Merge branch 'master' into sdlog2

This commit is contained in:
Anton Babushkin 2013-06-04 16:51:12 +04:00
commit aedacc7bc8
12 changed files with 470 additions and 136 deletions

View File

@ -739,7 +739,7 @@ UBX::configure_message_rate(uint8_t msg_class, uint8_t msg_id, uint8_t rate)
msg.msg_class = msg_class;
msg.msg_id = msg_id;
msg.rate = rate;
send_message(CFG, UBX_MESSAGE_CFG_MSG, &msg, sizeof(msg));
send_message(UBX_CLASS_CFG, UBX_MESSAGE_CFG_MSG, &msg, sizeof(msg));
}
void

View File

@ -53,6 +53,7 @@
#include <termios.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <systemlib/err.h>
#include <systemlib/systemlib.h>
#include "messages.h"
@ -60,56 +61,44 @@
static int thread_should_exit = false; /**< Deamon exit flag */
static int thread_running = false; /**< Deamon status flag */
static int deamon_task; /**< Handle of deamon task / thread */
static char *daemon_name = "hott_telemetry";
static char *commandline_usage = "usage: hott_telemetry start|status|stop [-d <device>]";
static const char daemon_name[] = "hott_telemetry";
static const char commandline_usage[] = "usage: hott_telemetry start|status|stop [-d <device>]";
/* A little console messaging experiment - console helper macro */
#define FATAL_MSG(_msg) fprintf(stderr, "[%s] %s\n", daemon_name, _msg); exit(1);
#define ERROR_MSG(_msg) fprintf(stderr, "[%s] %s\n", daemon_name, _msg);
#define INFO_MSG(_msg) printf("[%s] %s\n", daemon_name, _msg);
/**
* Deamon management function.
*/
__EXPORT int hott_telemetry_main(int argc, char *argv[]);
/**
* Mainloop of deamon.
* Mainloop of daemon.
*/
int hott_telemetry_thread_main(int argc, char *argv[]);
static int read_data(int uart, int *id);
static int send_data(int uart, uint8_t *buffer, int size);
static int recv_req_id(int uart, uint8_t *id);
static int send_data(int uart, uint8_t *buffer, size_t size);
static int open_uart(const char *device, struct termios *uart_config_original)
static int
open_uart(const char *device, struct termios *uart_config_original)
{
/* baud rate */
int speed = B19200;
int uart;
static const speed_t speed = B19200;
/* open uart */
uart = open(device, O_RDWR | O_NOCTTY);
const int uart = open(device, O_RDWR | O_NOCTTY);
if (uart < 0) {
char msg[80];
sprintf(msg, "Error opening port: %s\n", device);
FATAL_MSG(msg);
err(1, "Error opening port: %s", device);
}
/* Try to set baud rate */
struct termios uart_config;
/* Back up the original uart configuration to restore it after exit */
int termios_state;
/* Back up the original uart configuration to restore it after exit */
char msg[80];
if ((termios_state = tcgetattr(uart, uart_config_original)) < 0) {
sprintf(msg, "Error getting baudrate / termios config for %s: %d\n", device, termios_state);
close(uart);
FATAL_MSG(msg);
err(1, "Error getting baudrate / termios config for %s: %d", device, termios_state);
}
/* Fill the struct for the new configuration */
struct termios uart_config;
tcgetattr(uart, &uart_config);
/* Clear ONLCR flag (which appends a CR for every LF) */
@ -117,16 +106,14 @@ static int open_uart(const char *device, struct termios *uart_config_original)
/* Set baud rate */
if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) {
sprintf(msg, "Error setting baudrate / termios config for %s: %d (cfsetispeed, cfsetospeed)\n",
device, termios_state);
close(uart);
FATAL_MSG(msg);
err(1, "Error setting baudrate / termios config for %s: %d (cfsetispeed, cfsetospeed)",
device, termios_state);
}
if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config)) < 0) {
sprintf(msg, "Error setting baudrate / termios config for %s (tcsetattr)\n", device);
close(uart);
FATAL_MSG(msg);
err(1, "Error setting baudrate / termios config for %s (tcsetattr)", device);
}
/* Activate single wire mode */
@ -135,39 +122,42 @@ static int open_uart(const char *device, struct termios *uart_config_original)
return uart;
}
int read_data(int uart, int *id)
int
recv_req_id(int uart, uint8_t *id)
{
const int timeout = 1000;
static const int timeout_ms = 1000; // TODO make it a define
struct pollfd fds[] = { { .fd = uart, .events = POLLIN } };
char mode;
uint8_t mode;
if (poll(fds, 1, timeout) > 0) {
if (poll(fds, 1, timeout_ms) > 0) {
/* Get the mode: binary or text */
read(uart, &mode, 1);
read(uart, &mode, sizeof(mode));
/* Read the device ID being polled */
read(uart, id, 1);
read(uart, id, sizeof(*id));
/* if we have a binary mode request */
if (mode != BINARY_MODE_REQUEST_ID) {
warnx("Non binary request ID detected: %d", mode);
return ERROR;
}
} else {
ERROR_MSG("UART timeout on TX/RX port");
warnx("UART timeout on TX/RX port");
return ERROR;
}
return OK;
}
int send_data(int uart, uint8_t *buffer, int size)
int
send_data(int uart, uint8_t *buffer, size_t size)
{
usleep(POST_READ_DELAY_IN_USECS);
uint16_t checksum = 0;
for (int i = 0; i < size; i++) {
for (size_t i = 0; i < size; i++) {
if (i == size - 1) {
/* Set the checksum: the first uint8_t is taken as the checksum. */
buffer[i] = checksum & 0xff;
@ -176,7 +166,7 @@ int send_data(int uart, uint8_t *buffer, int size)
checksum += buffer[i];
}
write(uart, &buffer[i], 1);
write(uart, &buffer[i], sizeof(buffer[i]));
/* Sleep before sending the next byte. */
usleep(POST_WRITE_DELAY_IN_USECS);
@ -190,13 +180,14 @@ int send_data(int uart, uint8_t *buffer, int size)
return OK;
}
int hott_telemetry_thread_main(int argc, char *argv[])
int
hott_telemetry_thread_main(int argc, char *argv[])
{
INFO_MSG("starting");
warnx("starting");
thread_running = true;
char *device = "/dev/ttyS1"; /**< Default telemetry port: USART2 */
const char *device = "/dev/ttyS1"; /**< Default telemetry port: USART2 */
/* read commandline arguments */
for (int i = 0; i < argc && argv[i]; i++) {
@ -206,45 +197,48 @@ int hott_telemetry_thread_main(int argc, char *argv[])
} else {
thread_running = false;
ERROR_MSG("missing parameter to -d");
ERROR_MSG(commandline_usage);
exit(1);
errx(1, "missing parameter to -d\n%s", commandline_usage);
}
}
}
/* enable UART, writes potentially an empty buffer, but multiplexing is disabled */
struct termios uart_config_original;
int uart = open_uart(device, &uart_config_original);
const int uart = open_uart(device, &uart_config_original);
if (uart < 0) {
ERROR_MSG("Failed opening HoTT UART, exiting.");
errx(1, "Failed opening HoTT UART, exiting.");
thread_running = false;
exit(ERROR);
}
messages_init();
uint8_t buffer[MESSAGE_BUFFER_SIZE];
int size = 0;
int id = 0;
size_t size = 0;
uint8_t id = 0;
while (!thread_should_exit) {
if (read_data(uart, &id) == OK) {
if (recv_req_id(uart, &id) == OK) {
switch (id) {
case ELECTRIC_AIR_MODULE:
case EAM_SENSOR_ID:
build_eam_response(buffer, &size);
break;
case GPS_SENSOR_ID:
build_gps_response(buffer, &size);
break;
default:
continue; // Not a module we support.
}
send_data(uart, buffer, size);
} else {
warnx("NOK");
}
}
INFO_MSG("exiting");
warnx("exiting");
close(uart);
@ -256,23 +250,22 @@ int hott_telemetry_thread_main(int argc, char *argv[])
/**
* Process command line arguments and tart the daemon.
*/
int hott_telemetry_main(int argc, char *argv[])
int
hott_telemetry_main(int argc, char *argv[])
{
if (argc < 1) {
ERROR_MSG("missing command");
ERROR_MSG(commandline_usage);
exit(1);
errx(1, "missing command\n%s", commandline_usage);
}
if (!strcmp(argv[1], "start")) {
if (thread_running) {
INFO_MSG("deamon already running");
warnx("deamon already running");
exit(0);
}
thread_should_exit = false;
deamon_task = task_spawn("hott_telemetry",
deamon_task = task_spawn(daemon_name,
SCHED_DEFAULT,
SCHED_PRIORITY_MAX - 40,
2048,
@ -288,19 +281,14 @@ int hott_telemetry_main(int argc, char *argv[])
if (!strcmp(argv[1], "status")) {
if (thread_running) {
INFO_MSG("daemon is running");
warnx("daemon is running");
} else {
INFO_MSG("daemon not started");
warnx("daemon not started");
}
exit(0);
}
ERROR_MSG("unrecognized command");
ERROR_MSG(commandline_usage);
exit(1);
errx(1, "unrecognized command\n%s", commandline_usage);
}

View File

@ -1,7 +1,7 @@
/****************************************************************************
*
* Copyright (c) 2012, 2013 PX4 Development Team. All rights reserved.
* Author: Simon Wilks <sjwilks@gmail.com>
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: @author Simon Wilks <sjwilks@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -34,30 +34,44 @@
/**
* @file messages.c
* @author Simon Wilks <sjwilks@gmail.com>
*
*/
#include "messages.h"
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <systemlib/systemlib.h>
#include <systemlib/geo/geo.h>
#include <unistd.h>
#include <uORB/topics/airspeed.h>
#include <uORB/topics/battery_status.h>
#include <uORB/topics/home_position.h>
#include <uORB/topics/sensor_combined.h>
#include <uORB/topics/vehicle_gps_position.h>
/* The board is very roughly 5 deg warmer than the surrounding air */
#define BOARD_TEMP_OFFSET_DEG 5
static int airspeed_sub = -1;
static int battery_sub = -1;
static int gps_sub = -1;
static int home_sub = -1;
static int sensor_sub = -1;
void messages_init(void)
static bool home_position_set = false;
static double home_lat = 0.0d;
static double home_lon = 0.0d;
void
messages_init(void)
{
battery_sub = orb_subscribe(ORB_ID(battery_status));
gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
home_sub = orb_subscribe(ORB_ID(home_position));
sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
airspeed_sub = orb_subscribe(ORB_ID(airspeed));
}
void build_eam_response(uint8_t *buffer, int *size)
void
build_eam_response(uint8_t *buffer, size_t *size)
{
/* get a local copy of the current sensor values */
struct sensor_combined_s raw;
@ -74,26 +88,144 @@ void build_eam_response(uint8_t *buffer, int *size)
memset(&msg, 0, *size);
msg.start = START_BYTE;
msg.eam_sensor_id = ELECTRIC_AIR_MODULE;
msg.sensor_id = EAM_SENSOR_ID;
msg.eam_sensor_id = EAM_SENSOR_ID;
msg.sensor_id = EAM_SENSOR_TEXT_ID;
msg.temperature1 = (uint8_t)(raw.baro_temp_celcius + 20);
msg.temperature2 = TEMP_ZERO_CELSIUS;
msg.temperature2 = msg.temperature1 - BOARD_TEMP_OFFSET_DEG;
msg.main_voltage_L = (uint8_t)(battery.voltage_v * 10);
uint16_t alt = (uint16_t)(raw.baro_alt_meter + 500);
msg.altitude_L = (uint8_t)alt & 0xff;
msg.altitude_H = (uint8_t)(alt >> 8) & 0xff;
/* get a local copy of the current sensor values */
struct airspeed_s airspeed;
memset(&airspeed, 0, sizeof(airspeed));
orb_copy(ORB_ID(airspeed), airspeed_sub, &airspeed);
msg.stop = STOP_BYTE;
memcpy(buffer, &msg, *size);
}
uint16_t speed = (uint16_t)(airspeed.indicated_airspeed_m_s * 3.6);
msg.speed_L = (uint8_t)speed & 0xff;
msg.speed_H = (uint8_t)(speed >> 8) & 0xff;
void
build_gps_response(uint8_t *buffer, size_t *size)
{
/* get a local copy of the current sensor values */
struct sensor_combined_s raw;
memset(&raw, 0, sizeof(raw));
orb_copy(ORB_ID(sensor_combined), sensor_sub, &raw);
/* get a local copy of the battery data */
struct vehicle_gps_position_s gps;
memset(&gps, 0, sizeof(gps));
orb_copy(ORB_ID(vehicle_gps_position), gps_sub, &gps);
struct gps_module_msg msg = { 0 };
*size = sizeof(msg);
memset(&msg, 0, *size);
msg.start = START_BYTE;
msg.sensor_id = GPS_SENSOR_ID;
msg.sensor_text_id = GPS_SENSOR_TEXT_ID;
msg.gps_num_sat = gps.satellites_visible;
/* The GPS fix type: 0 = none, 2 = 2D, 3 = 3D */
msg.gps_fix_char = (uint8_t)(gps.fix_type + 48);
msg.gps_fix = (uint8_t)(gps.fix_type + 48);
/* No point collecting more data if we don't have a 3D fix yet */
if (gps.fix_type > 2) {
/* Current flight direction */
msg.flight_direction = (uint8_t)(gps.cog_rad * M_RAD_TO_DEG_F);
/* GPS speed */
uint16_t speed = (uint16_t)(gps.vel_m_s * 3.6);
msg.gps_speed_L = (uint8_t)speed & 0xff;
msg.gps_speed_H = (uint8_t)(speed >> 8) & 0xff;
/* Get latitude in degrees, minutes and seconds */
double lat = ((double)(gps.lat))*1e-7d;
/* Set the N or S specifier */
msg.latitude_ns = 0;
if (lat < 0) {
msg.latitude_ns = 1;
lat = abs(lat);
}
int deg;
int min;
int sec;
convert_to_degrees_minutes_seconds(lat, &deg, &min, &sec);
uint16_t lat_min = (uint16_t)(deg * 100 + min);
msg.latitude_min_L = (uint8_t)lat_min & 0xff;
msg.latitude_min_H = (uint8_t)(lat_min >> 8) & 0xff;
uint16_t lat_sec = (uint16_t)(sec);
msg.latitude_sec_L = (uint8_t)lat_sec & 0xff;
msg.latitude_sec_H = (uint8_t)(lat_sec >> 8) & 0xff;
/* Get longitude in degrees, minutes and seconds */
double lon = ((double)(gps.lon))*1e-7d;
/* Set the E or W specifier */
msg.longitude_ew = 0;
if (lon < 0) {
msg.longitude_ew = 1;
lon = abs(lon);
}
convert_to_degrees_minutes_seconds(lon, &deg, &min, &sec);
uint16_t lon_min = (uint16_t)(deg * 100 + min);
msg.longitude_min_L = (uint8_t)lon_min & 0xff;
msg.longitude_min_H = (uint8_t)(lon_min >> 8) & 0xff;
uint16_t lon_sec = (uint16_t)(sec);
msg.longitude_sec_L = (uint8_t)lon_sec & 0xff;
msg.longitude_sec_H = (uint8_t)(lon_sec >> 8) & 0xff;
/* Altitude */
uint16_t alt = (uint16_t)(gps.alt*1e-3 + 500.0f);
msg.altitude_L = (uint8_t)alt & 0xff;
msg.altitude_H = (uint8_t)(alt >> 8) & 0xff;
/* Get any (and probably only ever one) home_sub postion report */
bool updated;
orb_check(home_sub, &updated);
if (updated) {
/* get a local copy of the home position data */
struct home_position_s home;
memset(&home, 0, sizeof(home));
orb_copy(ORB_ID(home_position), home_sub, &home);
home_lat = ((double)(home.lat))*1e-7d;
home_lon = ((double)(home.lon))*1e-7d;
home_position_set = true;
}
/* Distance from home */
if (home_position_set) {
uint16_t dist = (uint16_t)get_distance_to_next_waypoint(home_lat, home_lon, lat, lon);
msg.distance_L = (uint8_t)dist & 0xff;
msg.distance_H = (uint8_t)(dist >> 8) & 0xff;
/* Direction back to home */
uint16_t bearing = (uint16_t)(get_bearing_to_next_waypoint(home_lat, home_lon, lat, lon) * M_RAD_TO_DEG_F);
msg.home_direction = (uint8_t)bearing >> 1;
}
}
msg.stop = STOP_BYTE;
memcpy(buffer, &msg, *size);
}
}
void
convert_to_degrees_minutes_seconds(double val, int *deg, int *min, int *sec)
{
*deg = (int)val;
double delta = val - *deg;
const double min_d = delta * 60.0d;
*min = (int)min_d;
delta = min_d - *min;
*sec = (int)(delta * 10000.0d);
}

View File

@ -44,11 +44,6 @@
#include <stdlib.h>
/* The buffer size used to store messages. This must be at least as big as the number of
* fields in the largest message struct.
*/
#define MESSAGE_BUFFER_SIZE 50
/* The HoTT receiver demands a minimum 5ms period of silence after delivering its request.
* Note that the value specified here is lower than 5000 (5ms) as time is lost constucting
* the message after the read which takes some milliseconds.
@ -66,18 +61,18 @@
#define TEMP_ZERO_CELSIUS 0x14
/* Electric Air Module (EAM) constants. */
#define ELECTRIC_AIR_MODULE 0x8e
#define EAM_SENSOR_ID 0xe0
#define EAM_SENSOR_ID 0x8e
#define EAM_SENSOR_TEXT_ID 0xe0
/* The Electric Air Module message. */
struct eam_module_msg {
uint8_t start; /**< Start byte */
uint8_t eam_sensor_id; /**< EAM sensor ID */
uint8_t start; /**< Start byte */
uint8_t eam_sensor_id; /**< EAM sensor */
uint8_t warning;
uint8_t sensor_id; /**< Sensor ID, why different? */
uint8_t sensor_id; /**< Sensor ID, why different? */
uint8_t alarm_inverse1;
uint8_t alarm_inverse2;
uint8_t cell1_L; /**< Lipo cell voltages. Not supported. */
uint8_t cell1_L; /**< Lipo cell voltages. Not supported. */
uint8_t cell2_L;
uint8_t cell3_L;
uint8_t cell4_L;
@ -95,30 +90,107 @@ struct eam_module_msg {
uint8_t batt1_voltage_H;
uint8_t batt2_voltage_L; /**< Battery 2 voltage, lower 8-bits in steps of 0.02V */
uint8_t batt2_voltage_H;
uint8_t temperature1; /**< Temperature sensor 1. 20 = 0 degrees */
uint8_t temperature1; /**< Temperature sensor 1. 20 = 0 degrees */
uint8_t temperature2;
uint8_t altitude_L; /**< Attitude (meters) lower 8-bits. 500 = 0 meters */
uint8_t altitude_L; /**< Attitude (meters) lower 8-bits. 500 = 0 meters */
uint8_t altitude_H;
uint8_t current_L; /**< Current (mAh) lower 8-bits in steps of 0.1V */
uint8_t current_L; /**< Current (mAh) lower 8-bits in steps of 0.1V */
uint8_t current_H;
uint8_t main_voltage_L; /**< Main power voltage lower 8-bits in steps of 0.1V */
uint8_t main_voltage_L; /**< Main power voltage lower 8-bits in steps of 0.1V */
uint8_t main_voltage_H;
uint8_t battery_capacity_L; /**< Used battery capacity in steps of 10mAh */
uint8_t battery_capacity_L; /**< Used battery capacity in steps of 10mAh */
uint8_t battery_capacity_H;
uint8_t climbrate_L; /**< Climb rate in 0.01m/s. 0m/s = 30000 */
uint8_t climbrate_L; /**< Climb rate in 0.01m/s. 0m/s = 30000 */
uint8_t climbrate_H;
uint8_t climbrate_3s; /**< Climb rate in m/3sec. 0m/3sec = 120 */
uint8_t rpm_L; /**< RPM Lower 8-bits In steps of 10 U/min */
uint8_t climbrate_3s; /**< Climb rate in m/3sec. 0m/3sec = 120 */
uint8_t rpm_L; /**< RPM Lower 8-bits In steps of 10 U/min */
uint8_t rpm_H;
uint8_t electric_min; /**< Flight time in minutes. */
uint8_t electric_sec; /**< Flight time in seconds. */
uint8_t speed_L; /**< Airspeed in km/h in steps of 1 km/h */
uint8_t electric_min; /**< Flight time in minutes. */
uint8_t electric_sec; /**< Flight time in seconds. */
uint8_t speed_L; /**< Airspeed in km/h in steps of 1 km/h */
uint8_t speed_H;
uint8_t stop; /**< Stop byte */
uint8_t checksum; /**< Lower 8-bits of all bytes summed. */
uint8_t stop; /**< Stop byte */
uint8_t checksum; /**< Lower 8-bits of all bytes summed. */
};
/**
* The maximum buffer size required to store a HoTT message.
*/
#define MESSAGE_BUFFER_SIZE sizeof(union { \
struct eam_module_msg eam; \
})
/* GPS sensor constants. */
#define GPS_SENSOR_ID 0x8A
#define GPS_SENSOR_TEXT_ID 0xA0
/**
* The GPS sensor message
* Struct based on: https://code.google.com/p/diy-hott-gps/downloads
*/
struct gps_module_msg {
uint8_t start; /**< Start byte */
uint8_t sensor_id; /**< GPS sensor ID*/
uint8_t warning; /**< Byte 3: 0…= warning beeps */
uint8_t sensor_text_id; /**< GPS Sensor text mode ID */
uint8_t alarm_inverse1; /**< Byte 5: 01 inverse status */
uint8_t alarm_inverse2; /**< Byte 6: 00 inverse status status 1 = no GPS Signal */
uint8_t flight_direction; /**< Byte 7: 119 = Flightdir./dir. 1 = 2°; 0° (North), 9 0° (East), 180° (South), 270° (West) */
uint8_t gps_speed_L; /**< Byte 8: 8 = /GPS speed low byte 8km/h */
uint8_t gps_speed_H; /**< Byte 9: 0 = /GPS speed high byte */
uint8_t latitude_ns; /**< Byte 10: 000 = N = 48°39988 */
uint8_t latitude_min_L; /**< Byte 11: 231 0xE7 = 0x12E7 = 4839 */
uint8_t latitude_min_H; /**< Byte 12: 018 18 = 0x12 */
uint8_t latitude_sec_L; /**< Byte 13: 171 220 = 0xDC = 0x03DC =0988 */
uint8_t latitude_sec_H; /**< Byte 14: 016 3 = 0x03 */
uint8_t longitude_ew; /**< Byte 15: 000 = E= 9° 259360 */
uint8_t longitude_min_L; /**< Byte 16: 150 157 = 0x9D = 0x039D = 0925 */
uint8_t longitude_min_H; /**< Byte 17: 003 3 = 0x03 */
uint8_t longitude_sec_L; /**< Byte 18: 056 144 = 0x90 0x2490 = 9360*/
uint8_t longitude_sec_H; /**< Byte 19: 004 36 = 0x24 */
uint8_t distance_L; /**< Byte 20: 027 123 = /distance low byte 6 = 6 m */
uint8_t distance_H; /**< Byte 21: 036 35 = /distance high byte */
uint8_t altitude_L; /**< Byte 22: 243 244 = /Altitude low byte 500 = 0m */
uint8_t altitude_H; /**< Byte 23: 001 1 = /Altitude high byte */
uint8_t resolution_L; /**< Byte 24: 48 = Low Byte m/s resolution 0.01m 48 = 30000 = 0.00m/s (1=0.01m/s) */
uint8_t resolution_H; /**< Byte 25: 117 = High Byte m/s resolution 0.01m */
uint8_t unknown1; /**< Byte 26: 120 = 0m/3s */
uint8_t gps_num_sat; /**< Byte 27: GPS.Satellites (number of satelites) (1 byte) */
uint8_t gps_fix_char; /**< Byte 28: GPS.FixChar. (GPS fix character. display, if DGPS, 2D oder 3D) (1 byte) */
uint8_t home_direction; /**< Byte 29: HomeDirection (direction from starting point to Model position) (1 byte) */
uint8_t angle_x_direction; /**< Byte 30: angle x-direction (1 byte) */
uint8_t angle_y_direction; /**< Byte 31: angle y-direction (1 byte) */
uint8_t angle_z_direction; /**< Byte 32: angle z-direction (1 byte) */
uint8_t gyro_x_L; /**< Byte 33: gyro x low byte (2 bytes) */
uint8_t gyro_x_H; /**< Byte 34: gyro x high byte */
uint8_t gyro_y_L; /**< Byte 35: gyro y low byte (2 bytes) */
uint8_t gyro_y_H; /**< Byte 36: gyro y high byte */
uint8_t gyro_z_L; /**< Byte 37: gyro z low byte (2 bytes) */
uint8_t gyro_z_H; /**< Byte 38: gyro z high byte */
uint8_t vibration; /**< Byte 39: vibration (1 bytes) */
uint8_t ascii4; /**< Byte 40: 00 ASCII Free Character [4] */
uint8_t ascii5; /**< Byte 41: 00 ASCII Free Character [5] */
uint8_t gps_fix; /**< Byte 42: 00 ASCII Free Character [6], we use it for GPS FIX */
uint8_t version; /**< Byte 43: 00 version number */
uint8_t stop; /**< Byte 44: 0x7D Ende byte */
uint8_t checksum; /**< Byte 45: Parity Byte */
};
/**
* The maximum buffer size required to store a HoTT message.
*/
#define GPS_MESSAGE_BUFFER_SIZE sizeof(union { \
struct gps_module_msg gps; \
})
void messages_init(void);
void build_eam_response(uint8_t *buffer, int *size);
void build_eam_response(uint8_t *buffer, size_t *size);
void build_gps_response(uint8_t *buffer, size_t *size);
float _get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);
void convert_to_degrees_minutes_seconds(double lat, int *deg, int *min, int *sec);
#endif /* MESSAGES_H_ */

View File

@ -106,7 +106,7 @@ public:
* @param rate The rate in Hz actuator outpus are sent to IO.
* Min 10 Hz, max 400 Hz
*/
int set_update_rate(int rate);
int set_update_rate(int rate);
/**
* Set the battery current scaling and bias
@ -114,7 +114,15 @@ public:
* @param amp_per_volt
* @param amp_bias
*/
void set_battery_current_scaling(float amp_per_volt, float amp_bias);
void set_battery_current_scaling(float amp_per_volt, float amp_bias);
/**
* Push failsafe values to IO.
*
* @param vals Failsafe control inputs: in us PPM (900 for zero, 1500 for centered, 2100 for full)
* @param len Number of channels, could up to 8
*/
int set_failsafe_values(const uint16_t *vals, unsigned len);
/**
* Print the current status of IO
@ -326,11 +334,11 @@ PX4IO::PX4IO() :
_to_actuators_effective(0),
_to_outputs(0),
_to_battery(0),
_primary_pwm_device(false),
_battery_amp_per_volt(90.0f/5.0f), // this matches the 3DR current sensor
_battery_amp_bias(0),
_battery_mamphour_total(0),
_battery_last_timestamp(0),
_primary_pwm_device(false)
_battery_last_timestamp(0)
{
/* we need this potentially before it could be set in task_main */
g_dev = this;
@ -689,6 +697,19 @@ PX4IO::io_set_control_state()
return io_reg_set(PX4IO_PAGE_CONTROLS, 0, regs, _max_controls);
}
int
PX4IO::set_failsafe_values(const uint16_t *vals, unsigned len)
{
uint16_t regs[_max_actuators];
if (len > _max_actuators)
/* fail with error */
return E2BIG;
/* copy values to registers in IO */
return io_reg_set(PX4IO_PAGE_FAILSAFE_PWM, 0, vals, len);
}
int
PX4IO::io_set_arming_state()
{
@ -1250,7 +1271,7 @@ PX4IO::print_status()
printf("%u bytes free\n",
io_reg_get(PX4IO_PAGE_STATUS, PX4IO_P_STATUS_FREEMEM));
uint16_t flags = io_reg_get(PX4IO_PAGE_STATUS, PX4IO_P_STATUS_FLAGS);
printf("status 0x%04x%s%s%s%s%s%s%s%s%s%s%s\n",
printf("status 0x%04x%s%s%s%s%s%s%s%s%s%s%s%s\n",
flags,
((flags & PX4IO_P_STATUS_FLAGS_ARMED) ? " ARMED" : ""),
((flags & PX4IO_P_STATUS_FLAGS_OVERRIDE) ? " OVERRIDE" : ""),
@ -1262,7 +1283,8 @@ PX4IO::print_status()
((flags & PX4IO_P_STATUS_FLAGS_RAW_PWM) ? " RAW_PPM" : ""),
((flags & PX4IO_P_STATUS_FLAGS_MIXER_OK) ? " MIXER_OK" : " MIXER_FAIL"),
((flags & PX4IO_P_STATUS_FLAGS_ARM_SYNC) ? " ARM_SYNC" : " ARM_NO_SYNC"),
((flags & PX4IO_P_STATUS_FLAGS_INIT_OK) ? " INIT_OK" : " INIT_FAIL"));
((flags & PX4IO_P_STATUS_FLAGS_INIT_OK) ? " INIT_OK" : " INIT_FAIL"),
((flags & PX4IO_P_STATUS_FLAGS_FAILSAFE) ? " FAILSAFE" : ""));
uint16_t alarms = io_reg_get(PX4IO_PAGE_STATUS, PX4IO_P_STATUS_ALARMS);
printf("alarms 0x%04x%s%s%s%s%s%s%s\n",
alarms,
@ -1718,6 +1740,41 @@ px4io_main(int argc, char *argv[])
exit(0);
}
if (!strcmp(argv[1], "failsafe")) {
if (argc < 3) {
errx(1, "failsafe command needs at least one channel value (ppm)");
}
if (g_dev != nullptr) {
/* set values for first 8 channels, fill unassigned channels with 1500. */
uint16_t failsafe[8];
for (int i = 0; i < sizeof(failsafe) / sizeof(failsafe[0]); i++)
{
/* set channel to commanline argument or to 900 for non-provided channels */
if (argc > i + 2) {
failsafe[i] = atoi(argv[i+2]);
if (failsafe[i] < 800 || failsafe[i] > 2200) {
errx(1, "value out of range of 800 < value < 2200. Aborting.");
}
} else {
/* a zero value will result in stopping to output any pulse */
failsafe[i] = 0;
}
}
int ret = g_dev->set_failsafe_values(failsafe, sizeof(failsafe) / sizeof(failsafe[0]));
if (ret != OK)
errx(ret, "failed setting failsafe values");
} else {
errx(1, "not loaded");
}
exit(0);
}
if (!strcmp(argv[1], "recovery")) {
if (g_dev != nullptr) {
@ -1845,5 +1902,5 @@ px4io_main(int argc, char *argv[])
monitor();
out:
errx(1, "need a command, try 'start', 'stop', 'status', 'test', 'monitor', 'debug', 'recovery', 'limit', 'current' or 'update'");
errx(1, "need a command, try 'start', 'stop', 'status', 'test', 'monitor', 'debug', 'recovery', 'limit', 'current', 'failsafe' or 'update'");
}

View File

@ -683,7 +683,8 @@ int KalmanNav::correctPos()
// fault detetcion
float beta = y.dot(S.inverse() * y);
if (beta > _faultPos.get()) {
static int counter = 0;
if (beta > _faultPos.get() && (counter % 10 == 0)) {
printf("fault in gps: beta = %8.4f\n", (double)beta);
printf("Y/N: vN: %8.4f, vE: %8.4f, lat: %8.4f, lon: %8.4f, alt: %8.4f\n",
double(y(0) / sqrtf(RPos(0, 0))),
@ -693,6 +694,7 @@ int KalmanNav::correctPos()
double(y(4) / sqrtf(RPos(4, 4))),
double(y(5) / sqrtf(RPos(5, 5))));
}
counter++;
return ret_ok;
}

View File

@ -85,6 +85,9 @@ static int mixer_callback(uintptr_t handle,
static MixerGroup mixer_group(mixer_callback, 0);
/* Set the failsafe values of all mixed channels (based on zero throttle, controls centered) */
static void mixer_set_failsafe();
void
mixer_tick(void)
{
@ -102,13 +105,16 @@ mixer_tick(void)
r_status_flags |= PX4IO_P_STATUS_FLAGS_FMU_OK;
}
/* default to failsafe mixing */
source = MIX_FAILSAFE;
/*
* Decide which set of controls we're using.
*/
if ((r_status_flags & PX4IO_P_STATUS_FLAGS_RAW_PWM) ||
!(r_status_flags & PX4IO_P_STATUS_FLAGS_MIXER_OK)) {
/* do not mix if mixer is invalid or if RAW_PWM mode is on and FMU is good */
if ((r_status_flags & PX4IO_P_STATUS_FLAGS_RAW_PWM) &&
!(r_status_flags & PX4IO_P_STATUS_FLAGS_MIXER_OK)) {
/* don't actually mix anything - we already have raw PWM values or
not a valid mixer. */
@ -117,6 +123,7 @@ mixer_tick(void)
} else {
if (!(r_status_flags & PX4IO_P_STATUS_FLAGS_OVERRIDE) &&
(r_status_flags & PX4IO_P_STATUS_FLAGS_FMU_OK) &&
(r_status_flags & PX4IO_P_STATUS_FLAGS_MIXER_OK)) {
/* mix from FMU controls */
@ -132,15 +139,29 @@ mixer_tick(void)
}
}
/*
* Set failsafe status flag depending on mixing source
*/
if (source == MIX_FAILSAFE) {
r_status_flags |= PX4IO_P_STATUS_FLAGS_FAILSAFE;
} else {
r_status_flags &= ~(PX4IO_P_STATUS_FLAGS_FAILSAFE);
}
/*
* Run the mixers.
*/
if (source == MIX_FAILSAFE) {
/* copy failsafe values to the servo outputs */
for (unsigned i = 0; i < IO_SERVO_COUNT; i++)
for (unsigned i = 0; i < IO_SERVO_COUNT; i++) {
r_page_servos[i] = r_page_servo_failsafe[i];
/* safe actuators for FMU feedback */
r_page_actuators[i] = (r_page_servos[i] - 1500) / 600.0f;
}
} else if (source != MIX_NONE) {
float outputs[IO_SERVO_COUNT];
@ -156,7 +177,7 @@ mixer_tick(void)
r_page_actuators[i] = FLOAT_TO_REG(outputs[i]);
/* scale to servo output */
r_page_servos[i] = (outputs[i] * 500.0f) + 1500;
r_page_servos[i] = (outputs[i] * 600.0f) + 1500;
}
for (unsigned i = mixed; i < IO_SERVO_COUNT; i++)
@ -175,7 +196,7 @@ mixer_tick(void)
bool should_arm = (
/* FMU is armed */ (r_setup_arming & PX4IO_P_SETUP_ARMING_FMU_ARMED) &&
/* IO is armed */ (r_status_flags & PX4IO_P_STATUS_FLAGS_ARMED) &&
/* there is valid input */ (r_status_flags & (PX4IO_P_STATUS_FLAGS_RAW_PWM | PX4IO_P_STATUS_FLAGS_MIXER_OK)) &&
/* there is valid input via direct PWM or mixer */ (r_status_flags & (PX4IO_P_STATUS_FLAGS_RAW_PWM | PX4IO_P_STATUS_FLAGS_MIXER_OK)) &&
/* IO initialised without error */ (r_status_flags & PX4IO_P_STATUS_FLAGS_INIT_OK) &&
/* FMU is available or FMU is not available but override is an option */
((r_status_flags & PX4IO_P_STATUS_FLAGS_FMU_OK) || (!(r_status_flags & PX4IO_P_STATUS_FLAGS_FMU_OK) && (r_setup_arming & PX4IO_P_SETUP_ARMING_MANUAL_OVERRIDE_OK) ))
@ -225,7 +246,7 @@ mixer_callback(uintptr_t handle,
case MIX_FAILSAFE:
case MIX_NONE:
/* XXX we could allow for configuration of per-output failsafe values */
control = 0.0f;
return -1;
}
@ -303,8 +324,41 @@ mixer_handle_text(const void *buffer, size_t length)
memcpy(&mixer_text[0], &mixer_text[mixer_text_length - resid], resid);
mixer_text_length = resid;
/* update failsafe values */
mixer_set_failsafe();
}
break;
}
}
static void
mixer_set_failsafe()
{
/*
* Check if a custom failsafe value has been written,
* else use the opportunity to set decent defaults.
*/
if (r_setup_arming & PX4IO_P_SETUP_ARMING_FAILSAFE_CUSTOM)
return;
float outputs[IO_SERVO_COUNT];
unsigned mixed;
/* mix */
mixed = mixer_group.mix(&outputs[0], IO_SERVO_COUNT);
/* scale to PWM and update the servo outputs as required */
for (unsigned i = 0; i < mixed; i++) {
/* scale to servo output */
r_page_servo_failsafe[i] = (outputs[i] * 600.0f) + 1500;
}
/* disable the rest of the outputs */
for (unsigned i = mixed; i < IO_SERVO_COUNT; i++)
r_page_servo_failsafe[i] = 0;
}

View File

@ -85,7 +85,7 @@
#define PX4IO_P_CONFIG_ACTUATOR_COUNT 5 /* hardcoded max actuator output count */
#define PX4IO_P_CONFIG_RC_INPUT_COUNT 6 /* hardcoded max R/C input count supported */
#define PX4IO_P_CONFIG_ADC_INPUT_COUNT 7 /* hardcoded max ADC inputs */
#define PX4IO_P_CONFIG_RELAY_COUNT 8 /* harcoded # of relay outputs */
#define PX4IO_P_CONFIG_RELAY_COUNT 8 /* hardcoded # of relay outputs */
/* dynamic status page */
#define PX4IO_PAGE_STATUS 1
@ -104,6 +104,7 @@
#define PX4IO_P_STATUS_FLAGS_MIXER_OK (1 << 8) /* mixer is OK */
#define PX4IO_P_STATUS_FLAGS_ARM_SYNC (1 << 9) /* the arming state between IO and FMU is in sync */
#define PX4IO_P_STATUS_FLAGS_INIT_OK (1 << 10) /* initialisation of the IO completed without error */
#define PX4IO_P_STATUS_FLAGS_FAILSAFE (1 << 11) /* failsafe is active */
#define PX4IO_P_STATUS_ALARMS 3 /* alarm flags - alarms latch, write 1 to a bit to clear it */
#define PX4IO_P_STATUS_ALARMS_VBATT_LOW (1 << 0) /* VBatt is very close to regulator dropout */
@ -148,6 +149,7 @@
#define PX4IO_P_SETUP_ARMING_IO_ARM_OK (1 << 0) /* OK to arm the IO side */
#define PX4IO_P_SETUP_ARMING_FMU_ARMED (1 << 1) /* FMU is already armed */
#define PX4IO_P_SETUP_ARMING_MANUAL_OVERRIDE_OK (1 << 2) /* OK to switch to manual override via override RC channel */
#define PX4IO_P_SETUP_ARMING_FAILSAFE_CUSTOM (1 << 3) /* use custom failsafe values, not 0 values of mixer */
#define PX4IO_P_SETUP_ARMING_INAIR_RESTART_OK (1 << 4) /* OK to try in-air restart */
#define PX4IO_P_SETUP_PWM_RATES 2 /* bitmask, 0 = low rate, 1 = high rate */

View File

@ -41,6 +41,7 @@
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <drivers/drv_hrt.h>
@ -178,8 +179,10 @@ uint16_t r_page_rc_input_config[MAX_CONTROL_CHANNELS * PX4IO_P_RC_CONFIG_STRIDE
* PAGE 105
*
* Failsafe servo PWM values
*
* Disable pulses as default.
*/
uint16_t r_page_servo_failsafe[IO_SERVO_COUNT];
uint16_t r_page_servo_failsafe[IO_SERVO_COUNT] = { 0 };
void
registers_set(uint8_t page, uint8_t offset, const uint16_t *values, unsigned num_values)
@ -230,11 +233,14 @@ registers_set(uint8_t page, uint8_t offset, const uint16_t *values, unsigned num
case PX4IO_PAGE_FAILSAFE_PWM:
/* copy channel data */
while ((offset < PX4IO_CONTROL_CHANNELS) && (num_values > 0)) {
while ((offset < IO_SERVO_COUNT) && (num_values > 0)) {
/* XXX range-check value? */
r_page_servo_failsafe[offset] = *values;
/* flag the failsafe values as custom */
r_setup_arming |= PX4IO_P_SETUP_ARMING_FAILSAFE_CUSTOM;
offset++;
num_values--;
values++;

View File

@ -185,12 +185,11 @@ __EXPORT float get_distance_to_next_waypoint(double lat_now, double lon_now, dou
double d_lat = lat_next_rad - lat_now_rad;
double d_lon = lon_next_rad - lon_now_rad;
double a = sin(d_lat / 2.0d) * sin(d_lat / 2.0) + sin(d_lon / 2.0d) * sin(d_lon / 2.0d) * cos(lat_now_rad) * cos(lat_next_rad);
double a = sin(d_lat / 2.0d) * sin(d_lat / 2.0d) + sin(d_lon / 2.0d) * sin(d_lon / 2.0d) * cos(lat_now_rad) * cos(lat_next_rad);
double c = 2.0d * atan2(sqrt(a), sqrt(1.0d - a));
const double radius_earth = 6371000.0d;
return radius_earth * c;
return radius_earth * c;
}
__EXPORT float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)

View File

@ -82,8 +82,24 @@ __EXPORT void map_projection_project(double lat, double lon, float *x, float *y)
*/
__EXPORT void map_projection_reproject(float x, float y, double *lat, double *lon);
/**
* Returns the distance to the next waypoint in meters.
*
* @param lat_now current position in degrees (47.1234567°, not 471234567°)
* @param lon_now current position in degrees (8.1234567°, not 81234567°)
* @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°)
* @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°)
*/
__EXPORT float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);
/**
* Returns the bearing to the next waypoint in radians.
*
* @param lat_now current position in degrees (47.1234567°, not 471234567°)
* @param lon_now current position in degrees (8.1234567°, not 81234567°)
* @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°)
* @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°)
*/
__EXPORT float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);
__EXPORT int get_distance_to_line(struct crosstrack_error_s * crosstrack_error, double lat_now, double lon_now, double lat_start, double lon_start, double lat_end, double lon_end);

View File

@ -185,12 +185,18 @@ pwm_main(int argc, char *argv[])
const char *arg = argv[0];
argv++;
if (!strcmp(arg, "arm")) {
/* tell IO that its ok to disable its safety with the switch */
ret = ioctl(fd, PWM_SERVO_SET_ARM_OK, 0);
if (ret != OK)
err(1, "PWM_SERVO_SET_ARM_OK");
/* tell IO that the system is armed (it will output values if safety is off) */
ret = ioctl(fd, PWM_SERVO_ARM, 0);
if (ret != OK)
err(1, "PWM_SERVO_ARM");
continue;
}
if (!strcmp(arg, "disarm")) {
/* disarm, but do not revoke the SET_ARM_OK flag */
ret = ioctl(fd, PWM_SERVO_DISARM, 0);
if (ret != OK)
err(1, "PWM_SERVO_DISARM");