero would be bad */
case 0:
return -EINVAL;
/* set default/max polling rate */
case SENSOR_POLLRATE_MAX:
case SENSOR_POLLRATE_DEFAULT:
/* 50 Hz is max for mag */
return mag_ioctl(filp, SENSORIOCSPOLLRATE, 50);
/* adjust to a legal polling interval in Hz */
default: {
/* do we need to start internal polling? */
bool want_start = (_call_mag_interval == 0);
/* convert hz to hrt interval via microseconds */
unsigned ticks = 1000000 / arg;
/* check against maximum sane rate */
if (ticks < 1000)
return -EINVAL;
/* update interval for next measurement */
/* XXX this is a bit shady, but no other way to adjust... */
_mag_call.period = _call_mag_interval = ticks;
/* if we need to start the poll state machine, do it */
if (want_start)
start();
return OK;
}
}
}
case SENSORIOCGPOLLRATE:
if (_call_mag_interval == 0)
return SENSOR_POLLRATE_MANUAL;
return 1000000 / _call_mag_interval;
case SENSORIOCSQUEUEDEPTH:
case SENSORIOCGQUEUEDEPTH:
case SENSORIOCRESET:
return ioctl(filp, cmd, arg);
case MAGIOCSSAMPLERATE:
// case MAGIOCGSAMPLERATE:
/* XXX not implemented */
return -EINVAL;
case MAGIOCSLOWPASS:
// case MAGIOCGLOWPASS:
/* XXX not implemented */
// _set_dlpf_filter((uint16_t)arg);
return -EINVAL;
case MAGIOCSSCALE:
/* copy scale in */
memcpy(&_mag_scale, (struct mag_scale *) arg, sizeof(_mag_scale));
return OK;
case MAGIOCGSCALE:
/* copy scale out */
memcpy((struct mag_scale *) arg, &_mag_scale, sizeof(_mag_scale));
return OK;
case MAGIOCSRANGE:
// case MAGIOCGRANGE:
/* XXX not implemented */
// XXX change these two values on set:
// _mag_range_scale = xx
// _mag_range_ga = xx
return -EINVAL;
case MAGIOCSELFTEST:
/* XXX not implemented */
// return self_test();
return -EINVAL;
default:
/* give it to the superclass */
return SPI::ioctl(filp, cmd, arg);
}
}
uint8_t
LSM303D::read_reg(unsigned reg)
{
@ -529,6 +793,8 @@ LSM303D::set_range(unsigned max_dps)
int
LSM303D::set_samplerate(unsigned frequency)
{
_current_accel_rate = 100;
// uint8_t bits = REG1_POWER_NORMAL | REG1_Z_ENABLE | REG1_Y_ENABLE | REG1_X_ENABLE;
//
// if (frequency == 0)
@ -566,16 +832,19 @@ LSM303D::start()
stop();
/* reset the report ring */
_oldest_report = _next_report = 0;
_oldest_accel_report = _next_accel_report = 0;
_oldest_mag_report = _next_mag_report = 0;
/* start polling at the specified rate */
hrt_call_every(&_call, 1000, _call_interval, (hrt_callout)&LSM303D::measure_trampoline, this);
hrt_call_every(&_accel_call, 1000, _call_accel_interval, (hrt_callout)&LSM303D::measure_trampoline, this);
hrt_call_every(&_mag_call, 1000, _call_mag_interval, (hrt_callout)&LSM303D::mag_measure_trampoline, this);
}
void
LSM303D::stop()
{
hrt_cancel(&_call);
hrt_cancel(&_accel_call);
hrt_cancel(&_mag_call);
}
void
@ -587,6 +856,15 @@ LSM303D::measure_trampoline(void *arg)
dev->measure();
}
void
LSM303D::mag_measure_trampoline(void *arg)
{
LSM303D *dev = (LSM303D *)arg;
/* make another measurement */
dev->mag_measure();
}
void
LSM303D::measure()
{
@ -609,17 +887,17 @@ LSM303D::measure()
int16_t x;
int16_t y;
int16_t z;
} raw_report_accel;
} raw_accel_report;
#pragma pack(pop)
accel_report *report = &_reports[_next_report];
accel_report *accel_report = &_accel_reports[_next_accel_report];
/* start the performance counter */
perf_begin(_sample_perf);
perf_begin(_accel_sample_perf);
/* fetch data from the sensor */
raw_report_accel.cmd = ADDR_STATUS_A | DIR_READ | ADDR_INCREMENT;
transfer((uint8_t *)&raw_report_accel, (uint8_t *)&raw_report_accel, sizeof(raw_report_accel));
raw_accel_report.cmd = ADDR_STATUS_A | DIR_READ | ADDR_INCREMENT;
transfer((uint8_t *)&raw_accel_report, (uint8_t *)&raw_accel_report, sizeof(raw_accel_report));
/*
* 1) Scale raw value to SI units using scaling from datasheet.
@ -637,42 +915,151 @@ LSM303D::measure()
*/
report->timestamp = hrt_absolute_time();
accel_report->timestamp = hrt_absolute_time();
/* XXX adjust for sensor alignment to board here */
report->x_raw = raw_report_accel.x;
report->y_raw = raw_report_accel.y;
report->z_raw = raw_report_accel.z;
accel_report->x_raw = raw_accel_report.x;
accel_report->y_raw = raw_accel_report.y;
accel_report->z_raw = raw_accel_report.z;
// report->x = ((report->x_raw * _gyro_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
// report->y = ((report->y_raw * _gyro_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
// report->z = ((report->z_raw * _gyro_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;
accel_report->x = ((accel_report->x_raw * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale;
accel_report->y = ((accel_report->y_raw * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale;
accel_report->z = ((accel_report->z_raw * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale;
// report->scaling = _gyro_range_scale;
// report->range_rad_s = _gyro_range_rad_s;
/* post a report to the ring - note, not locked */
INCREMENT(_next_report, _num_reports);
INCREMENT(_next_accel_report, _num_accel_reports);
/* if we are running up against the oldest report, fix it */
if (_next_report == _oldest_report)
INCREMENT(_oldest_report, _num_reports);
if (_next_accel_report == _oldest_accel_report)
INCREMENT(_oldest_accel_report, _num_accel_reports);
/* notify anyone waiting for data */
poll_notify(POLLIN);
/* publish for subscribers */
orb_publish(ORB_ID(sensor_accel), _accel_topic, report);
orb_publish(ORB_ID(sensor_accel), _accel_topic, accel_report);
/* stop the perf counter */
perf_end(_sample_perf);
perf_end(_accel_sample_perf);
}
void
LSM303D::mag_measure()
{
/* status register and data as read back from the device */
#pragma pack(push, 1)
struct {
uint8_t cmd;
uint8_t status;
int16_t x;
int16_t y;
int16_t z;
} raw_mag_report;
#pragma pack(pop)
mag_report *mag_report = &_mag_reports[_next_mag_report];
/* start the performance counter */
perf_begin(_mag_sample_perf);
/* fetch data from the sensor */
raw_mag_report.cmd = ADDR_STATUS_M | DIR_READ | ADDR_INCREMENT;
transfer((uint8_t *)&raw_mag_report, (uint8_t *)&raw_mag_report, sizeof(raw_mag_report));
/*
* 1) Scale raw value to SI units using scaling from datasheet.
* 2) Subtract static offset (in SI units)
* 3) Scale the statically calibrated values with a linear
* dynamically obtained factor
*
* Note: the static sensor offset is the number the sensor outputs
* at a nominally 'zero' input. Therefore the offset has to
* be subtracted.
*
* Example: A gyro outputs a value of 74 at zero angular rate
* the offset is 74 from the origin and subtracting
* 74 from all measurements centers them around zero.
*/
mag_report->timestamp = hrt_absolute_time();
/* XXX adjust for sensor alignment to board here */
mag_report->x_raw = raw_mag_report.x;
mag_report->y_raw = raw_mag_report.y;
mag_report->z_raw = raw_mag_report.z;
mag_report->x = ((mag_report->x_raw * _mag_range_scale) - _mag_scale.x_offset) * _mag_scale.x_scale;
mag_report->y = ((mag_report->y_raw * _mag_range_scale) - _mag_scale.y_offset) * _mag_scale.y_scale;
mag_report->z = ((mag_report->z_raw * _mag_range_scale) - _mag_scale.z_offset) * _mag_scale.z_scale;
// report->scaling = _gyro_range_scale;
// report->range_rad_s = _gyro_range_rad_s;
/* post a report to the ring - note, not locked */
INCREMENT(_next_mag_report, _num_mag_reports);
/* if we are running up against the oldest report, fix it */
if (_next_mag_report == _oldest_mag_report)
INCREMENT(_oldest_mag_report, _num_mag_reports);
/* notify anyone waiting for data */
poll_notify(POLLIN);
/* publish for subscribers */
orb_publish(ORB_ID(sensor_mag), _mag_topic, mag_report);
/* stop the perf counter */
perf_end(_mag_sample_perf);
}
void
LSM303D::print_info()
{
perf_print_counter(_sample_perf);
perf_print_counter(_accel_sample_perf);
printf("report queue: %u (%u/%u @ %p)\n",
_num_reports, _oldest_report, _next_report, _reports);
_num_accel_reports, _oldest_accel_report, _next_accel_report, _accel_reports);
perf_print_counter(_mag_sample_perf);
printf("report queue: %u (%u/%u @ %p)\n",
_num_mag_reports, _oldest_mag_report, _next_mag_report, _mag_reports);
}
LSM303D_mag::LSM303D_mag(LSM303D *parent) :
CDev("LSM303D_mag", MAG_DEVICE_PATH),
_parent(parent)
{
}
LSM303D_mag::~LSM303D_mag()
{
}
void
LSM303D_mag::parent_poll_notify()
{
poll_notify(POLLIN);
}
ssize_t
LSM303D_mag::read(struct file *filp, char *buffer, size_t buflen)
{
return _parent->mag_read(filp, buffer, buflen);
}
int
LSM303D_mag::ioctl(struct file *filp, int cmd, unsigned long arg)
{
return _parent->mag_ioctl(filp, cmd, arg);
}
void
LSM303D_mag::measure()
{
_parent->mag_measure();
}
void
LSM303D_mag::measure_trampoline(void *arg)
{
_parent->mag_measure_trampoline(arg);
}
/**
@ -694,7 +1081,7 @@ void info();
void
start()
{
int fd;
int fd, fd_mag;
if (g_dev != nullptr)
errx(1, "already started");
@ -717,6 +1104,16 @@ start()
if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0)
goto fail;
fd_mag = open(MAG_DEVICE_PATH, O_RDONLY);
/* don't fail if open cannot be opened */
if (0 <= fd_mag) {
if (ioctl(fd_mag, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) {
goto fail;
}
}
exit(0);
fail:
@ -746,10 +1143,6 @@ test()
if (fd_accel < 0)
err(1, "%s open failed", ACCEL_DEVICE_PATH);
/* reset to manual polling */
// if (ioctl(fd_accel, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_MANUAL) < 0)
// err(1, "reset to manual polling");
/* do a simple demand read */
sz = read(fd_accel, &a_report, sizeof(a_report));
@ -764,9 +1157,30 @@ test()
warnx("accel z: \t%d\traw", (int)a_report.z_raw);
// warnx("accel range: %8.4f m/s^2", (double)a_report.range_m_s2);
int fd_mag = -1;
struct mag_report m_report;
/* get the driver */
fd_mag = open(MAG_DEVICE_PATH, O_RDONLY);
if (fd_mag < 0)
err(1, "%s open failed", MAG_DEVICE_PATH);
/* do a simple demand read */
sz = read(fd_mag, &m_report, sizeof(m_report));
if (sz != sizeof(m_report))
err(1, "immediate read failed");
warnx("mag x: \t%d\traw", (int)m_report.x_raw);
warnx("mag y: \t%d\traw", (int)m_report.y_raw);
warnx("mag z: \t%d\traw", (int)m_report.z_raw);
/* XXX add poll-rate tests here too */
reset();
// reset();
errx(0, "PASS");
}