Merge remote-tracking branch 'upstream/ROS_shared_lib_base_class' into dev_ros_rossharedlib

Conflicts:
	src/modules/uORB/topics/vehicle_attitude.h
	src/platforms/px4_defines.h
This commit is contained in:
Thomas Gubler 2014-12-02 16:52:38 +01:00
commit ad499a5944
22 changed files with 1271 additions and 40 deletions

1
.catkin_workspace Normal file
View File

@ -0,0 +1 @@
# This file currently only serves to mark the location of a catkin workspace for tool integration

View File

@ -46,6 +46,9 @@
namespace math { namespace math {
#ifndef CONFIG_ARCH_ARM
#define M_PI_F 3.14159265358979323846f
#endif
float __EXPORT min(float val1, float val2) float __EXPORT min(float val1, float val2)
{ {

View File

@ -39,7 +39,7 @@
#pragma once #pragma once
#include <nuttx/config.h> #include <platforms/px4_defines.h>
#include <stdint.h> #include <stdint.h>
namespace math { namespace math {

View File

@ -44,7 +44,15 @@
#define MATRIX_HPP #define MATRIX_HPP
#include <stdio.h> #include <stdio.h>
#include <math.h>
#ifdef CONFIG_ARCH_ARM
#include "../CMSIS/Include/arm_math.h" #include "../CMSIS/Include/arm_math.h"
#else
#include <math/eigen_math.h>
#include <Eigen/Eigen>
#define M_PI_2_F 1.5707963267948966192f
#endif
namespace math namespace math
{ {
@ -65,7 +73,11 @@ public:
/** /**
* struct for using arm_math functions * struct for using arm_math functions
*/ */
#ifdef CONFIG_ARCH_ARM
arm_matrix_instance_f32 arm_mat; arm_matrix_instance_f32 arm_mat;
#else
eigen_matrix_instance arm_mat;
#endif
/** /**
* trivial ctor * trivial ctor
@ -73,8 +85,7 @@ public:
*/ */
MatrixBase() : MatrixBase() :
data {}, data {},
arm_mat{M, N, &data[0][0]} arm_mat {M, N, &data[0][0]} {
{
} }
virtual ~MatrixBase() {}; virtual ~MatrixBase() {};
@ -83,20 +94,17 @@ public:
* copyt ctor * copyt ctor
*/ */
MatrixBase(const MatrixBase<M, N> &m) : MatrixBase(const MatrixBase<M, N> &m) :
arm_mat{M, N, &data[0][0]} arm_mat {M, N, &data[0][0]} {
{
memcpy(data, m.data, sizeof(data)); memcpy(data, m.data, sizeof(data));
} }
MatrixBase(const float *d) : MatrixBase(const float *d) :
arm_mat{M, N, &data[0][0]} arm_mat {M, N, &data[0][0]} {
{
memcpy(data, d, sizeof(data)); memcpy(data, d, sizeof(data));
} }
MatrixBase(const float d[M][N]) : MatrixBase(const float d[M][N]) :
arm_mat{M, N, &data[0][0]} arm_mat {M, N, &data[0][0]} {
{
memcpy(data, d, sizeof(data)); memcpy(data, d, sizeof(data));
} }
@ -148,8 +156,9 @@ public:
bool operator ==(const Matrix<M, N> &m) const { bool operator ==(const Matrix<M, N> &m) const {
for (unsigned int i = 0; i < M; i++) for (unsigned int i = 0; i < M; i++)
for (unsigned int j = 0; j < N; j++) for (unsigned int j = 0; j < N; j++)
if (data[i][j] != m.data[i][j]) if (data[i][j] != m.data[i][j]) {
return false; return false;
}
return true; return true;
} }
@ -160,8 +169,9 @@ public:
bool operator !=(const Matrix<M, N> &m) const { bool operator !=(const Matrix<M, N> &m) const {
for (unsigned int i = 0; i < M; i++) for (unsigned int i = 0; i < M; i++)
for (unsigned int j = 0; j < N; j++) for (unsigned int j = 0; j < N; j++)
if (data[i][j] != m.data[i][j]) if (data[i][j] != m.data[i][j]) {
return true; return true;
}
return false; return false;
} }
@ -181,8 +191,9 @@ public:
Matrix<M, N> res; Matrix<M, N> res;
for (unsigned int i = 0; i < N; i++) for (unsigned int i = 0; i < N; i++)
for (unsigned int j = 0; j < M; j++) for (unsigned int j = 0; j < M; j++) {
res.data[i][j] = -data[i][j]; res.data[i][j] = -data[i][j];
}
return res; return res;
} }
@ -194,16 +205,18 @@ public:
Matrix<M, N> res; Matrix<M, N> res;
for (unsigned int i = 0; i < N; i++) for (unsigned int i = 0; i < N; i++)
for (unsigned int j = 0; j < M; j++) for (unsigned int j = 0; j < M; j++) {
res.data[i][j] = data[i][j] + m.data[i][j]; res.data[i][j] = data[i][j] + m.data[i][j];
}
return res; return res;
} }
Matrix<M, N> &operator +=(const Matrix<M, N> &m) { Matrix<M, N> &operator +=(const Matrix<M, N> &m) {
for (unsigned int i = 0; i < N; i++) for (unsigned int i = 0; i < N; i++)
for (unsigned int j = 0; j < M; j++) for (unsigned int j = 0; j < M; j++) {
data[i][j] += m.data[i][j]; data[i][j] += m.data[i][j];
}
return *static_cast<Matrix<M, N>*>(this); return *static_cast<Matrix<M, N>*>(this);
} }
@ -215,16 +228,18 @@ public:
Matrix<M, N> res; Matrix<M, N> res;
for (unsigned int i = 0; i < M; i++) for (unsigned int i = 0; i < M; i++)
for (unsigned int j = 0; j < N; j++) for (unsigned int j = 0; j < N; j++) {
res.data[i][j] = data[i][j] - m.data[i][j]; res.data[i][j] = data[i][j] - m.data[i][j];
}
return res; return res;
} }
Matrix<M, N> &operator -=(const Matrix<M, N> &m) { Matrix<M, N> &operator -=(const Matrix<M, N> &m) {
for (unsigned int i = 0; i < N; i++) for (unsigned int i = 0; i < N; i++)
for (unsigned int j = 0; j < M; j++) for (unsigned int j = 0; j < M; j++) {
data[i][j] -= m.data[i][j]; data[i][j] -= m.data[i][j];
}
return *static_cast<Matrix<M, N>*>(this); return *static_cast<Matrix<M, N>*>(this);
} }
@ -236,16 +251,19 @@ public:
Matrix<M, N> res; Matrix<M, N> res;
for (unsigned int i = 0; i < M; i++) for (unsigned int i = 0; i < M; i++)
for (unsigned int j = 0; j < N; j++) for (unsigned int j = 0; j < N; j++) {
res.data[i][j] = data[i][j] * num; res.data[i][j] = data[i][j] * num;
}
return res; return res;
} }
Matrix<M, N> &operator *=(const float num) { Matrix<M, N> &operator *=(const float num) {
for (unsigned int i = 0; i < M; i++) for (unsigned int i = 0; i < M; i++)
for (unsigned int j = 0; j < N; j++) for (unsigned int j = 0; j < N; j++) {
data[i][j] *= num; data[i][j] *= num;
}
return *static_cast<Matrix<M, N>*>(this); return *static_cast<Matrix<M, N>*>(this);
} }
@ -254,16 +272,18 @@ public:
Matrix<M, N> res; Matrix<M, N> res;
for (unsigned int i = 0; i < M; i++) for (unsigned int i = 0; i < M; i++)
for (unsigned int j = 0; j < N; j++) for (unsigned int j = 0; j < N; j++) {
res[i][j] = data[i][j] / num; res[i][j] = data[i][j] / num;
}
return res; return res;
} }
Matrix<M, N> &operator /=(const float num) { Matrix<M, N> &operator /=(const float num) {
for (unsigned int i = 0; i < M; i++) for (unsigned int i = 0; i < M; i++)
for (unsigned int j = 0; j < N; j++) for (unsigned int j = 0; j < N; j++) {
data[i][j] /= num; data[i][j] /= num;
}
return *static_cast<Matrix<M, N>*>(this); return *static_cast<Matrix<M, N>*>(this);
} }
@ -273,27 +293,53 @@ public:
*/ */
template <unsigned int P> template <unsigned int P>
Matrix<M, P> operator *(const Matrix<N, P> &m) const { Matrix<M, P> operator *(const Matrix<N, P> &m) const {
#ifdef CONFIG_ARCH_ARM
Matrix<M, P> res; Matrix<M, P> res;
arm_mat_mult_f32(&arm_mat, &m.arm_mat, &res.arm_mat); arm_mat_mult_f32(&arm_mat, &m.arm_mat, &res.arm_mat);
return res; return res;
#else
Eigen::Matrix<float, M, N, Eigen::RowMajor> Me = Eigen::Map<Eigen::Matrix<float, M, N, Eigen::RowMajor> >
(this->arm_mat.pData);
Eigen::Matrix<float, N, P, Eigen::RowMajor> Him = Eigen::Map<Eigen::Matrix<float, N, P, Eigen::RowMajor> >
(m.arm_mat.pData);
Eigen::Matrix<float, M, P, Eigen::RowMajor> Product = Me * Him;
Matrix<M, P> res(Product.data());
return res;
#endif
} }
/** /**
* transpose the matrix * transpose the matrix
*/ */
Matrix<N, M> transposed(void) const { Matrix<N, M> transposed(void) const {
#ifdef CONFIG_ARCH_ARM
Matrix<N, M> res; Matrix<N, M> res;
arm_mat_trans_f32(&this->arm_mat, &res.arm_mat); arm_mat_trans_f32(&this->arm_mat, &res.arm_mat);
return res; return res;
#else
Eigen::Matrix<float, N, M, Eigen::RowMajor> Me = Eigen::Map<Eigen::Matrix<float, N, M, Eigen::RowMajor> >
(this->arm_mat.pData);
Me.transposeInPlace();
Matrix<N, M> res(Me.data());
return res;
#endif
} }
/** /**
* invert the matrix * invert the matrix
*/ */
Matrix<M, N> inversed(void) const { Matrix<M, N> inversed(void) const {
#ifdef CONFIG_ARCH_ARM
Matrix<M, N> res; Matrix<M, N> res;
arm_mat_inverse_f32(&this->arm_mat, &res.arm_mat); arm_mat_inverse_f32(&this->arm_mat, &res.arm_mat);
return res; return res;
#else
Eigen::Matrix<float, M, N, Eigen::RowMajor> Me = Eigen::Map<Eigen::Matrix<float, M, N, Eigen::RowMajor> >
(this->arm_mat.pData);
Eigen::Matrix<float, M, N, Eigen::RowMajor> MyInverse = Me.inverse(); //not sure if A = A.inverse() is a good idea
Matrix<M, N> res(MyInverse.data());
return res;
#endif
} }
/** /**
@ -310,16 +356,18 @@ public:
memset(data, 0, sizeof(data)); memset(data, 0, sizeof(data));
unsigned int n = (M < N) ? M : N; unsigned int n = (M < N) ? M : N;
for (unsigned int i = 0; i < n; i++) for (unsigned int i = 0; i < n; i++) {
data[i][i] = 1; data[i][i] = 1;
} }
}
void print(void) { void print(void) {
for (unsigned int i = 0; i < M; i++) { for (unsigned int i = 0; i < M; i++) {
printf("[ "); printf("[ ");
for (unsigned int j = 0; j < N; j++) for (unsigned int j = 0; j < N; j++) {
printf("%.3f\t", data[i][j]); printf("%.3f\t", data[i][j]);
}
printf(" ]\n"); printf(" ]\n");
} }
@ -352,8 +400,17 @@ public:
* multiplication by a vector * multiplication by a vector
*/ */
Vector<M> operator *(const Vector<N> &v) const { Vector<M> operator *(const Vector<N> &v) const {
#ifdef CONFIG_ARCH_ARM
Vector<M> res; Vector<M> res;
arm_mat_mult_f32(&this->arm_mat, &v.arm_col, &res.arm_col); arm_mat_mult_f32(&this->arm_mat, &v.arm_col, &res.arm_col);
#else
//probably nicer if this could go into a function like "eigen_mat_mult" or so
Eigen::Matrix<float, M, N, Eigen::RowMajor> Me = Eigen::Map<Eigen::Matrix<float, M, N, Eigen::RowMajor> >
(this->arm_mat.pData);
Eigen::VectorXf Vec = Eigen::Map<Eigen::VectorXf>(v.arm_col.pData, N);
Eigen::VectorXf Product = Me * Vec;
Vector<M> res(Product.data());
#endif
return res; return res;
} }
}; };

View File

@ -44,7 +44,7 @@
#define QUATERNION_HPP #define QUATERNION_HPP
#include <math.h> #include <math.h>
#include "../CMSIS/Include/arm_math.h"
#include "Vector.hpp" #include "Vector.hpp"
#include "Matrix.hpp" #include "Matrix.hpp"

View File

@ -45,7 +45,12 @@
#include <stdio.h> #include <stdio.h>
#include <math.h> #include <math.h>
#ifdef CONFIG_ARCH_ARM
#include "../CMSIS/Include/arm_math.h" #include "../CMSIS/Include/arm_math.h"
#else
#include <math/eigen_math.h>
#endif
namespace math namespace math
{ {
@ -65,7 +70,12 @@ public:
/** /**
* struct for using arm_math functions, represents column vector * struct for using arm_math functions, represents column vector
*/ */
#ifdef CONFIG_ARCH_ARM
arm_matrix_instance_f32 arm_col; arm_matrix_instance_f32 arm_col;
#else
eigen_matrix_instance arm_col;
#endif
/** /**
* trivial ctor * trivial ctor

View File

@ -0,0 +1,326 @@
/* Copyright (c) 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mc_att_control_base.cpp
*
* @author Roman Bapst <bapstr@ethz.ch>
*
*/
#include "fw_att_control_base.h"
#include <math.h>
#include <mathlib/mathlib.h>
#include <drivers/drv_hrt.h>
#include <systemlib/err.h>
using namespace std;
FixedwingAttitudeControlBase::FixedwingAttitudeControlBase() :
_task_should_exit(false), _task_running(false), _control_task(-1),
/* performance counters */
_loop_perf(perf_alloc(PC_ELAPSED, "fw att control")), _nonfinite_input_perf(
perf_alloc(PC_COUNT, "fw att control nonfinite input")), _nonfinite_output_perf(
perf_alloc(PC_COUNT, "fw att control nonfinite output")),
/* states */
_setpoint_valid(false), _debug(false) {
/* safely initialize structs */
_att = {};
_att_sp = {};
_manual = {};
_airspeed = {};
_vcontrol_mode = {};
_actuators = {};
_actuators_airframe = {};
_global_pos = {};
_vehicle_status = {};
}
FixedwingAttitudeControlBase::~FixedwingAttitudeControlBase() {
}
void FixedwingAttitudeControlBase::control_attitude() {
bool lock_integrator = false;
static int loop_counter = 0;
/* scale around tuning airspeed */
float airspeed;
/* if airspeed is not updating, we assume the normal average speed */
if (bool nonfinite = !isfinite(_airspeed.true_airspeed_m_s)
|| hrt_elapsed_time(&_airspeed.timestamp) > 1e6) {
airspeed = _parameters.airspeed_trim;
if (nonfinite) {
perf_count(_nonfinite_input_perf);
}
} else {
/* prevent numerical drama by requiring 0.5 m/s minimal speed */
airspeed = math::max(0.5f, _airspeed.true_airspeed_m_s);
}
/*
* For scaling our actuators using anything less than the min (close to stall)
* speed doesn't make any sense - its the strongest reasonable deflection we
* want to do in flight and its the baseline a human pilot would choose.
*
* Forcing the scaling to this value allows reasonable handheld tests.
*/
float airspeed_scaling = _parameters.airspeed_trim
/ ((airspeed < _parameters.airspeed_min) ?
_parameters.airspeed_min : airspeed);
float roll_sp = _parameters.rollsp_offset_rad;
float pitch_sp = _parameters.pitchsp_offset_rad;
float throttle_sp = 0.0f;
if (_vcontrol_mode.flag_control_velocity_enabled
|| _vcontrol_mode.flag_control_position_enabled) {
/* read in attitude setpoint from attitude setpoint uorb topic */
roll_sp = _att_sp.roll_body + _parameters.rollsp_offset_rad;
pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad;
throttle_sp = _att_sp.thrust;
/* reset integrals where needed */
if (_att_sp.roll_reset_integral) {
_roll_ctrl.reset_integrator();
}
if (_att_sp.pitch_reset_integral) {
_pitch_ctrl.reset_integrator();
}
if (_att_sp.yaw_reset_integral) {
_yaw_ctrl.reset_integrator();
}
} else {
/*
* Scale down roll and pitch as the setpoints are radians
* and a typical remote can only do around 45 degrees, the mapping is
* -1..+1 to -man_roll_max rad..+man_roll_max rad (equivalent for pitch)
*
* With this mapping the stick angle is a 1:1 representation of
* the commanded attitude.
*
* The trim gets subtracted here from the manual setpoint to get
* the intended attitude setpoint. Later, after the rate control step the
* trim is added again to the control signal.
*/
roll_sp = (_manual.y * _parameters.man_roll_max - _parameters.trim_roll)
+ _parameters.rollsp_offset_rad;
pitch_sp = -(_manual.x * _parameters.man_pitch_max
- _parameters.trim_pitch) + _parameters.pitchsp_offset_rad;
throttle_sp = _manual.z;
_actuators.control[4] = _manual.flaps;
/*
* in manual mode no external source should / does emit attitude setpoints.
* emit the manual setpoint here to allow attitude controller tuning
* in attitude control mode.
*/
struct vehicle_attitude_setpoint_s att_sp;
att_sp.timestamp = hrt_absolute_time();
att_sp.roll_body = roll_sp;
att_sp.pitch_body = pitch_sp;
att_sp.yaw_body = 0.0f - _parameters.trim_yaw;
att_sp.thrust = throttle_sp;
}
/* If the aircraft is on ground reset the integrators */
if (_vehicle_status.condition_landed) {
_roll_ctrl.reset_integrator();
_pitch_ctrl.reset_integrator();
_yaw_ctrl.reset_integrator();
}
/* Prepare speed_body_u and speed_body_w */
float speed_body_u = 0.0f;
float speed_body_v = 0.0f;
float speed_body_w = 0.0f;
if (_att.R_valid) {
speed_body_u = _att.R[0][0] * _global_pos.vel_n
+ _att.R[1][0] * _global_pos.vel_e
+ _att.R[2][0] * _global_pos.vel_d;
speed_body_v = _att.R[0][1] * _global_pos.vel_n
+ _att.R[1][1] * _global_pos.vel_e
+ _att.R[2][1] * _global_pos.vel_d;
speed_body_w = _att.R[0][2] * _global_pos.vel_n
+ _att.R[1][2] * _global_pos.vel_e
+ _att.R[2][2] * _global_pos.vel_d;
} else {
if (_debug && loop_counter % 10 == 0) {
warnx("Did not get a valid R\n");
}
}
/* Run attitude controllers */
if (isfinite(roll_sp) && isfinite(pitch_sp)) {
_roll_ctrl.control_attitude(roll_sp, _att.roll);
_pitch_ctrl.control_attitude(pitch_sp, _att.roll, _att.pitch, airspeed);
_yaw_ctrl.control_attitude(_att.roll, _att.pitch, speed_body_u,
speed_body_v, speed_body_w, _roll_ctrl.get_desired_rate(),
_pitch_ctrl.get_desired_rate()); //runs last, because is depending on output of roll and pitch attitude
/* Run attitude RATE controllers which need the desired attitudes from above, add trim */
float roll_u = _roll_ctrl.control_bodyrate(_att.pitch, _att.rollspeed,
_att.yawspeed, _yaw_ctrl.get_desired_rate(),
_parameters.airspeed_min, _parameters.airspeed_max, airspeed,
airspeed_scaling, lock_integrator);
_actuators.control[0] =
(isfinite(roll_u)) ?
roll_u + _parameters.trim_roll : _parameters.trim_roll;
if (!isfinite(roll_u)) {
_roll_ctrl.reset_integrator();
perf_count(_nonfinite_output_perf);
if (_debug && loop_counter % 10 == 0) {
warnx("roll_u %.4f", (double) roll_u);
}
}
float pitch_u = _pitch_ctrl.control_bodyrate(_att.roll, _att.pitch,
_att.pitchspeed, _att.yawspeed, _yaw_ctrl.get_desired_rate(),
_parameters.airspeed_min, _parameters.airspeed_max, airspeed,
airspeed_scaling, lock_integrator);
_actuators.control[1] =
(isfinite(pitch_u)) ?
pitch_u + _parameters.trim_pitch :
_parameters.trim_pitch;
if (!isfinite(pitch_u)) {
_pitch_ctrl.reset_integrator();
perf_count(_nonfinite_output_perf);
if (_debug && loop_counter % 10 == 0) {
warnx("pitch_u %.4f, _yaw_ctrl.get_desired_rate() %.4f,"
" airspeed %.4f, airspeed_scaling %.4f,"
" roll_sp %.4f, pitch_sp %.4f,"
" _roll_ctrl.get_desired_rate() %.4f,"
" _pitch_ctrl.get_desired_rate() %.4f"
" att_sp.roll_body %.4f", (double) pitch_u,
(double) _yaw_ctrl.get_desired_rate(),
(double) airspeed, (double) airspeed_scaling,
(double) roll_sp, (double) pitch_sp,
(double) _roll_ctrl.get_desired_rate(),
(double) _pitch_ctrl.get_desired_rate(),
(double) _att_sp.roll_body);
}
}
float yaw_u = _yaw_ctrl.control_bodyrate(_att.roll, _att.pitch,
_att.pitchspeed, _att.yawspeed, _pitch_ctrl.get_desired_rate(),
_parameters.airspeed_min, _parameters.airspeed_max, airspeed,
airspeed_scaling, lock_integrator);
_actuators.control[2] =
(isfinite(yaw_u)) ?
yaw_u + _parameters.trim_yaw : _parameters.trim_yaw;
if (!isfinite(yaw_u)) {
_yaw_ctrl.reset_integrator();
perf_count(_nonfinite_output_perf);
if (_debug && loop_counter % 10 == 0) {
warnx("yaw_u %.4f", (double) yaw_u);
}
}
/* throttle passed through */
_actuators.control[3] = (isfinite(throttle_sp)) ? throttle_sp : 0.0f;
if (!isfinite(throttle_sp)) {
if (_debug && loop_counter % 10 == 0) {
warnx("throttle_sp %.4f", (double) throttle_sp);
}
}
} else {
perf_count(_nonfinite_input_perf);
if (_debug && loop_counter % 10 == 0) {
warnx("Non-finite setpoint roll_sp: %.4f, pitch_sp %.4f",
(double) roll_sp, (double) pitch_sp);
}
}
}
void FixedwingAttitudeControlBase::set_attitude(const Eigen::Quaternion<double> attitude) {
// watch out, still need to see where we modify attitude for the tailsitter case
math::Quaternion quat;
quat(0) = (float)attitude.w();
quat(1) = (float)attitude.x();
quat(2) = (float)attitude.y();
quat(3) = (float)attitude.z();
_att.q[0] = quat(0);
_att.q[1] = quat(1);
_att.q[2] = quat(2);
_att.q[3] = quat(3);
math::Matrix<3,3> Rot = quat.to_dcm();
_att.R[0][0] = Rot(0,0);
_att.R[1][0] = Rot(1,0);
_att.R[2][0] = Rot(2,0);
_att.R[0][1] = Rot(0,1);
_att.R[1][1] = Rot(1,1);
_att.R[2][1] = Rot(2,1);
_att.R[0][2] = Rot(0,2);
_att.R[1][2] = Rot(1,2);
_att.R[2][2] = Rot(2,2);
_att.R_valid = true;
}
void FixedwingAttitudeControlBase::set_attitude_rates(const Eigen::Vector3d& angular_rate) {
_att.rollspeed = angular_rate(0);
_att.pitchspeed = angular_rate(1);
_att.yawspeed = angular_rate(2);
}
void FixedwingAttitudeControlBase::set_attitude_reference(const Eigen::Vector4d& control_attitude_thrust_reference) {
_att_sp.roll_body = control_attitude_thrust_reference(0);
_att_sp.pitch_body = control_attitude_thrust_reference(1);
_att_sp.yaw_body = control_attitude_thrust_reference(2);
_att_sp.thrust = (control_attitude_thrust_reference(3) -30)*(-1)/30;
// setup rotation matrix
math::Matrix<3,3> Rot_sp;
Rot_sp.from_euler(_att_sp.roll_body,_att_sp.pitch_body,_att_sp.yaw_body);
_att_sp.R_body[0][0] = Rot_sp(0,0);
_att_sp.R_body[1][0] = Rot_sp(1,0);
_att_sp.R_body[2][0] = Rot_sp(2,0);
_att_sp.R_body[0][1] = Rot_sp(0,1);
_att_sp.R_body[1][1] = Rot_sp(1,1);
_att_sp.R_body[2][1] = Rot_sp(2,1);
_att_sp.R_body[0][2] = Rot_sp(0,2);
_att_sp.R_body[1][2] = Rot_sp(1,2);
_att_sp.R_body[2][2] = Rot_sp(2,2);
}
void FixedwingAttitudeControlBase::get_mixer_input(Eigen::Vector4d& motor_inputs) {
motor_inputs(0) = _actuators.control[0];
motor_inputs(1) = _actuators.control[1];
motor_inputs(2) = _actuators.control[2];
motor_inputs(3) = _actuators.control[3];
}

View File

@ -0,0 +1,151 @@
#ifndef FW_ATT_CONTROL_BASE_H_
#define FW_ATT_CONTROL_BASE_H_
/* Copyright (c) 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file fw_att_control_base.h
*
* @author Roman Bapst <bapstr@ethz.ch>
*
*/
#include <ecl/attitude_fw/ecl_pitch_controller.h>
#include <ecl/attitude_fw/ecl_roll_controller.h>
#include <ecl/attitude_fw/ecl_yaw_controller.h>
#include <uORB/topics/airspeed.h>
#include <uORB/topics/vehicle_attitude_setpoint.h>
#include <uORB/topics/manual_control_setpoint.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/vehicle_rates_setpoint.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_control_mode.h>
#include <uORB/topics/parameter_update.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_status.h>
#include <systemlib/perf_counter.h>
class FixedwingAttitudeControlBase
{
public:
/**
* Constructor
*/
FixedwingAttitudeControlBase();
/**
* Destructor
*/
~FixedwingAttitudeControlBase();
protected:
bool _task_should_exit; /**< if true, sensor task should exit */
bool _task_running; /**< if true, task is running in its mainloop */
int _control_task; /**< task handle for sensor task */
struct vehicle_attitude_s _att; /**< vehicle attitude */
struct vehicle_attitude_setpoint_s _att_sp; /**< vehicle attitude setpoint */
struct manual_control_setpoint_s _manual; /**< r/c channel data */
struct airspeed_s _airspeed; /**< airspeed */
struct vehicle_control_mode_s _vcontrol_mode; /**< vehicle control mode */
struct actuator_controls_s _actuators; /**< actuator control inputs */
struct actuator_controls_s _actuators_airframe; /**< actuator control inputs */
struct vehicle_global_position_s _global_pos; /**< global position */
struct vehicle_status_s _vehicle_status; /**< vehicle status */
perf_counter_t _loop_perf; /**< loop performance counter */
perf_counter_t _nonfinite_input_perf; /**< performance counter for non finite input */
perf_counter_t _nonfinite_output_perf; /**< performance counter for non finite output */
bool _setpoint_valid; /**< flag if the position control setpoint is valid */
bool _debug; /**< if set to true, print debug output */
struct {
float tconst;
float p_p;
float p_d;
float p_i;
float p_ff;
float p_rmax_pos;
float p_rmax_neg;
float p_integrator_max;
float p_roll_feedforward;
float r_p;
float r_d;
float r_i;
float r_ff;
float r_integrator_max;
float r_rmax;
float y_p;
float y_i;
float y_d;
float y_ff;
float y_roll_feedforward;
float y_integrator_max;
float y_coordinated_min_speed;
float y_rmax;
float airspeed_min;
float airspeed_trim;
float airspeed_max;
float trim_roll;
float trim_pitch;
float trim_yaw;
float rollsp_offset_deg; /**< Roll Setpoint Offset in deg */
float pitchsp_offset_deg; /**< Pitch Setpoint Offset in deg */
float rollsp_offset_rad; /**< Roll Setpoint Offset in rad */
float pitchsp_offset_rad; /**< Pitch Setpoint Offset in rad */
float man_roll_max; /**< Max Roll in rad */
float man_pitch_max; /**< Max Pitch in rad */
} _parameters; /**< local copies of interesting parameters */
ECL_RollController _roll_ctrl;
ECL_PitchController _pitch_ctrl;
ECL_YawController _yaw_ctrl;
void control_attitude();
// setters and getters for interface with euroc-gazebo simulator
void set_attitude(const Eigen::Quaternion<double> attitude);
void set_attitude_rates(const Eigen::Vector3d& angular_rate);
void set_attitude_reference(const Eigen::Vector4d& control_attitude_thrust_reference);
void get_mixer_input(Eigen::Vector4d& motor_inputs);
};
#endif /* FW_ATT_CONTROL_BASE_H_ */

View File

@ -0,0 +1,403 @@
/* Copyright (c) 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mc_att_control_base.h
*
* @author Roman Bapst <bapstr@ethz.ch>
*
*/
#include "mc_att_control_base.h"
#include <geo/geo.h>
#include <math.h>
#ifdef CONFIG_ARCH_ARM
#else
#include <cmath>
using namespace std;
#endif
MulticopterAttitudeControlBase::MulticopterAttitudeControlBase() :
_task_should_exit(false), _control_task(-1),
_actuators_0_circuit_breaker_enabled(false),
/* performance counters */
_loop_perf(perf_alloc(PC_ELAPSED, "mc_att_control"))
{
memset(&_v_att, 0, sizeof(_v_att));
memset(&_v_att_sp, 0, sizeof(_v_att_sp));
memset(&_v_rates_sp, 0, sizeof(_v_rates_sp));
memset(&_manual_control_sp, 0, sizeof(_manual_control_sp));
memset(&_v_control_mode, 0, sizeof(_v_control_mode));
memset(&_actuators, 0, sizeof(_actuators));
memset(&_armed, 0, sizeof(_armed));
_params.att_p.zero();
_params.rate_p.zero();
_params.rate_i.zero();
_params.rate_d.zero();
_params.yaw_ff = 0.0f;
_params.yaw_rate_max = 0.0f;
_params.man_roll_max = 0.0f;
_params.man_pitch_max = 0.0f;
_params.man_yaw_max = 0.0f;
_params.acro_rate_max.zero();
_rates_prev.zero();
_rates_sp.zero();
_rates_int.zero();
_thrust_sp = 0.0f;
_att_control.zero();
_I.identity();
// setup standard gains
_params.att_p(0) = 5.0;
_params.rate_p(0) = 0.05;
_params.rate_i(0) = 0.0;
_params.rate_d(0) = 0.003;
/* pitch gains */
_params.att_p(1) = 5.0;
_params.rate_p(1) = 0.05;
_params.rate_i(1) = 0.0;
_params.rate_d(1) = 0.003;
/* yaw gains */
_params.att_p(2) = 2.8;
_params.rate_p(2) = 0.2;
_params.rate_i(2) = 0.1;
_params.rate_d(2) = 0.0;
_params.yaw_rate_max = 0.5;
_params.yaw_ff = 0.5;
_params.man_roll_max = 0.6;
_params.man_pitch_max = 0.6;
_params.man_yaw_max = 0.6;
}
MulticopterAttitudeControlBase::~MulticopterAttitudeControlBase() {
}
void MulticopterAttitudeControlBase::vehicle_attitude_setpoint_poll() {
}
void MulticopterAttitudeControlBase::control_attitude(float dt) {
float yaw_sp_move_rate = 0.0f;
bool publish_att_sp = false;
if (_v_control_mode.flag_control_manual_enabled) {
/* manual input, set or modify attitude setpoint */
if (_v_control_mode.flag_control_velocity_enabled
|| _v_control_mode.flag_control_climb_rate_enabled) {
/* in assisted modes poll 'vehicle_attitude_setpoint' topic and modify it */
vehicle_attitude_setpoint_poll();
}
if (!_v_control_mode.flag_control_climb_rate_enabled) {
/* pass throttle directly if not in altitude stabilized mode */
_v_att_sp.thrust = _manual_control_sp.z;
publish_att_sp = true;
}
if (!_armed.armed) {
/* reset yaw setpoint when disarmed */
_reset_yaw_sp = true;
}
/* move yaw setpoint in all modes */
if (_v_att_sp.thrust < 0.1f) {
// TODO
//if (_status.condition_landed) {
/* reset yaw setpoint if on ground */
// reset_yaw_sp = true;
//}
} else {
/* move yaw setpoint */
yaw_sp_move_rate = _manual_control_sp.r * _params.man_yaw_max;
_v_att_sp.yaw_body = _wrap_pi(
_v_att_sp.yaw_body + yaw_sp_move_rate * dt);
float yaw_offs_max = _params.man_yaw_max / _params.att_p(2);
float yaw_offs = _wrap_pi(_v_att_sp.yaw_body - _v_att.yaw);
if (yaw_offs < -yaw_offs_max) {
_v_att_sp.yaw_body = _wrap_pi(_v_att.yaw - yaw_offs_max);
} else if (yaw_offs > yaw_offs_max) {
_v_att_sp.yaw_body = _wrap_pi(_v_att.yaw + yaw_offs_max);
}
_v_att_sp.R_valid = false;
publish_att_sp = true;
}
/* reset yaw setpint to current position if needed */
if (_reset_yaw_sp) {
_reset_yaw_sp = false;
_v_att_sp.yaw_body = _v_att.yaw;
_v_att_sp.R_valid = false;
publish_att_sp = true;
}
if (!_v_control_mode.flag_control_velocity_enabled) {
/* update attitude setpoint if not in position control mode */
_v_att_sp.roll_body = _manual_control_sp.y * _params.man_roll_max;
_v_att_sp.pitch_body = -_manual_control_sp.x
* _params.man_pitch_max;
_v_att_sp.R_valid = false;
publish_att_sp = true;
}
} else {
/* in non-manual mode use 'vehicle_attitude_setpoint' topic */
vehicle_attitude_setpoint_poll();
/* reset yaw setpoint after non-manual control mode */
_reset_yaw_sp = true;
}
_thrust_sp = _v_att_sp.thrust;
/* construct attitude setpoint rotation matrix */
math::Matrix<3, 3> R_sp;
if (_v_att_sp.R_valid) {
/* rotation matrix in _att_sp is valid, use it */
R_sp.set(&_v_att_sp.R_body[0][0]);
} else {
/* rotation matrix in _att_sp is not valid, use euler angles instead */
R_sp.from_euler(_v_att_sp.roll_body, _v_att_sp.pitch_body,
_v_att_sp.yaw_body);
/* copy rotation matrix back to setpoint struct */
memcpy(&_v_att_sp.R_body[0][0], &R_sp.data[0][0],
sizeof(_v_att_sp.R_body));
_v_att_sp.R_valid = true;
}
// /* publish the attitude setpoint if needed */
// if (publish_att_sp) {
// _v_att_sp.timestamp = hrt_absolute_time();
//
// if (_att_sp_pub > 0) {
// orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub,
// &_v_att_sp);
//
// } else {
// _att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint),
// &_v_att_sp);
// }
// }
/* rotation matrix for current state */
math::Matrix<3, 3> R;
R.set(_v_att.R);
/* all input data is ready, run controller itself */
/* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
math::Vector < 3 > R_z(R(0, 2), R(1, 2), R(2, 2));
math::Vector < 3 > R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));
/* axis and sin(angle) of desired rotation */
math::Vector < 3 > e_R = R.transposed() * (R_z % R_sp_z);
/* calculate angle error */
float e_R_z_sin = e_R.length();
float e_R_z_cos = R_z * R_sp_z;
/* calculate weight for yaw control */
float yaw_w = R_sp(2, 2) * R_sp(2, 2);
/* calculate rotation matrix after roll/pitch only rotation */
math::Matrix<3, 3> R_rp;
if (e_R_z_sin > 0.0f) {
/* get axis-angle representation */
float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
math::Vector < 3 > e_R_z_axis = e_R / e_R_z_sin;
e_R = e_R_z_axis * e_R_z_angle;
/* cross product matrix for e_R_axis */
math::Matrix<3, 3> e_R_cp;
e_R_cp.zero();
e_R_cp(0, 1) = -e_R_z_axis(2);
e_R_cp(0, 2) = e_R_z_axis(1);
e_R_cp(1, 0) = e_R_z_axis(2);
e_R_cp(1, 2) = -e_R_z_axis(0);
e_R_cp(2, 0) = -e_R_z_axis(1);
e_R_cp(2, 1) = e_R_z_axis(0);
/* rotation matrix for roll/pitch only rotation */
R_rp = R
* (_I + e_R_cp * e_R_z_sin
+ e_R_cp * e_R_cp * (1.0f - e_R_z_cos));
} else {
/* zero roll/pitch rotation */
R_rp = R;
}
/* R_rp and R_sp has the same Z axis, calculate yaw error */
math::Vector < 3 > R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
math::Vector < 3 > R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;
if (e_R_z_cos < 0.0f) {
/* for large thrust vector rotations use another rotation method:
* calculate angle and axis for R -> R_sp rotation directly */
math::Quaternion q;
q.from_dcm(R.transposed() * R_sp);
math::Vector < 3 > e_R_d = q.imag();
e_R_d.normalize();
e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0));
/* use fusion of Z axis based rotation and direct rotation */
float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
}
/* calculate angular rates setpoint */
_rates_sp = _params.att_p.emult(e_R);
/* limit yaw rate */
_rates_sp(2) = math::constrain(_rates_sp(2), -_params.yaw_rate_max,
_params.yaw_rate_max);
/* feed forward yaw setpoint rate */
_rates_sp(2) += yaw_sp_move_rate * yaw_w * _params.yaw_ff;
}
void MulticopterAttitudeControlBase::control_attitude_rates(float dt) {
/* reset integral if disarmed */
if (!_armed.armed) {
_rates_int.zero();
}
/* current body angular rates */
math::Vector < 3 > rates;
rates(0) = _v_att.rollspeed;
rates(1) = _v_att.pitchspeed;
rates(2) = _v_att.yawspeed;
/* angular rates error */
math::Vector < 3 > rates_err = _rates_sp - rates;
_att_control = _params.rate_p.emult(rates_err)
+ _params.rate_d.emult(_rates_prev - rates) / dt + _rates_int;
_rates_prev = rates;
/* update integral only if not saturated on low limit */
if (_thrust_sp > MIN_TAKEOFF_THRUST) {
for (int i = 0; i < 3; i++) {
if (fabsf(_att_control(i)) < _thrust_sp) {
float rate_i = _rates_int(i)
+ _params.rate_i(i) * rates_err(i) * dt;
if (isfinite(
rate_i) && rate_i > -RATES_I_LIMIT && rate_i < RATES_I_LIMIT &&
_att_control(i) > -RATES_I_LIMIT && _att_control(i) < RATES_I_LIMIT) {
_rates_int(i) = rate_i;
}
}
}
}
}
void MulticopterAttitudeControlBase::set_actuator_controls() {
_actuators.control[0] = (isfinite(_att_control(0))) ? _att_control(0) : 0.0f;
_actuators.control[1] = (isfinite(_att_control(1))) ? _att_control(1) : 0.0f;
_actuators.control[2] = (isfinite(_att_control(2))) ? _att_control(2) : 0.0f;
_actuators.control[3] = (isfinite(_thrust_sp)) ? _thrust_sp : 0.0f;
}
void MulticopterAttitudeControlBase::set_attitude(const Eigen::Quaternion<double> attitude) {
math::Quaternion quat;
quat(0) = (float)attitude.w();
quat(1) = (float)attitude.x();
quat(2) = (float)attitude.y();
quat(3) = (float)attitude.z();
_v_att.q[0] = quat(0);
_v_att.q[1] = quat(1);
_v_att.q[2] = quat(2);
_v_att.q[3] = quat(3);
math::Matrix<3,3> Rot = quat.to_dcm();
_v_att.R[0][0] = Rot(0,0);
_v_att.R[1][0] = Rot(1,0);
_v_att.R[2][0] = Rot(2,0);
_v_att.R[0][1] = Rot(0,1);
_v_att.R[1][1] = Rot(1,1);
_v_att.R[2][1] = Rot(2,1);
_v_att.R[0][2] = Rot(0,2);
_v_att.R[1][2] = Rot(1,2);
_v_att.R[2][2] = Rot(2,2);
_v_att.R_valid = true;
}
void MulticopterAttitudeControlBase::set_attitude_rates(const Eigen::Vector3d& angular_rate) {
// check if this is consistent !!!
_v_att.rollspeed = angular_rate(0);
_v_att.pitchspeed = angular_rate(1);
_v_att.yawspeed = angular_rate(2);
}
void MulticopterAttitudeControlBase::set_attitude_reference(const Eigen::Vector4d& control_attitude_thrust_reference) {
_v_att_sp.roll_body = control_attitude_thrust_reference(0);
_v_att_sp.pitch_body = control_attitude_thrust_reference(1);
_v_att_sp.yaw_body = control_attitude_thrust_reference(2);
_v_att_sp.thrust = (control_attitude_thrust_reference(3) -30)*(-1)/30;
// setup rotation matrix
math::Matrix<3,3> Rot_sp;
Rot_sp.from_euler(_v_att_sp.roll_body,_v_att_sp.pitch_body,_v_att_sp.yaw_body);
_v_att_sp.R_body[0][0] = Rot_sp(0,0);
_v_att_sp.R_body[1][0] = Rot_sp(1,0);
_v_att_sp.R_body[2][0] = Rot_sp(2,0);
_v_att_sp.R_body[0][1] = Rot_sp(0,1);
_v_att_sp.R_body[1][1] = Rot_sp(1,1);
_v_att_sp.R_body[2][1] = Rot_sp(2,1);
_v_att_sp.R_body[0][2] = Rot_sp(0,2);
_v_att_sp.R_body[1][2] = Rot_sp(1,2);
_v_att_sp.R_body[2][2] = Rot_sp(2,2);
}
void MulticopterAttitudeControlBase::get_mixer_input(Eigen::Vector4d& motor_inputs) {
motor_inputs(0) = _actuators.control[0];
motor_inputs(1) = _actuators.control[1];
motor_inputs(2) = _actuators.control[2];
motor_inputs(3) = _actuators.control[3];
}

View File

@ -0,0 +1,138 @@
#ifndef MC_ATT_CONTROL_BASE_H_
#define MC_ATT_CONTROL_BASE_H_
/* Copyright (c) 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mc_att_control_base.h
*
* @author Roman Bapst <bapstr@ethz.ch>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <math.h>
#include <drivers/drv_hrt.h>
#include <uORB/topics/vehicle_attitude_setpoint.h>
#include <uORB/topics/manual_control_setpoint.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/vehicle_rates_setpoint.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_control_mode.h>
#include <uORB/topics/actuator_armed.h>
#include <systemlib/err.h>
#include <systemlib/perf_counter.h>
#include <lib/mathlib/mathlib.h>
#define YAW_DEADZONE 0.05f
#define MIN_TAKEOFF_THRUST 0.2f
#define RATES_I_LIMIT 0.3f
class MulticopterAttitudeControlBase {
public:
/**
* Constructor
*/
MulticopterAttitudeControlBase();
/**
* Destructor
*/
~MulticopterAttitudeControlBase();
/**
* Start the sensors task.
*
* @return OK on success.
*/
void control_attitude(float dt);
void control_attitude_rates(float dt);
// setters and getters for interface with euroc-gazebo simulator
void set_attitude(const Eigen::Quaternion<double> attitude);
void set_attitude_rates(const Eigen::Vector3d& angular_rate);
void set_attitude_reference(const Eigen::Vector4d& control_attitude_thrust_reference);
void get_mixer_input(Eigen::Vector4d& motor_inputs);
void set_actuator_controls();
protected:
bool _task_should_exit; /**< if true, sensor task should exit */
int _control_task; /**< task handle for sensor task */
bool _actuators_0_circuit_breaker_enabled; /**< circuit breaker to suppress output */
struct vehicle_attitude_s _v_att; /**< vehicle attitude */
struct vehicle_attitude_setpoint_s _v_att_sp; /**< vehicle attitude setpoint */
struct vehicle_rates_setpoint_s _v_rates_sp; /**< vehicle rates setpoint */
struct manual_control_setpoint_s _manual_control_sp; /**< manual control setpoint */
struct vehicle_control_mode_s _v_control_mode; /**< vehicle control mode */
struct actuator_controls_s _actuators; /**< actuator controls */
struct actuator_armed_s _armed; /**< actuator arming status */
perf_counter_t _loop_perf; /**< loop performance counter */
math::Vector<3> _rates_prev; /**< angular rates on previous step */
math::Vector<3> _rates_sp; /**< angular rates setpoint */
math::Vector<3> _rates_int; /**< angular rates integral error */
float _thrust_sp; /**< thrust setpoint */
math::Vector<3> _att_control; /**< attitude control vector */
math::Matrix<3, 3> _I; /**< identity matrix */
bool _reset_yaw_sp; /**< reset yaw setpoint flag */
struct {
math::Vector<3> att_p; /**< P gain for angular error */
math::Vector<3> rate_p; /**< P gain for angular rate error */
math::Vector<3> rate_i; /**< I gain for angular rate error */
math::Vector<3> rate_d; /**< D gain for angular rate error */
float yaw_ff; /**< yaw control feed-forward */
float yaw_rate_max; /**< max yaw rate */
float man_roll_max;
float man_pitch_max;
float man_yaw_max;
math::Vector<3> acro_rate_max; /**< max attitude rates in acro mode */
} _params;
void vehicle_attitude_setpoint_poll(); //provisional
};
#endif /* MC_ATT_CONTROL_BASE_H_ */

View File

@ -42,7 +42,7 @@
#define TOPIC_ACTUATOR_ARMED_H #define TOPIC_ACTUATOR_ARMED_H
#include <stdint.h> #include <stdint.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
/** /**
* @addtogroup topics * @addtogroup topics

View File

@ -47,7 +47,7 @@
#define TOPIC_ACTUATOR_CONTROLS_H #define TOPIC_ACTUATOR_CONTROLS_H
#include <stdint.h> #include <stdint.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
#define NUM_ACTUATOR_CONTROLS 8 #define NUM_ACTUATOR_CONTROLS 8
#define NUM_ACTUATOR_CONTROL_GROUPS 4 /**< for sanity checking */ #define NUM_ACTUATOR_CONTROL_GROUPS 4 /**< for sanity checking */

View File

@ -40,7 +40,7 @@
#ifndef TOPIC_AIRSPEED_H_ #ifndef TOPIC_AIRSPEED_H_
#define TOPIC_AIRSPEED_H_ #define TOPIC_AIRSPEED_H_
#include "../uORB.h" #include <platforms/px4_defines.h>
#include <stdint.h> #include <stdint.h>
/** /**

View File

@ -42,7 +42,7 @@
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
/** /**
* @addtogroup topics * @addtogroup topics

View File

@ -41,7 +41,7 @@
#define TOPIC_MANUAL_CONTROL_SETPOINT_H_ #define TOPIC_MANUAL_CONTROL_SETPOINT_H_
#include <stdint.h> #include <stdint.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
/** /**
* Switch position * Switch position

View File

@ -40,7 +40,7 @@
#define TOPIC_PARAMETER_UPDATE_H #define TOPIC_PARAMETER_UPDATE_H
#include <stdint.h> #include <stdint.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
/** /**
* @addtogroup topics * @addtogroup topics

View File

@ -42,7 +42,7 @@
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
/** /**
* @addtogroup topics * @addtogroup topics

View File

@ -48,7 +48,7 @@
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
#include "vehicle_status.h" #include "vehicle_status.h"
/** /**

View File

@ -45,7 +45,7 @@
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
/** /**
* @addtogroup topics * @addtogroup topics

View File

@ -41,7 +41,7 @@
#define TOPIC_VEHICLE_RATES_SETPOINT_H_ #define TOPIC_VEHICLE_RATES_SETPOINT_H_
#include <stdint.h> #include <stdint.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
/** /**
* @addtogroup topics * @addtogroup topics

View File

@ -53,7 +53,7 @@
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include "../uORB.h" #include <platforms/px4_defines.h>
/** /**
* @addtogroup topics @{ * @addtogroup topics @{

View File

@ -0,0 +1,142 @@
/*
* perf_counter.c
*
* Created on: Sep 24, 2014
* Author: roman
*/
#include <stdlib.h>
#include <stdio.h>
#include <systemlib/perf_counter.h>
perf_counter_t perf_alloc(enum perf_counter_type type, const char *name)
{
return NULL;
}
/**
* Free a counter.
*
* @param handle The performance counter's handle.
*/
void perf_free(perf_counter_t handle)
{
}
/**
* Count a performance event.
*
* This call only affects counters that take single events; PC_COUNT, PC_INTERVAL etc.
*
* @param handle The handle returned from perf_alloc.
*/
void perf_count(perf_counter_t handle)
{
}
/**
* Begin a performance event.
*
* This call applies to counters that operate over ranges of time; PC_ELAPSED etc.
*
* @param handle The handle returned from perf_alloc.
*/
void perf_begin(perf_counter_t handle)
{
}
/**
* End a performance event.
*
* This call applies to counters that operate over ranges of time; PC_ELAPSED etc.
* If a call is made without a corresopnding perf_begin call, or if perf_cancel
* has been called subsequently, no change is made to the counter.
*
* @param handle The handle returned from perf_alloc.
*/
void perf_end(perf_counter_t handle)
{
}
/**
* Cancel a performance event.
*
* This call applies to counters that operate over ranges of time; PC_ELAPSED etc.
* It reverts the effect of a previous perf_begin.
*
* @param handle The handle returned from perf_alloc.
*/
void perf_cancel(perf_counter_t handle)
{
}
/**
* Reset a performance counter.
*
* This call resets performance counter to initial state
*
* @param handle The handle returned from perf_alloc.
*/
void perf_reset(perf_counter_t handle)
{
}
/**
* Print one performance counter to stdout
*
* @param handle The counter to print.
*/
void perf_print_counter(perf_counter_t handle)
{
}
/**
* Print one performance counter to a fd.
*
* @param fd File descriptor to print to - e.g. 0 for stdout
* @param handle The counter to print.
*/
void perf_print_counter_fd(int fd, perf_counter_t handle)
{
}
/**
* Print all of the performance counters.
*
* @param fd File descriptor to print to - e.g. 0 for stdout
*/
void perf_print_all(int fd)
{
}
/**
* Reset all of the performance counters.
*/
void perf_reset_all(void)
{
}
/**
* Return current event_count
*
* @param handle The counter returned from perf_alloc.
* @return event_count
*/
uint64_t perf_event_count(perf_counter_t handle)
{
}