Streamline python script for temp cal. (#6416)

* Streamline python script for temp cal.

* Simplify file generation for temp calibration.
This commit is contained in:
James Goppert 2017-01-24 18:42:15 -05:00 committed by GitHub
parent 1abd629461
commit b86380086e
2 changed files with 197 additions and 812 deletions

1
Tools/.gitignore vendored
View File

@ -1,2 +1,3 @@
parameters.wiki
parameters.xml
*.pdf

View File

@ -1,4 +1,29 @@
#! /usr/bin/env python
"""
Reads in IMU data from a static thermal calibration test and performs
a curve fit of gyro, accel and baro bias vs temperature
Data can be gathered using the following sequence:
1) Set the TC_A_ENABLE, TC_B_ENABLE and TC_G_ENABLE parameters to 0 to
thermal compensation and reboot
2) Perform a gyro and accel cal
2) Set the SYS_LOGGER parameter to 1 to use the new system logger
3) Set the SDLOG_MODE parameter to 3 to enable logging of sensor data
for calibration and power off
4) Cold soak the board for 30 minutes
5) Move to a warm dry environment.
6) Apply power for 45 minutes, keeping the board still.
7) Remove power and extract the .ulog file
8) Open a terminal window in the script file directory
9) Run the script file 'python process_sensor_caldata.py
<full path name to .ulog file>
Outputs thermal compensation parameters in a file named
<inputfilename>.params which can be loaded onto the
board using QGroundControl
Outputs summary plots in a pdf file named <inputfilename>.pdf
"""
from __future__ import print_function
@ -7,815 +32,174 @@ import os
import matplotlib.pyplot as plt
import numpy as np
from pyulog import *
import pyulog
class Param(dict):
def __init__(self, name, val):
"""
Reads in IMU data from a static thermal calibration test and performs a curve fit of gyro, accel and baro bias vs temperature
Data can be gathered using the following sequence:
1) Set the TC_A_ENABLE, TC_B_ENABLE and TC_G_ENABLE parameters to 0 to thermal compensation and reboot
2) Perform a gyro and accel cal
2) Set the SYS_LOGGER parameter to 1 to use the new system logger
3) Set the SDLOG_MODE parameter to 3 to enable logging of sensor data for calibration and power off
4) Cold soak the board for 30 minutes
5) Move to a warm dry environment.
6) Apply power for 45 minutes, keeping the board still.
7) Remove power and extract the .ulog file
8) Open a terminal window in the script file directory
9) Run the script file 'python process_sensor_caldata.py <full path name to .ulog file>
Outputs thermal compensation parameters in a file named <inputfilename>.params which can be loaded onto the board using QGroundControl
Outputs summary plots in a pdf file named <inputfilename>.pdf
Initialize a param dict
"""
self.name = name
self.val = val
def temp_calibration(data, topic, fields, units, label):
"""
Performe a temperature calibration on a sensor.
"""
parser = argparse.ArgumentParser(description='Analyse the sensor_gyro message data')
parser.add_argument('filename', metavar='file.ulg', help='ULog input file')
# pylint: disable=no-member
params = {}
def is_valid_directory(parser, arg):
if os.path.isdir(arg):
# Directory exists so return the directory
return arg
else:
parser.error('The directory {} does not exist'.format(arg))
int_params = ['ID']
float_params = [
'TMIN', 'TMAX', 'TREF',
'X0_0', 'X1_0', 'X2_0', 'X3_0',
'X0_1', 'X1_1', 'X2_1', 'X3_1',
'X0_2', 'X1_2', 'X2_2', 'X3_2',
'SCL_0', 'SCL_1', 'SCL_2'
]
args = parser.parse_args()
ulog_file_name = args.filename
# define data dictionary of thermal correction parameters
for field in int_params:
params[field] = {
'val': 0,
'type': 'INT',
}
ulog = ULog(ulog_file_name, None)
data = ulog.data_list
for field in float_params: params[field] = {
'val': 0,
'type': 'FLOAT',
}
# define constants
gravity = 9.80665
# curve fit the data for corrections - note
# corrections have oppsite sign to sensor bias
try:
params['ID']['val'] = int(np.median(data['device_id']))
except:
print('no device id')
pass
# extract gyro data
sensor_instance = 0
for d in data:
if d.name == 'sensor_gyro':
if sensor_instance == 0:
sensor_gyro_0 = d.data
print('found gyro 0 data')
if sensor_instance == 1:
sensor_gyro_1 = d.data
print('found gyro 1 data')
if sensor_instance == 2:
sensor_gyro_2 = d.data
print('found gyro 2 data')
sensor_instance = sensor_instance +1
# find the min, max and reference temperature
params['TMIN']['val'] = float(np.amin(data['temperature']))
params['TMAX']['val'] = float(np.amax(data['temperature']))
params['TREF']['val'] = float(0.5 * (params['TMIN']['val'] + params['TMAX']['val']))
temp_rel = data['temperature'] - params['TREF']['val']
temp_rel_resample = np.linspace(
float(params['TMIN']['val'] - params['TREF']['val']),
float(params['TMAX']['val'] - params['TREF']['val']), 100)
temp_resample = temp_rel_resample + params['TREF']['val']
# extract accel data
sensor_instance = 0
for d in data:
if d.name == 'sensor_accel':
if sensor_instance == 0:
sensor_accel_0 = d.data
print('found accel 0 data')
if sensor_instance == 1:
sensor_accel_1 = d.data
print('found accel 1 data')
if sensor_instance == 2:
sensor_accel_2 = d.data
print('found accel 2 data')
sensor_instance = sensor_instance +1
for i, field in enumerate(fields):
coef = np.polyfit(temp_rel, -data[field], 3)
for j in range(3):
params['X{:d}_{:d}'.format(3-j, i)]['val'] = float(coef[j])
fit_coef = np.poly1d(coef)
resample = fit_coef(temp_rel_resample)
# extract baro data
sensor_instance = 0
for d in data:
if d.name == 'sensor_baro':
if sensor_instance == 0:
sensor_baro_0 = d.data
print('found baro 0 data')
if sensor_instance == 1:
sensor_baro_1 = d.data
print('found baro 1 data')
if sensor_instance == 2:
sensor_baro_2 = d.data
print('found baro 2 data')
sensor_instance = sensor_instance +1
# draw plots
plt.subplot(len(fields), 1, i + 1)
plt.plot(data['temperature'], data[field], 'b')
plt.plot(temp_resample, -resample, 'r')
plt.title('{:s} Bias vs Temperature'.format(topic))
plt.ylabel('{:s} bias {:s}'.format(field, units))
plt.xlabel('temperature (degC)')
plt.grid()
return params
def process_file(log_path, out_path, template_path):
"""
Command line interface to temperature calibration.
"""
log = pyulog.ULog(log_path, 'sensor_gyro, sensor_accel, sensor_baro')
data = {}
for d in log.data_list:
data['{:s}_{:d}'.format(d.name, d.multi_id)] = d.data
params = {}
# open file to save plots to PDF
from matplotlib.backends.backend_pdf import PdfPages
output_plot_filename = ulog_file_name + ".pdf"
pp = PdfPages(output_plot_filename)
# from matplotlib.backends.backend_pdf import PdfPages
# output_plot_filename = ulog_file_name + ".pdf"
# pp = PdfPages(output_plot_filename)
#################################################################################
configs = [
{
'msg': 'sensor_gyro',
'fields': ['x', 'y', 'z'],
'units': 'rad/s',
'label': 'TC_G'
},
{
'msg': 'sensor_accel',
'fields': ['x', 'y', 'z'],
'units': 'm/s^2',
'label': 'TC_A'
},
{
'msg': 'sensor_baro',
'fields': ['pressure'],
'units': 'm',
'label': 'TC_B'
},
]
# define data dictionary of gyro 0 thermal correction parameters
gyro_0_params = {
'TC_G0_ID':0,
'TC_G0_TMIN':0.0,
'TC_G0_TMAX':0.0,
'TC_G0_TREF':0.0,
'TC_G0_X0_0':0.0,
'TC_G0_X1_0':0.0,
'TC_G0_X2_0':0.0,
'TC_G0_X3_0':0.0,
'TC_G0_X0_1':0.0,
'TC_G0_X1_1':0.0,
'TC_G0_X2_1':0.0,
'TC_G0_X3_1':0.0,
'TC_G0_X0_2':0.0,
'TC_G0_X1_2':0.0,
'TC_G0_X2_2':0.0,
'TC_G0_X3_2':0.0,
'TC_G0_SCL_0':1.0,
'TC_G0_SCL_1':1.0,
'TC_G0_SCL_2':1.0
for config in configs:
for d in log.data_list:
if d.name == config['msg']:
plt.figure(figsize=(20, 13))
topic = '{:s}_{:d}'.format(d.name, d.multi_id)
print('found {:s} data'.format(topic))
label='{:s}{:d}'.format(
config['label'], d.multi_id)
params[topic] = {
'params': temp_calibration(
data=d.data, topic=topic,
fields=config['fields'],
units=config['units'],
label=label),
'label': label
}
# curve fit the data for gyro 0 corrections - note corrections have oppsite sign to sensor bias
gyro_0_params['TC_G0_ID'] = int(np.median(sensor_gyro_0['device_id']))
# find the min, max and reference temperature
gyro_0_params['TC_G0_TMIN'] = np.amin(sensor_gyro_0['temperature'])
gyro_0_params['TC_G0_TMAX'] = np.amax(sensor_gyro_0['temperature'])
gyro_0_params['TC_G0_TREF'] = 0.5 * (gyro_0_params['TC_G0_TMIN'] + gyro_0_params['TC_G0_TMAX'])
temp_rel = sensor_gyro_0['temperature'] - gyro_0_params['TC_G0_TREF']
temp_rel_resample = np.linspace(gyro_0_params['TC_G0_TMIN']-gyro_0_params['TC_G0_TREF'], gyro_0_params['TC_G0_TMAX']-gyro_0_params['TC_G0_TREF'], 100)
temp_resample = temp_rel_resample + gyro_0_params['TC_G0_TREF']
# fit X axis
coef_gyro_0_x = np.polyfit(temp_rel,-sensor_gyro_0['x'],3)
gyro_0_params['TC_G0_X3_0'] = coef_gyro_0_x[0]
gyro_0_params['TC_G0_X2_0'] = coef_gyro_0_x[1]
gyro_0_params['TC_G0_X1_0'] = coef_gyro_0_x[2]
gyro_0_params['TC_G0_X0_0'] = coef_gyro_0_x[3]
fit_coef_gyro_0_x = np.poly1d(coef_gyro_0_x)
gyro_0_x_resample = fit_coef_gyro_0_x(temp_rel_resample)
# fit Y axis
coef_gyro_0_y = np.polyfit(temp_rel,-sensor_gyro_0['y'],3)
gyro_0_params['TC_G0_X3_1'] = coef_gyro_0_y[0]
gyro_0_params['TC_G0_X2_1'] = coef_gyro_0_y[1]
gyro_0_params['TC_G0_X1_1'] = coef_gyro_0_y[2]
gyro_0_params['TC_G0_X0_1'] = coef_gyro_0_y[3]
fit_coef_gyro_0_y = np.poly1d(coef_gyro_0_y)
gyro_0_y_resample = fit_coef_gyro_0_y(temp_rel_resample)
# fit Z axis
coef_gyro_0_z = np.polyfit(temp_rel,-sensor_gyro_0['z'],3)
gyro_0_params['TC_G0_X3_2'] = coef_gyro_0_z[0]
gyro_0_params['TC_G0_X2_2'] = coef_gyro_0_z[1]
gyro_0_params['TC_G0_X1_2'] = coef_gyro_0_z[2]
gyro_0_params['TC_G0_X0_2'] = coef_gyro_0_z[3]
fit_coef_gyro_0_z = np.poly1d(coef_gyro_0_z)
gyro_0_z_resample = fit_coef_gyro_0_z(temp_rel_resample)
# gyro0 vs temperature
plt.figure(1,figsize=(20,13))
# draw plots
plt.subplot(3,1,1)
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['x'],'b')
plt.plot(temp_resample,-gyro_0_x_resample,'r')
plt.title('Gyro 0 Bias vs Temperature')
plt.ylabel('X bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,2)
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['y'],'b')
plt.plot(temp_resample,-gyro_0_y_resample,'r')
plt.ylabel('Y bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,3)
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['z'],'b')
plt.plot(temp_resample,-gyro_0_z_resample,'r')
plt.ylabel('Z bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
pp.savefig()
#################################################################################
#################################################################################
# define data dictionary of gyro 1 thermal correction parameters
gyro_1_params = {
'TC_G1_ID':0,
'TC_G1_TMIN':0.0,
'TC_G1_TMAX':0.0,
'TC_G1_TREF':0.0,
'TC_G1_X0_0':0.0,
'TC_G1_X1_0':0.0,
'TC_G1_X2_0':0.0,
'TC_G1_X3_0':0.0,
'TC_G1_X0_1':0.0,
'TC_G1_X1_1':0.0,
'TC_G1_X2_1':0.0,
'TC_G1_X3_1':0.0,
'TC_G1_X0_2':0.0,
'TC_G1_X1_2':0.0,
'TC_G1_X2_2':0.0,
'TC_G1_X3_2':0.0,
'TC_G1_SCL_0':1.0,
'TC_G1_SCL_1':1.0,
'TC_G1_SCL_2':1.0
}
# curve fit the data for gyro 1 corrections - note corrections have oppsite sign to sensor bias
gyro_1_params['TC_G1_ID'] = int(np.median(sensor_gyro_1['device_id']))
# find the min, max and reference temperature
gyro_1_params['TC_G1_TMIN'] = np.amin(sensor_gyro_1['temperature'])
gyro_1_params['TC_G1_TMAX'] = np.amax(sensor_gyro_1['temperature'])
gyro_1_params['TC_G1_TREF'] = 0.5 * (gyro_1_params['TC_G1_TMIN'] + gyro_1_params['TC_G1_TMAX'])
temp_rel = sensor_gyro_1['temperature'] - gyro_1_params['TC_G1_TREF']
temp_rel_resample = np.linspace(gyro_1_params['TC_G1_TMIN']-gyro_1_params['TC_G1_TREF'], gyro_1_params['TC_G1_TMAX']-gyro_1_params['TC_G1_TREF'], 100)
temp_resample = temp_rel_resample + gyro_1_params['TC_G1_TREF']
# fit X axis
coef_gyro_1_x = np.polyfit(temp_rel,-sensor_gyro_1['x'],3)
gyro_1_params['TC_G1_X3_0'] = coef_gyro_1_x[0]
gyro_1_params['TC_G1_X2_0'] = coef_gyro_1_x[1]
gyro_1_params['TC_G1_X1_0'] = coef_gyro_1_x[2]
gyro_1_params['TC_G1_X0_0'] = coef_gyro_1_x[3]
fit_coef_gyro_1_x = np.poly1d(coef_gyro_1_x)
gyro_1_x_resample = fit_coef_gyro_1_x(temp_rel_resample)
# fit Y axis
coef_gyro_1_y = np.polyfit(temp_rel,-sensor_gyro_1['y'],3)
gyro_1_params['TC_G1_X3_1'] = coef_gyro_1_y[0]
gyro_1_params['TC_G1_X2_1'] = coef_gyro_1_y[1]
gyro_1_params['TC_G1_X1_1'] = coef_gyro_1_y[2]
gyro_1_params['TC_G1_X0_1'] = coef_gyro_1_y[3]
fit_coef_gyro_1_y = np.poly1d(coef_gyro_1_y)
gyro_1_y_resample = fit_coef_gyro_1_y(temp_rel_resample)
# fit Z axis
coef_gyro_1_z = np.polyfit(temp_rel,-sensor_gyro_1['z'],3)
gyro_1_params['TC_G1_X3_2'] = coef_gyro_1_z[0]
gyro_1_params['TC_G1_X2_2'] = coef_gyro_1_z[1]
gyro_1_params['TC_G1_X1_2'] = coef_gyro_1_z[2]
gyro_1_params['TC_G1_X0_2'] = coef_gyro_1_z[3]
fit_coef_gyro_1_z = np.poly1d(coef_gyro_1_z)
gyro_1_z_resample = fit_coef_gyro_1_z(temp_rel_resample)
# gyro1 vs temperature
plt.figure(2,figsize=(20,13))
# draw plots
plt.subplot(3,1,1)
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['x'],'b')
plt.plot(temp_resample,-gyro_1_x_resample,'r')
plt.title('Gyro 1 Bias vs Temperature')
plt.ylabel('X bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,2)
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['y'],'b')
plt.plot(temp_resample,-gyro_1_y_resample,'r')
plt.ylabel('Y bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,3)
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['z'],'b')
plt.plot(temp_resample,-gyro_1_z_resample,'r')
plt.ylabel('Z bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
pp.savefig()
#################################################################################
#################################################################################
# define data dictionary of gyro 2 thermal correction parameters
gyro_2_params = {
'TC_G2_ID':0,
'TC_G2_TMIN':0.0,
'TC_G2_TMAX':0.0,
'TC_G2_TREF':0.0,
'TC_G2_X0_0':0.0,
'TC_G2_X1_0':0.0,
'TC_G2_X2_0':0.0,
'TC_G2_X3_0':0.0,
'TC_G2_X0_1':0.0,
'TC_G2_X1_1':0.0,
'TC_G2_X2_1':0.0,
'TC_G2_X3_1':0.0,
'TC_G2_X0_2':0.0,
'TC_G2_X1_2':0.0,
'TC_G2_X2_2':0.0,
'TC_G2_X3_2':0.0,
'TC_G2_SCL_0':1.0,
'TC_G2_SCL_1':1.0,
'TC_G2_SCL_2':1.0
}
# curve fit the data for gyro 2 corrections - note corrections have oppsite sign to sensor bias
gyro_2_params['TC_G2_ID'] = int(np.median(sensor_gyro_2['device_id']))
# find the min, max and reference temperature
gyro_2_params['TC_G2_TMIN'] = np.amin(sensor_gyro_2['temperature'])
gyro_2_params['TC_G2_TMAX'] = np.amax(sensor_gyro_2['temperature'])
gyro_2_params['TC_G2_TREF'] = 0.5 * (gyro_2_params['TC_G2_TMIN'] + gyro_2_params['TC_G2_TMAX'])
temp_rel = sensor_gyro_2['temperature'] - gyro_2_params['TC_G2_TREF']
temp_rel_resample = np.linspace(gyro_2_params['TC_G2_TMIN']-gyro_2_params['TC_G2_TREF'], gyro_2_params['TC_G2_TMAX']-gyro_2_params['TC_G2_TREF'], 100)
temp_resample = temp_rel_resample + gyro_2_params['TC_G2_TREF']
# fit X axis
coef_gyro_2_x = np.polyfit(temp_rel,-sensor_gyro_2['x'],3)
gyro_2_params['TC_G2_X3_0'] = coef_gyro_2_x[0]
gyro_2_params['TC_G2_X2_0'] = coef_gyro_2_x[1]
gyro_2_params['TC_G2_X1_0'] = coef_gyro_2_x[2]
gyro_2_params['TC_G2_X0_0'] = coef_gyro_2_x[3]
fit_coef_gyro_2_x = np.poly1d(coef_gyro_2_x)
gyro_2_x_resample = fit_coef_gyro_2_x(temp_rel_resample)
# fit Y axis
coef_gyro_2_y = np.polyfit(temp_rel,-sensor_gyro_2['y'],3)
gyro_2_params['TC_G2_X3_1'] = coef_gyro_2_y[0]
gyro_2_params['TC_G2_X2_1'] = coef_gyro_2_y[1]
gyro_2_params['TC_G2_X1_1'] = coef_gyro_2_y[2]
gyro_2_params['TC_G2_X0_1'] = coef_gyro_2_y[3]
fit_coef_gyro_2_y = np.poly1d(coef_gyro_2_y)
gyro_2_y_resample = fit_coef_gyro_2_y(temp_rel_resample)
# fit Z axis
coef_gyro_2_z = np.polyfit(temp_rel,-sensor_gyro_2['z'],3)
gyro_2_params['TC_G2_X3_2'] = coef_gyro_2_z[0]
gyro_2_params['TC_G2_X2_2'] = coef_gyro_2_z[1]
gyro_2_params['TC_G2_X1_2'] = coef_gyro_2_z[2]
gyro_2_params['TC_G2_X0_2'] = coef_gyro_2_z[3]
fit_coef_gyro_2_z = np.poly1d(coef_gyro_2_z)
gyro_2_z_resample = fit_coef_gyro_2_z(temp_rel_resample)
# gyro2 vs temperature
plt.figure(3,figsize=(20,13))
# draw plots
plt.subplot(3,1,1)
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['x'],'b')
plt.plot(temp_resample,-gyro_2_x_resample,'r')
plt.title('Gyro 2 Bias vs Temperature')
plt.ylabel('X bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,2)
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['y'],'b')
plt.plot(temp_resample,-gyro_2_y_resample,'r')
plt.ylabel('Y bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,3)
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['z'],'b')
plt.plot(temp_resample,-gyro_2_z_resample,'r')
plt.ylabel('Z bias (rad/s)')
plt.xlabel('temperature (degC)')
plt.grid()
pp.savefig()
#################################################################################
#################################################################################
# define data dictionary of accel 0 thermal correction parameters
accel_0_params = {
'TC_A0_ID':0,
'TC_A0_TMIN':0.0,
'TC_A0_TMAX':0.0,
'TC_A0_TREF':0.0,
'TC_A0_X0_0':0.0,
'TC_A0_X1_0':0.0,
'TC_A0_X2_0':0.0,
'TC_A0_X3_0':0.0,
'TC_A0_X0_1':0.0,
'TC_A0_X1_1':0.0,
'TC_A0_X2_1':0.0,
'TC_A0_X3_1':0.0,
'TC_A0_X0_2':0.0,
'TC_A0_X1_2':0.0,
'TC_A0_X2_2':0.0,
'TC_A0_X3_2':0.0,
'TC_A0_SCL_0':1.0,
'TC_A0_SCL_1':1.0,
'TC_A0_SCL_2':1.0
}
# curve fit the data for accel 0 corrections - note corrections have oppsite sign to sensor bias
accel_0_params['TC_A0_ID'] = int(np.median(sensor_accel_0['device_id']))
# find the min, max and reference temperature
accel_0_params['TC_A0_TMIN'] = np.amin(sensor_accel_0['temperature'])
accel_0_params['TC_A0_TMAX'] = np.amax(sensor_accel_0['temperature'])
accel_0_params['TC_A0_TREF'] = 0.5 * (accel_0_params['TC_A0_TMIN'] + accel_0_params['TC_A0_TMAX'])
temp_rel = sensor_accel_0['temperature'] - accel_0_params['TC_A0_TREF']
temp_rel_resample = np.linspace(accel_0_params['TC_A0_TMIN']-accel_0_params['TC_A0_TREF'], accel_0_params['TC_A0_TMAX']-accel_0_params['TC_A0_TREF'], 100)
temp_resample = temp_rel_resample + accel_0_params['TC_A0_TREF']
# fit X axis
correction_x = np.median(sensor_accel_0['x'])-sensor_accel_0['x']
coef_accel_0_x = np.polyfit(temp_rel,correction_x,3)
accel_0_params['TC_A0_X3_0'] = coef_accel_0_x[0]
accel_0_params['TC_A0_X2_0'] = coef_accel_0_x[1]
accel_0_params['TC_A0_X1_0'] = coef_accel_0_x[2]
accel_0_params['TC_A0_X0_0'] = coef_accel_0_x[3]
fit_coef_accel_0_x = np.poly1d(coef_accel_0_x)
correction_x_resample = fit_coef_accel_0_x(temp_rel_resample)
# fit Y axis
correction_y = np.median(sensor_accel_0['y'])-sensor_accel_0['y']
coef_accel_0_y = np.polyfit(temp_rel,correction_y,3)
accel_0_params['TC_A0_X3_1'] = coef_accel_0_y[0]
accel_0_params['TC_A0_X2_1'] = coef_accel_0_y[1]
accel_0_params['TC_A0_X1_1'] = coef_accel_0_y[2]
accel_0_params['TC_A0_X0_1'] = coef_accel_0_y[3]
fit_coef_accel_0_y = np.poly1d(coef_accel_0_y)
correction_y_resample = fit_coef_accel_0_y(temp_rel_resample)
# fit Z axis
correction_z = np.median(sensor_accel_0['z'])-sensor_accel_0['z']
coef_accel_0_z = np.polyfit(temp_rel,correction_z,3)
accel_0_params['TC_A0_X3_2'] = coef_accel_0_z[0]
accel_0_params['TC_A0_X2_2'] = coef_accel_0_z[1]
accel_0_params['TC_A0_X1_2'] = coef_accel_0_z[2]
accel_0_params['TC_A0_X0_2'] = coef_accel_0_z[3]
fit_coef_accel_0_z = np.poly1d(coef_accel_0_z)
correction_z_resample = fit_coef_accel_0_z(temp_rel_resample)
# accel 0 vs temperature
plt.figure(4,figsize=(20,13))
# draw plots
plt.subplot(3,1,1)
plt.plot(sensor_accel_0['temperature'],-correction_x,'b')
plt.plot(temp_resample,-correction_x_resample,'r')
plt.title('Accel 0 Bias vs Temperature')
plt.ylabel('X bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,2)
plt.plot(sensor_accel_0['temperature'],-correction_y,'b')
plt.plot(temp_resample,-correction_y_resample,'r')
plt.ylabel('Y bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,3)
plt.plot(sensor_accel_0['temperature'],-correction_z,'b')
plt.plot(temp_resample,-correction_z_resample,'r')
plt.ylabel('Z bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
pp.savefig()
#################################################################################
#################################################################################
# define data dictionary of accel 1 thermal correction parameters
accel_1_params = {
'TC_A1_ID':0,
'TC_A1_TMIN':0.0,
'TC_A1_TMAX':0.0,
'TC_A1_TREF':0.0,
'TC_A1_X0_0':0.0,
'TC_A1_X1_0':0.0,
'TC_A1_X2_0':0.0,
'TC_A1_X3_0':0.0,
'TC_A1_X0_1':0.0,
'TC_A1_X1_1':0.0,
'TC_A1_X2_1':0.0,
'TC_A1_X3_1':0.0,
'TC_A1_X0_2':0.0,
'TC_A1_X1_2':0.0,
'TC_A1_X2_2':0.0,
'TC_A1_X3_2':0.0,
'TC_A1_SCL_0':1.0,
'TC_A1_SCL_1':1.0,
'TC_A1_SCL_2':1.0
}
# curve fit the data for accel 1 corrections - note corrections have oppsite sign to sensor bias
accel_1_params['TC_A1_ID'] = int(np.median(sensor_accel_1['device_id']))
# find the min, max and reference temperature
accel_1_params['TC_A1_TMIN'] = np.amin(sensor_accel_1['temperature'])
accel_1_params['TC_A1_TMAX'] = np.amax(sensor_accel_1['temperature'])
accel_1_params['TC_A1_TREF'] = 0.5 * (accel_1_params['TC_A1_TMIN'] + accel_1_params['TC_A1_TMAX'])
temp_rel = sensor_accel_1['temperature'] - accel_1_params['TC_A1_TREF']
temp_rel_resample = np.linspace(accel_1_params['TC_A1_TMIN']-accel_1_params['TC_A1_TREF'], accel_1_params['TC_A1_TMAX']-accel_1_params['TC_A1_TREF'], 100)
temp_resample = temp_rel_resample + accel_1_params['TC_A1_TREF']
# fit X axis
correction_x = np.median(sensor_accel_1['x'])-sensor_accel_1['x']
coef_accel_1_x = np.polyfit(temp_rel,correction_x,3)
accel_1_params['TC_A1_X3_0'] = coef_accel_1_x[0]
accel_1_params['TC_A1_X2_0'] = coef_accel_1_x[1]
accel_1_params['TC_A1_X1_0'] = coef_accel_1_x[2]
accel_1_params['TC_A1_X0_0'] = coef_accel_1_x[3]
fit_coef_accel_1_x = np.poly1d(coef_accel_1_x)
correction_x_resample = fit_coef_accel_1_x(temp_rel_resample)
# fit Y axis
correction_y = np.median(sensor_accel_1['y'])-sensor_accel_1['y']
coef_accel_1_y = np.polyfit(temp_rel,correction_y,3)
accel_1_params['TC_A1_X3_1'] = coef_accel_1_y[0]
accel_1_params['TC_A1_X2_1'] = coef_accel_1_y[1]
accel_1_params['TC_A1_X1_1'] = coef_accel_1_y[2]
accel_1_params['TC_A1_X0_1'] = coef_accel_1_y[3]
fit_coef_accel_1_y = np.poly1d(coef_accel_1_y)
correction_y_resample = fit_coef_accel_1_y(temp_rel_resample)
# fit Z axis
correction_z = np.median(sensor_accel_1['z'])-(sensor_accel_1['z'])
coef_accel_1_z = np.polyfit(temp_rel,correction_z,3)
accel_1_params['TC_A1_X3_2'] = coef_accel_1_z[0]
accel_1_params['TC_A1_X2_2'] = coef_accel_1_z[1]
accel_1_params['TC_A1_X1_2'] = coef_accel_1_z[2]
accel_1_params['TC_A1_X0_2'] = coef_accel_1_z[3]
fit_coef_accel_1_z = np.poly1d(coef_accel_1_z)
correction_z_resample = fit_coef_accel_1_z(temp_rel_resample)
# accel 1 vs temperature
plt.figure(5,figsize=(20,13))
# draw plots
plt.subplot(3,1,1)
plt.plot(sensor_accel_1['temperature'],-correction_x,'b')
plt.plot(temp_resample,-correction_x_resample,'r')
plt.title('Accel 1 Bias vs Temperature')
plt.ylabel('X bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,2)
plt.plot(sensor_accel_1['temperature'],-correction_y,'b')
plt.plot(temp_resample,-correction_y_resample,'r')
plt.ylabel('Y bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,3)
plt.plot(sensor_accel_1['temperature'],-correction_z,'b')
plt.plot(temp_resample,-correction_z_resample,'r')
plt.ylabel('Z bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
pp.savefig()
#################################################################################
#################################################################################
# define data dictionary of accel 2 thermal correction parameters
accel_2_params = {
'TC_A2_ID':0,
'TC_A2_TMIN':0.0,
'TC_A2_TMAX':0.0,
'TC_A2_TREF':0.0,
'TC_A2_X0_0':0.0,
'TC_A2_X1_0':0.0,
'TC_A2_X2_0':0.0,
'TC_A2_X3_0':0.0,
'TC_A2_X0_1':0.0,
'TC_A2_X1_1':0.0,
'TC_A2_X2_1':0.0,
'TC_A2_X3_1':0.0,
'TC_A2_X0_2':0.0,
'TC_A2_X1_2':0.0,
'TC_A2_X2_2':0.0,
'TC_A2_X3_2':0.0,
'TC_A2_SCL_0':1.0,
'TC_A2_SCL_1':1.0,
'TC_A2_SCL_2':1.0
}
# curve fit the data for accel 2 corrections - note corrections have oppsite sign to sensor bias
accel_2_params['TC_A2_ID'] = int(np.median(sensor_accel_2['device_id']))
# find the min, max and reference temperature
accel_2_params['TC_A2_TMIN'] = np.amin(sensor_accel_2['temperature'])
accel_2_params['TC_A2_TMAX'] = np.amax(sensor_accel_2['temperature'])
accel_2_params['TC_A2_TREF'] = 0.5 * (accel_2_params['TC_A2_TMIN'] + accel_2_params['TC_A2_TMAX'])
temp_rel = sensor_accel_2['temperature'] - accel_2_params['TC_A2_TREF']
temp_rel_resample = np.linspace(accel_2_params['TC_A2_TMIN']-accel_2_params['TC_A2_TREF'], accel_2_params['TC_A2_TMAX']-accel_2_params['TC_A2_TREF'], 100)
temp_resample = temp_rel_resample + accel_2_params['TC_A2_TREF']
# fit X axis
correction_x = np.median(sensor_accel_2['x'])-sensor_accel_2['x']
coef_accel_2_x = np.polyfit(temp_rel,correction_x,3)
accel_2_params['TC_A2_X3_0'] = coef_accel_2_x[0]
accel_2_params['TC_A2_X2_0'] = coef_accel_2_x[1]
accel_2_params['TC_A2_X1_0'] = coef_accel_2_x[2]
accel_2_params['TC_A2_X0_0'] = coef_accel_2_x[3]
fit_coef_accel_2_x = np.poly1d(coef_accel_2_x)
correction_x_resample = fit_coef_accel_2_x(temp_rel_resample)
# fit Y axis
correction_y = np.median(sensor_accel_2['y'])-sensor_accel_2['y']
coef_accel_2_y = np.polyfit(temp_rel,correction_y,3)
accel_2_params['TC_A2_X3_1'] = coef_accel_2_y[0]
accel_2_params['TC_A2_X2_1'] = coef_accel_2_y[1]
accel_2_params['TC_A2_X1_1'] = coef_accel_2_y[2]
accel_2_params['TC_A2_X0_1'] = coef_accel_2_y[3]
fit_coef_accel_2_y = np.poly1d(coef_accel_2_y)
correction_y_resample = fit_coef_accel_2_y(temp_rel_resample)
# fit Z axis
correction_z = np.median(sensor_accel_2['z'])-sensor_accel_2['z']
coef_accel_2_z = np.polyfit(temp_rel,correction_z,3)
accel_2_params['TC_A2_X3_2'] = coef_accel_2_z[0]
accel_2_params['TC_A2_X2_2'] = coef_accel_2_z[1]
accel_2_params['TC_A2_X1_2'] = coef_accel_2_z[2]
accel_2_params['TC_A2_X0_2'] = coef_accel_2_z[3]
fit_coef_accel_2_z = np.poly1d(coef_accel_2_z)
correction_z_resample = fit_coef_accel_2_z(temp_rel_resample)
# accel 2 vs temperature
plt.figure(6,figsize=(20,13))
# draw plots
plt.subplot(3,1,1)
plt.plot(sensor_accel_2['temperature'],-correction_x,'b')
plt.plot(temp_resample,-correction_x_resample,'r')
plt.title('Accel 2 Bias vs Temperature')
plt.ylabel('X bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,2)
plt.plot(sensor_accel_2['temperature'],-correction_y,'b')
plt.plot(temp_resample,-correction_y_resample,'r')
plt.ylabel('Y bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
# draw plots
plt.subplot(3,1,3)
plt.plot(sensor_accel_2['temperature'],-correction_z,'b')
plt.plot(temp_resample,-correction_z_resample,'r')
plt.ylabel('Z bias (m/s/s)')
plt.xlabel('temperature (degC)')
plt.grid()
pp.savefig()
#################################################################################
#################################################################################
# define data dictionary of baro 0 thermal correction parameters
baro_0_params = {
'TC_B0_ID':0,
'TC_B0_TMIN':0.0,
'TC_B0_TMAX':0.0,
'TC_B0_TREF':0.0,
'TC_B0_X0':0.0,
'TC_B0_X1':0.0,
'TC_B0_X2':0.0,
'TC_B0_X3':0.0,
'TC_B0_X4':0.0,
'TC_B0_X5':0.0,
'TC_B0_SCL':1.0,
}
# curve fit the data for baro 0 corrections - note corrections have oppsite sign to sensor bias
baro_0_params['TC_B0_ID'] = int(np.median(sensor_baro_0['device_id']))
# find the min, max and reference temperature
baro_0_params['TC_B0_TMIN'] = np.amin(sensor_baro_0['temperature'])
baro_0_params['TC_B0_TMAX'] = np.amax(sensor_baro_0['temperature'])
baro_0_params['TC_B0_TREF'] = 0.5 * (baro_0_params['TC_B0_TMIN'] + baro_0_params['TC_B0_TMAX'])
temp_rel = sensor_baro_0['temperature'] - baro_0_params['TC_B0_TREF']
temp_rel_resample = np.linspace(baro_0_params['TC_B0_TMIN']-baro_0_params['TC_B0_TREF'], baro_0_params['TC_B0_TMAX']-baro_0_params['TC_B0_TREF'], 100)
temp_resample = temp_rel_resample + baro_0_params['TC_B0_TREF']
# fit data
median_pressure =100*np.median(sensor_baro_0['pressure']);
coef_baro_0_x = np.polyfit(temp_rel,median_pressure-100*sensor_baro_0['pressure'],5) # convert from hPa to Pa
baro_0_params['TC_B0_X5'] = coef_baro_0_x[0]
baro_0_params['TC_B0_X4'] = coef_baro_0_x[1]
baro_0_params['TC_B0_X3'] = coef_baro_0_x[2]
baro_0_params['TC_B0_X2'] = coef_baro_0_x[3]
baro_0_params['TC_B0_X1'] = coef_baro_0_x[4]
baro_0_params['TC_B0_X0'] = coef_baro_0_x[5]
fit_coef_baro_0_x = np.poly1d(coef_baro_0_x)
baro_0_x_resample = fit_coef_baro_0_x(temp_rel_resample)
# baro 0 vs temperature
plt.figure(7,figsize=(20,13))
# draw plots
plt.plot(sensor_baro_0['temperature'],100*sensor_baro_0['pressure']-median_pressure,'b')
plt.plot(temp_resample,-baro_0_x_resample,'r')
plt.title('Baro 0 Bias vs Temperature')
plt.ylabel('X bias (Pa)')
plt.xlabel('temperature (degC)')
plt.grid()
pp.savefig()
#################################################################################
# close the pdf file
pp.close()
# clase all figures
plt.close("all")
# write correction parameters to file
test_results_filename = ulog_file_name + ".params"
file = open(test_results_filename,"w")
file.write("# Sensor thermal compensation parameters\n")
file.write("#\n")
file.write("# Vehicle-Id Component-Id Name Value Type\n")
# accel 0 corrections
key_list_accel = list(accel_0_params.keys())
key_list_accel.sort
for key in key_list_accel:
if key == 'TC_A0_ID':
type = "6"
else:
type = "9"
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_0_params[key])+"\t"+type+"\n")
# accel 1 corrections
key_list_accel = list(accel_1_params.keys())
key_list_accel.sort
for key in key_list_accel:
if key == 'TC_A1_ID':
type = "6"
else:
type = "9"
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_1_params[key])+"\t"+type+"\n")
# accel 2 corrections
key_list_accel = list(accel_2_params.keys())
key_list_accel.sort
for key in key_list_accel:
if key == 'TC_A2_ID':
type = "6"
else:
type = "9"
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_2_params[key])+"\t"+type+"\n")
# baro 0 corrections
key_list_accel = list(baro_0_params.keys())
key_list_accel.sort
for key in key_list_accel:
if key == 'TC_B0_ID':
type = "6"
else:
type = "9"
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_0_params[key])+"\t"+type+"\n")
# gyro 0 corrections
key_list_gyro = list(gyro_0_params.keys())
key_list_gyro.sort()
for key in key_list_gyro:
if key == 'TC_G0_ID':
type = "6"
else:
type = "9"
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_0_params[key])+"\t"+type+"\n")
# gyro 1 corrections
key_list_gyro = list(gyro_1_params.keys())
key_list_gyro.sort()
for key in key_list_gyro:
if key == 'TC_G1_ID':
type = "6"
else:
type = "9"
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_1_params[key])+"\t"+type+"\n")
# gyro 2 corrections
key_list_gyro = list(gyro_2_params.keys())
key_list_gyro.sort()
for key in key_list_gyro:
if key == 'TC_G2_ID':
type = "6"
else:
type = "9"
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_2_params[key])+"\t"+type+"\n")
file.close()
print('Correction parameters written to ' + test_results_filename)
print('Plots saved to ' + output_plot_filename)
plt.savefig('{:s}_cal.pdf'.format(topic))
# JSON file generation
# import json
# print(json.dumps(params, indent=2))
body = ''
for sensor in sorted(params.keys()):
for param in sorted(params[sensor]['params'].keys()):
label = params[sensor]['label']
pdict = params[sensor]['params']
if pdict[param]['type'] == 'INT':
type_id = 6
elif pdict[param]['type'] == 'FLOAT':
type_id = 9
val = pdict[param]['val']
name = '{:s}_{:s}'.format(label, param)
body += "1\t1\t{name:20s}\t{val:15g}\t{type_id:5d}\n".format(**locals())
# simple template file output
text = """# Sensor thermal compensation parameters
#
# Vehicle-Id Component-Id Name Value Type
{body:s}
""".format(body=body)
with open(out_path, 'w') as f:
f.write(text)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Analyse the sensor_gyro message data')
parser.add_argument('filename', metavar='file.ulg', help='ULog input file')
args = parser.parse_args()
ulog_file_name = args.filename
template_path = os.path.join(os.path.dirname(
os.path.realpath(__file__)), 'templates')
process_file(log_path=args.filename, out_path=ulog_file_name.replace('ulg', 'params'),
template_path=template_path)
# vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 :